Home | History | Annotate | Download | only in www
      1 
      2 
      3 
      4 
      5 <!DOCTYPE html>
      6 <html lang="en">
      7 <head>
      8   <meta charset="utf-8"  />
      9   <meta name="viewport" content="width=device-width,minimum-scale=1,initial-scale=1,shrink-to-fit=no"  />
     10   <title>Architecture @ ImageMagick</title>
     11   <meta name="application-name" content="ImageMagick" />
     12   <meta name="description" content="Use ImageMagick to create, edit, compose, or convert bitmap images. You can resize your image, crop it, change its shades and colors, add captions, among other operations." />
     13   <meta name="application-url" content="https://imagemagick.org" />
     14   <meta name="generator" content="PHP" />
     15   <meta name="keywords" content="architecture, ImageMagick, PerlMagick, image processing, image, photo, software, Magick++, OpenMP, convert" />
     16   <meta name="rating" content="GENERAL" />
     17   <meta name="robots" content="INDEX, FOLLOW" />
     18   <meta name="generator" content="ImageMagick Studio LLC" />
     19   <meta name="author" content="ImageMagick Studio LLC" />
     20   <meta name="revisit-after" content="2 DAYS" />
     21   <meta name="resource-type" content="document" />
     22   <meta name="copyright" content="Copyright (c) 1999-2019 ImageMagick Studio LLC" />
     23   <meta name="distribution" content="Global" />
     24   <meta name="magick-serial" content="P131-S030410-R485315270133-P82224-A6668-G1245-1" />
     25   <meta name="google-site-verification" content="_bMOCDpkx9ZAzBwb2kF3PRHbfUUdFj2uO8Jd1AXArz4" />
     26   <link href="../www/architecture.html" rel="canonical" />
     27   <link href="../images/wand.png" rel="icon" />
     28   <link href="../images/wand.ico" rel="shortcut icon" />
     29   <link href="assets/magick.css" rel="stylesheet" />
     30 </head>
     31 <body>
     32   <header>
     33   <nav class="navbar navbar-expand-md navbar-dark fixed-top bg-dark">
     34     <a class="navbar-brand" href="../index.html"><img class="d-block" id="icon" alt="ImageMagick" width="32" height="32" src="../images/wand.ico"/></a>
     35     <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarsMagick" aria-controls="navbarsMagick" aria-expanded="false" aria-label="Toggle navigation">
     36       <span class="navbar-toggler-icon"></span>
     37     </button>
     38 
     39     <div class="navbar-collapse collapse" id="navbarsMagick" style="">
     40     <ul class="navbar-nav mr-auto">
     41       <li class="nav-item ">
     42         <a class="nav-link" href="../index.html">Home <span class="sr-only">(current)</span></a>
     43       </li>
     44       <li class="nav-item ">
     45         <a class="nav-link" href="download.html">Download</a>
     46       </li>
     47       <li class="nav-item ">
     48         <a class="nav-link" href="command-line-tools.html">Tools</a>
     49       </li>
     50       <li class="nav-item ">
     51         <a class="nav-link" href="command-line-processing.html">Command-line</a>
     52       </li>
     53       <li class="nav-item ">
     54         <a class="nav-link" href="resources.html">Resources</a>
     55       </li>
     56       <li class="nav-item ">
     57         <a class="nav-link" href="develop.html">Develop</a>
     58       </li>
     59       <li class="nav-item">
     60         <a class="nav-link" target="_blank" href="https://imagemagick.org/discourse-server/">Community</a>
     61       </li>
     62     </ul>
     63     <form class="form-inline my-2 my-lg-0" action="https://imagemagick.org/script/search.php">
     64       <input class="form-control mr-sm-2" type="text" name="q" placeholder="Search" aria-label="Search">
     65       <button class="btn btn-outline-success my-2 my-sm-0" type="submit" name="sa">Search</button>
     66     </form>
     67     </div>
     68   </nav>
     69   <div class="container">
     70    <script async="async" src="http://localhost/pagead/js/adsbygoogle.js"></script>    <ins class="adsbygoogle"
     71          style="display:block"
     72          data-ad-client="ca-pub-3129977114552745"
     73          data-ad-slot="6345125851"
     74          data-ad-format="auto"></ins>
     75     <script>
     76       (adsbygoogle = window.adsbygoogle || []).push({});
     77     </script>
     78 
     79   </div>
     80   </header>
     81   <main class="container">
     82     <div class="magick-template">
     83 <div class="magick-header">
     84 <p class="text-center"><a href="architecture.html#cache">The Pixel Cache</a>  <a href="architecture.html#stream">Streaming Pixels</a>  <a href="architecture.html#properties">Image Properties and Profiles</a>  <a href="architecture.html#tera-pixel">Large Image Support</a>  <a href="architecture.html#threads">Threads of Execution</a>  <a href="architecture.html#distributed">Heterogeneous Distributed Processing</a>  <a href="architecture.html#coders">Custom Image Coders</a>  <a href="architecture.html#filters">Custom Image Filters</a></p>
     85 
     86 <p class="lead magick-description">The citizens of Oz were quite content with their benefactor, the all-powerful Wizard.  They accepted his wisdom and benevolence without ever questioning the who, why, and where of his power.  Like the citizens of Oz, if you feel comfortable that ImageMagick can help you convert, edit, or compose your images without knowing what goes on behind the curtain, feel free to skip this section.  However, if you want to know more about the software and algorithms behind ImageMagick, read on.  To fully benefit from this discussion, you should be comfortable with image nomenclature and be familiar with computer programming.</p>
     87 
     88 <h2><a class="anchor" id="overview"></a>Architecture Overview</h2>
     89 
     90 <p>An image typically consists of a rectangular region of pixels and metadata.  To convert, edit, or compose an image in an efficient manner, we need convenient access to any pixel anywhere within the region (and sometimes outside the region).  And in the case of an image sequence, we need access to any pixel of any region of any image in the sequence.  However, there are hundreds of image formats such JPEG, TIFF, PNG, GIF, etc., that makes it difficult to access pixels on demand.  Within these formats we find differences in:</p>
     91 
     92 <ul>
     93   <li>colorspace (e.g sRGB, linear RGB, linear GRAY, CMYK, YUV, Lab, etc.)</li>
     94   <li>bit depth (.e.g 1, 4, 8, 12, 16, etc.)</li>
     95   <li>storage format (e.g. unsigned, signed, float, double, etc.)</li>
     96   <li>compression (e.g. uncompressed, RLE, Zip, BZip, etc.)</li>
     97   <li>orientation (i.e. top-to-bottom, right-to-left, etc.),</li>
     98   <li>layout (.e.g. raw, interspersed with opcodes, etc.)</li>
     99 </ul>
    100 
    101 <p>In addition, some image pixels may require attenuation, some formats permit more than one frame, and some formats contain vector graphics that must first be rasterized (converted from vector to pixels).</p>
    102 
    103 <p>An efficient implementation of an image processing algorithm may require we get or set:</p>
    104 
    105 <ul>
    106   <li>one pixel a time (e.g. pixel at location 10,3)</li>
    107   <li>a single scanline (e.g. all pixels from row 4)</li>
    108   <li>a few scanlines at once (e.g. pixel rows 4-7)</li>
    109   <li>a single column or columns of pixels (e.g. all pixels from column 11)</li>
    110   <li>an arbitrary region of pixels from the image (e.g. pixels defined at 10,7 to 10,19)</li>
    111   <li>a pixel in random order (e.g. pixel at 14,15 and 640,480)</li>
    112   <li>pixels from two different images (e.g. pixel at 5,1 from image 1 and pixel at 5,1 from image 2)</li>
    113   <li>pixels outside the boundaries of the image (e.g. pixel at -1,-3)</li>
    114   <li>a pixel component that is unsigned (65311) or in a floating-point representation (e.g. 0.17836)</li>
    115   <li>a high-dynamic range pixel that can include negative values (e.g. -0.00716) as well as values that exceed the quantum depth (e.g. 65931)</li>
    116   <li>one or more pixels simultaneously in different threads of execution</li>
    117   <li>all the pixels in memory to take advantage of speed-ups offered by executing in concert across heterogeneous platforms consisting of CPUs, GPUs, and other processors</li>
    118   <li>traits associated with each channel to specify whether the pixel channel is copied, updated, or blended</li>
    119   <li>masks that define which pixels are eligible to be updated</li>
    120   <li>extra channels that benefits the user but otherwise remain untouched by ImageMagick image processing algorithms</li>
    121 </ul>
    122 
    123 <p>Given the varied image formats and image processing requirements, we implemented the ImageMagick <a href="architecture.html#cache">pixel cache</a> to provide convenient sequential or parallel access to any pixel on demand anywhere inside the image region (i.e. <a href="architecture.html#authentic-pixels">authentic pixels</a>)  and from any image in a sequence.  In addition, the pixel cache permits access to pixels outside the boundaries defined by the image (i.e. <a href="architecture.html#virtual-pixels">virtual pixels</a>).</p>
    124 
    125 <p>In addition to pixels, images have a plethora of <a href="architecture.html#properties">image properties and profiles</a>.  Properties include the well known attributes such as width, height, depth, and colorspace.  An image may have optional properties which might include the image author, a comment, a create date, and others.  Some images also include profiles for color management, or EXIF, IPTC, 8BIM, or XMP informational profiles.  ImageMagick provides command line options and programming methods to get, set, or view image properties or profiles or apply profiles.</p>
    126 
    127 <p>ImageMagick consists of nearly a half million lines of C code and optionally depends on several million lines of code in dependent libraries (e.g. JPEG, PNG, TIFF libraries).  Given that, one might expect a huge architecture document.  However, a great majority of image processing is simply accessing pixels and its metadata and our simple, elegant, and efficient implementation makes this easy for the ImageMagick developer.  We discuss the implementation of the pixel cache and getting and setting image properties and profiles in the next few sections. Next, we discuss using ImageMagick within a <a href="architecture.html#threads">thread</a> of execution.  In the final sections, we discuss <a href="architecture.html#coders">image coders</a> to read or write a particular image format followed by a few words on creating a <a href="architecture.html#filters">filter</a> to access or update pixels based on your custom requirements.</p>
    128 
    129 <h2><a class="anchor" id="cache"></a>The Pixel Cache</h2>
    130 
    131 <p>The ImageMagick pixel cache is a repository for image pixels with up to 32 channels.  The channels are stored contiguously at the depth specified when ImageMagick was built.  The channel depths are 8 bits-per-pixel component for the Q8 version of ImageMagick, 16 bits-per-pixel component for the Q16 version, and 32 bits-per-pixel component for the Q32 version.  By default pixel components are 32-bit floating-bit <a href="high-dynamic-range.html">high dynamic-range</a> quantities. The channels can hold any value but typically contain red, green, blue, and alpha intensities or cyan, magenta, yellow, black and alpha intensities.  A channel might contain the colormap indexes for colormapped images or the black channel for CMYK images.  The pixel cache storage may be heap memory, disk-backed memory mapped, or on disk.  The pixel cache is reference-counted.  Only the cache properties are copied when the cache is cloned.  The cache pixels are subsequently copied only when you signal your intention to update any of the pixels.</p>
    132 
    133 <h3>Create the Pixel Cache</h3>
    134 
    135 <p>The pixel cache is associated with an image when it is created and it is initialized when you try to get or put pixels.  Here are three common methods to associate a pixel cache with an image:</p>
    136 
    137 <dl>
    138 <dt class="col-md-8">Create an image canvas initialized to the background color:</dt><br/>
    139 <dd class="col-md-8"><pre class="highlight"><code>image=AllocateImage(image_info);
    140 if (SetImageExtent(image,640,480) == MagickFalse)
    141   { /* an exception was thrown */ }
    142 (void) QueryMagickColor("red",&amp;image-&gt;background_color,&amp;image-&gt;exception);
    143 SetImageBackgroundColor(image);
    144 </code></pre></dd>
    145 
    146 <dt class="col-md-8">Create an image from a JPEG image on disk:</dt><br/>
    147 <dd class="col-md-8"><pre class="highlight"><code>(void) strcpy(image_info-&gt;filename,"image.jpg"):
    148 image=ReadImage(image_info,exception);
    149 if (image == (Image *) NULL)
    150   { /* an exception was thrown */ }
    151 </code></pre></dd>
    152 <dt class="col-md-8">Create an image from a memory based image:</dt><br/>
    153 <dd class="col-md-8"><pre class="highlight"><code>image=BlobToImage(blob_info,blob,extent,exception);
    154 if (image == (Image *) NULL)
    155   { /* an exception was thrown */ }
    156 </code></pre></dd>
    157 </dl>
    158 
    159 <p>In our discussion of the pixel cache, we use the <a href="../www/magick-core.html">MagickCore API</a> to illustrate our points, however, the principles are the same for other program interfaces to ImageMagick.</p>
    160 
    161 <p>When the pixel cache is initialized, pixels are scaled from whatever bit depth they originated from to that required by the pixel cache.  For example, a 1-channel 1-bit monochrome PBM image is scaled to 8-bit gray image, if you are using the Q8 version of ImageMagick, and 16-bit RGBA for the Q16 version.  You can determine which version you have with the <a href="command-line-options.html#version">&#x2011;version</a> option: </p>
    162 
    163 <pre class="highlight"><span class="crtprompt">$ </span><span class='crtin'>identify -version</span><span class='crtout'><br/></span><span class="crtprompt">$ </span><span class='crtin'>Version: ImageMagick 7.0.8-23 2018-12-25 Q16 https://imagemagick.org</span></pre>
    164 <p>As you can see, the convenience of the pixel cache sometimes comes with a trade-off in storage (e.g. storing a 1-bit monochrome image as 16-bit is wasteful) and speed (i.e. storing the entire image in memory is generally slower than accessing one scanline of pixels at a time).  In most cases, the benefits of the pixel cache typically outweigh any disadvantages.</p>
    165 
    166 <h3><a class="anchor" id="authentic-pixels"></a>Access the Pixel Cache</h3>
    167 
    168 <p>Once the pixel cache is associated with an image, you typically want to get, update, or put pixels into it.  We refer to pixels inside the image region as <a href="architecture.html#authentic-pixels">authentic pixels</a> and outside the region as <a href="architecture.html#virtual-pixels">virtual pixels</a>.  Use these methods to access the pixels in the cache:</p>
    169 <ul>
    170   <li><a href="api/cache.html#GetVirtualPixels">GetVirtualPixels()</a>: gets pixels that you do not intend to modify or pixels that lie outside the image region (e.g. pixel @ -1,-3)</li>
    171   <li><a href="api/cache.html#GetAuthenticPixels">GetAuthenticPixels()</a>: gets pixels that you intend to modify</li>
    172   <li><a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a>: queue pixels that you intend to set</li>
    173   <li><a href="api/cache.html#SyncAuthenticPixels">SyncAuthenticPixels()</a>: update the pixel cache with any modified pixels</li>
    174 </ul>
    175 
    176 <p>Here is a typical <a href="../www/magick-core.html">MagickCore</a> code snippet for manipulating pixels in the pixel cache.  In our example, we copy pixels from the input image to the output image and decrease the intensity by 10%:</p>
    177 
    178 <pre class="pre-scrollable"><code>const Quantum
    179   *p;
    180 
    181 Quantum
    182   *q;
    183 
    184 ssize_t
    185   x,
    186   y;
    187 
    188 destination=CloneImage(source,source->columns,source->rows,MagickTrue,
    189   exception);
    190 if (destination == (Image *) NULL)
    191   { /* an exception was thrown */ }
    192 for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
    193 {
    194   p=GetVirtualPixels(source,0,y,source-&gt;columns,1,exception);
    195   q=GetAuthenticPixels(destination,0,y,destination-&gt;columns,1,exception);
    196   if ((p == (const Quantum *) NULL) || (q == (Quantum *) NULL)
    197     break;
    198   for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
    199   {
    200     SetPixelRed(image,90*p-&gt;red/100,q);
    201     SetPixelGreen(image,90*p-&gt;green/100,q);
    202     SetPixelBlue(image,90*p-&gt;blue/100,q);
    203     SetPixelAlpha(image,90*p-&gt;opacity/100,q);
    204     p+=GetPixelChannels(source);
    205     q+=GetPixelChannels(destination);
    206   }
    207   if (SyncAuthenticPixels(destination,exception) == MagickFalse)
    208     break;
    209 }
    210 if (y &lt; (ssize_t) source-&gt;rows)
    211   { /* an exception was thrown */ }
    212 </code></pre>
    213 
    214 <p>When we first create the destination image by cloning the source image, the pixel cache pixels are not copied.  They are only copied when you signal your intentions to modify or set the pixel cache by calling <a href="api/cache.html#GetAuthenticPixels">GetAuthenticPixels()</a> or <a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a>. Use <a href="api/cache.html#QueueAuthenticPixels">QueueAuthenticPixels()</a> if you want to set new pixel values rather than update existing ones.  You could use GetAuthenticPixels() to set pixel values but it is slightly more efficient to use QueueAuthenticPixels() instead. Finally, use <a href="api/cache.html#SyncAuthenticPixels">SyncAuthenticPixels()</a> to ensure any updated pixels are pushed to the pixel cache.</p>
    215 
    216 <p>You can associate arbitrary content with each pixel, called <em>meta</em> content.  Use  <a href="api/cache.html#GetVirtualMetacontent">GetVirtualMetacontent()</a> (to read the content) or <a href="api/cache.html#GetAuthenticMetacontent">GetAuthenticMetacontent()</a> (to update the content) to gain access to this content.  For example, to print the metacontent, use:</p>
    217 
    218 <pre class="highlight"><code>const void
    219   *metacontent;
    220 
    221 for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
    222 {
    223   p=GetVirtualPixels(source,0,y,source-&gt;columns,1);
    224   if (p == (const Quantum *) NULL)
    225     break;
    226   metacontent=GetVirtualMetacontent(source);
    227   /* print meta content here */
    228 }
    229 if (y &lt; (ssize_t) source-&gt;rows)
    230   /* an exception was thrown */
    231 </code></pre>
    232 
    233 <p>The pixel cache manager decides whether to give you direct or indirect access to the image pixels.  In some cases the pixels are staged to an intermediate buffer-- and that is why you must call SyncAuthenticPixels() to ensure this buffer is <var>pushed</var> out to the pixel cache to guarantee the corresponding pixels in the cache are updated.  For this reason we recommend that you only read or update a scanline or a few scanlines of pixels at a time.  However, you can get any rectangular region of pixels you want.  GetAuthenticPixels() requires that the region you request is within the bounds of the image area.  For a 640 by 480 image, you can get a scanline of 640 pixels at row 479 but if you ask for a scanline at row 480, an exception is returned (rows are numbered starting at 0).  GetVirtualPixels() does not have this constraint.  For example,</p>
    234 
    235 <pre class="highlight"><code>p=GetVirtualPixels(source,-3,-3,source-&gt;columns+3,6,exception);
    236 </code></pre>
    237 
    238 <p>gives you the pixels you asked for without complaint, even though some are not within the confines of the image region.</p>
    239 
    240 <h3><a class="anchor" id="virtual-pixels"></a>Virtual Pixels</h3>
    241 
    242 <p>There are a plethora of image processing algorithms that require a neighborhood of pixels about a pixel of interest.  The algorithm typically includes a caveat concerning how to handle pixels around the image boundaries, known as edge pixels.  With virtual pixels, you do not need to concern yourself about special edge processing other than choosing  which virtual pixel method is most appropriate for your algorithm.</p>
    243  <p>Access to the virtual pixels are controlled by the <a href="api/cache.html#SetImageVirtualPixelMethod">SetImageVirtualPixelMethod()</a> method from the MagickCore API or the <a href="command-line-options.html#virtual-pixel">&#x2011;virtual&#x2011;pixel</a> option from the command line.  The methods include:</p>
    244 
    245 <dl class="row">
    246 <dt class="col-md-4">background</dt>
    247 <dd class="col-md-8">the area surrounding the image is the background color</dd>
    248 <dt class="col-md-4">black</dt>
    249 <dd class="col-md-8">the area surrounding the image is black</dd>
    250 <dt class="col-md-4">checker-tile</dt>
    251 <dd class="col-md-8">alternate squares with image and background color</dd>
    252 <dt class="col-md-4">dither</dt>
    253 <dd class="col-md-8">non-random 32x32 dithered pattern</dd>
    254 <dt class="col-md-4">edge</dt>
    255 <dd class="col-md-8">extend the edge pixel toward infinity (default)</dd>
    256 <dt class="col-md-4">gray</dt>
    257 <dd class="col-md-8">the area surrounding the image is gray</dd>
    258 <dt class="col-md-4">horizontal-tile</dt>
    259 <dd class="col-md-8">horizontally tile the image, background color above/below</dd>
    260 <dt class="col-md-4">horizontal-tile-edge</dt>
    261 <dd class="col-md-8">horizontally tile the image and replicate the side edge pixels</dd>
    262 <dt class="col-md-4">mirror</dt>
    263 <dd class="col-md-8">mirror tile the image</dd>
    264 <dt class="col-md-4">random</dt>
    265 <dd class="col-md-8">choose a random pixel from the image</dd>
    266 <dt class="col-md-4">tile</dt>
    267 <dd class="col-md-8">tile the image</dd>
    268 <dt class="col-md-4">transparent</dt>
    269 <dd class="col-md-8">the area surrounding the image is transparent blackness</dd>
    270 <dt class="col-md-4">vertical-tile</dt>
    271 <dd class="col-md-8">vertically tile the image, sides are background color</dd>
    272 <dt class="col-md-4">vertical-tile-edge</dt>
    273 <dd class="col-md-8">vertically tile the image and replicate the side edge pixels</dd>
    274 <dt class="col-md-4">white</dt>
    275 <dd class="col-md-8">the area surrounding the image is white</dd>
    276 </dl>
    277 
    278 
    279 <h3>Cache Storage and Resource Requirements</h3>
    280 
    281 <p>Recall that this simple and elegant design of the ImageMagick pixel cache comes at a cost in terms of storage and processing speed.  The pixel cache storage requirements scales with the area of the image and the bit depth of the pixel components.  For example, if we have a 640 by 480 image and we are using the non-HDRI Q16 version of ImageMagick, the pixel cache consumes image <var>width * height * bit-depth / 8 * channels</var> bytes or approximately 2.3 mebibytes (i.e. 640 * 480 * 2 * 4).  Not too bad, but what if your image is 25000 by 25000 pixels?  The pixel cache requires approximately 4.7 gibibytes of storage.  Ouch.  ImageMagick accounts for possible huge storage requirements by caching large images to disk rather than memory.  Typically the pixel cache is stored in memory using heap memory. If heap memory is exhausted, we create the pixel cache on disk and attempt to memory-map it. If memory-map memory is exhausted, we simply use standard disk I/O.  Disk storage is cheap but it is also very slow, upwards of 1000 times slower than memory.  We can get some speed improvements, up to 5 times, if we use memory mapping to the disk-based cache.  These decisions about storage are made <var>automagically</var> by the pixel cache manager negotiating with the operating system.  However, you can influence how the pixel cache manager allocates the pixel cache with <var>cache resource limits</var>.  The limits include:</p>
    282 
    283 <dl class="row">
    284   <dt class="col-md-4">width</dt>
    285   <dd class="col-md-8">maximum width of an image.  Exceed this limit and an exception is thrown and processing stops.</dd>
    286   <dt class="col-md-4">height</dt>
    287   <dd class="col-md-8">maximum height of an image.  Exceed this limit and an exception is thrown and processing stops.</dd>
    288   <dt class="col-md-4">area</dt>
    289   <dd class="col-md-8">maximum area in bytes of any one image that can reside in the pixel cache memory.  If this limit is exceeded, the image is automagically cached to disk and optionally memory-mapped.</dd>
    290   <dt class="col-md-4">memory</dt>
    291   <dd class="col-md-8">maximum amount of memory in bytes to allocate for the pixel cache from the heap.</dd>
    292   <dt class="col-md-4">map</dt>
    293   <dd class="col-md-8">maximum amount of memory map in bytes to allocate for the pixel cache.</dd>
    294   <dt class="col-md-4">disk</dt>
    295   <dd class="col-md-8">maximum amount of disk space in bytes permitted for use by the pixel cache.  If this limit is exceeded, the pixel cache is not created and a fatal exception is thrown.</dd>
    296   <dt class="col-md-4">files</dt>
    297   <dd class="col-md-8">maximum number of open pixel cache files.  When this limit is exceeded, any subsequent pixels cached to disk are closed and reopened on demand. This behavior permits a large number of images to be accessed simultaneously on disk, but without a speed penalty due to repeated open/close calls.</dd>
    298   <dt class="col-md-4">thread</dt>
    299   <dd class="col-md-8">maximum number of threads that are permitted to run in parallel.</dd>
    300   <dt class="col-md-4">time</dt>
    301   <dd class="col-md-8">maximum number of seconds that the process is permitted to execute.  Exceed this limit and an exception is thrown and processing stops.</dd>
    302 </dl>
    303 
    304 <p>Note, these limits pertain to the ImageMagick pixel cache.  Certain algorithms within ImageMagick do not respect these limits nor does any of the external delegate libraries (e.g. JPEG, TIFF, etc.).</p>
    305 
    306 <p>To determine the current setting of these limits, use this command:</p>
    307 <pre class="highlight">-> identify -list resource
    308 Resource limits:
    309   Width: 100MP
    310   Height: 100MP
    311   Area: 25.181GB
    312   Memory: 11.726GiB
    313   Map: 23.452GiB
    314   Disk: unlimited
    315   File: 768
    316   Thread: 12
    317   Throttle: 0
    318   Time: unlimited
    319 </pre>
    320 
    321 <p>You can set these limits either as a <a href="security-policy.html">security policy</a> (see <a href="https://imagemagick.org/source/policy.xml">policy.xml</a>), with an <a href="resources.html#environment">environment variable</a>, with the <a href="command-line-options.html#limit">-limit</a> command line option, or with the <a href="api/resource.html#SetMagickResourceLimit">SetMagickResourceLimit()</a> MagickCore API method. As an example, our online web interface to ImageMagick, <a href="../MagickStudio/scripts/MagickStudio.cgi">ImageMagick Studio</a>, includes these policy limits to help prevent a denial-of-service:</p>
    322 <pre class="highlight"><code>&lt;policymap>
    323   &lt;policy domain="resource" name="temporary-path" value="/tmp"/>
    324   &lt;policy domain="resource" name="memory" value="256MiB"/>
    325   &lt;policy domain="resource" name="map" value="512MiB"/>
    326   &lt;policy domain="resource" name="width" value="8KP"/>
    327   &lt;policy domain="resource" name="height" value="8KP"/>
    328   &lt;policy domain="resource" name="area" value="128MB"/>
    329   &lt;policy domain="resource" name="disk" value="1GiB"/>
    330   &lt;policy domain="resource" name="file" value="768"/>
    331   &lt;policy domain="resource" name="thread" value="2"/>
    332   &lt;policy domain="resource" name="throttle" value="0"/>
    333   &lt;policy domain="resource" name="time" value="120"/>
    334   &lt;policy domain="system" name="precision" value="6"/>
    335   &lt;policy domain="cache" name="shared-secret" value="replace with your secret phrase" stealth="true"/>
    336   &lt;policy domain="delegate" rights="none" pattern="HTTPS" />
    337   &lt;policy domain="path" rights="none" pattern="@*"/>  &lt;!-- indirect reads not permitted -->
    338 &lt;/policymap>
    339 </code></pre>
    340 <p>Since we process multiple simultaneous sessions, we don't want any one session consuming all the available memory.With this policy, large images are cached to disk. If the image is too large and exceeds the pixel cache disk limit, the program exits. In addition, we place a time limit to prevent any run-away processing tasks. If any one image has a width or height that exceeds 8192 pixels, an exception is thrown and processing stops. As of ImageMagick 7.0.1-8 you can prevent the use of any delegate or all delegates (set the pattern to "*"). Note, prior to this release, use a domain of "coder" to prevent delegate usage (e.g. domain="coder" rights="none" pattern="HTTPS"). The policy also prevents indirect reads.  If you want to, for example, read text from a file (e.g. caption:@myCaption.txt), you'll need to remove this policy.</p>
    341 
    342 <p>Note, the cache limits are global to each invocation of ImageMagick, meaning if you create several images, the combined resource requirements are compared to the limit to determine the pixel cache storage disposition.</p>
    343 
    344 <p>To determine which type and how much resources are consumed by the pixel cache, add the <a href="command-line-options.html#debug">-debug cache</a> option to the command-line:</p>
    345 <pre class="highlight">-> convert -debug cache logo: -sharpen 3x2 null:
    346 2016-12-17T13:33:42-05:00 0:00.000 0.000u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
    347   destroy 
    348 2016-12-17T13:33:42-05:00 0:00.000 0.000u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
    349   open LOGO[0] (Heap Memory, 640x480x4 4.688MiB)
    350 2016-12-17T13:33:42-05:00 0:00.010 0.000u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
    351   open LOGO[0] (Heap Memory, 640x480x3 3.516MiB)
    352 2016-12-17T13:33:42-05:00 0:00.010 0.000u 7.0.0 Cache convert: cache.c/ClonePixelCachePixels/1044/Cache
    353   Memory => Memory
    354 2016-12-17T13:33:42-05:00 0:00.020 0.010u 7.0.0 Cache convert: cache.c/ClonePixelCachePixels/1044/Cache
    355   Memory => Memory
    356 2016-12-17T13:33:42-05:00 0:00.020 0.010u 7.0.0 Cache convert: cache.c/OpenPixelCache/3834/Cache
    357   open LOGO[0] (Heap Memory, 640x480x3 3.516MiB)
    358 2016-12-17T13:33:42-05:00 0:00.050 0.100u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
    359   destroy LOGO[0]
    360 2016-12-17T13:33:42-05:00 0:00.050 0.100u 7.0.0 Cache convert: cache.c/DestroyPixelCache/1275/Cache
    361   destroy LOGO[0]
    362 </pre>
    363 <p>This command utilizes a pixel cache in memory.  The logo consumed 4.688MiB and after it was sharpened, 3.516MiB.</p>
    364 
    365 
    366 <h3>Distributed Pixel Cache</h3>
    367 <p>A distributed pixel cache is an extension of the traditional pixel cache available on a single host.  The distributed pixel cache may span multiple servers so that it can grow in size and transactional capacity to support very large images.  Start up the pixel cache server on one or more machines.  When you read or operate on an image and the local pixel cache resources are exhausted, ImageMagick contacts one or more of these remote pixel servers to store or retrieve pixels.  The distributed pixel cache relies on network bandwidth to marshal pixels to and from the remote server.  As such, it will likely be significantly slower than a pixel cache utilizing local storage (e.g. memory, disk, etc.).</p>
    368 <pre class="highlight"><code>convert -distribute-cache 6668 &amp;  // start on 192.168.100.50
    369 convert -define registry:cache:hosts=192.168.100.50:6668 myimage.jpg -sharpen 5x2 mimage.png
    370 </code></pre>
    371 
    372 <h3>Cache Views</h3>
    373 
    374 <p>GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), and SyncAuthenticPixels(), from the MagickCore API, can only deal with one pixel cache area per image at a time.  Suppose you want to access the first and last scanline from the same image at the same time?  The solution is to use a <var>cache view</var>.  A cache view permits you to access as many areas simultaneously in the pixel cache as you require.  The cache view <a href="api/cache-view.html">methods</a> are analogous to the previous methods except you must first open a view and close it when you are finished with it. Here is a snippet of MagickCore code that permits us to access the first and last pixel row of the image simultaneously:</p>
    375 <pre class="pre-scrollable"><code>CacheView
    376   *view_1,
    377   *view_2;
    378 
    379 view_1=AcquireVirtualCacheView(source,exception);
    380 view_2=AcquireVirtualCacheView(source,exception);
    381 for (y=0; y &lt; (ssize_t) source-&gt;rows; y++)
    382 {
    383   u=GetCacheViewVirtualPixels(view_1,0,y,source-&gt;columns,1,exception);
    384   v=GetCacheViewVirtualPixels(view_2,0,source-&gt;rows-y-1,source-&gt;columns,1,exception);
    385   if ((u == (const Quantum *) NULL) || (v == (const Quantum *) NULL))
    386     break;
    387   for (x=0; x &lt; (ssize_t) source-&gt;columns; x++)
    388   {
    389     /* do something with u &amp; v here */
    390   }
    391 }
    392 view_2=DestroyCacheView(view_2);
    393 view_1=DestroyCacheView(view_1);
    394 if (y &lt; (ssize_t) source-&gt;rows)
    395   { /* an exception was thrown */ }
    396 </code></pre>
    397 
    398 <h3>Magick Persistent Cache Format</h3>
    399 
    400 <p>Recall that each image format is decoded by ImageMagick and the pixels are deposited in the pixel cache.  If you write an image, the pixels are read from the pixel cache and encoded as required by the format you are writing (e.g. GIF, PNG, etc.).  The Magick Persistent Cache (MPC) format is designed to eliminate the overhead of decoding and encoding pixels to and from an image format.  MPC writes two files.  One, with the extension <code>.mpc</code>, retains all the properties associated with the image or image sequence (e.g. width, height, colorspace, etc.) and the second, with the extension <code>.cache</code>, is the pixel cache in the native raw format.  When reading an MPC image file, ImageMagick reads the image properties and memory maps the pixel cache on disk eliminating the need for decoding the image pixels.  The tradeoff is in disk space.  MPC is generally larger in file size than most other image formats.</p>
    401 <p>The most efficient use of MPC image files is a write-once, read-many-times pattern.  For example, your workflow requires extracting random blocks of pixels from the source image.  Rather than re-reading and possibly decompressing the source image each time, we use MPC and map the image directly to memory.</p>
    402 
    403 <h3>Best Practices</h3>
    404 
    405 <p>Although you can request any pixel from the pixel cache, any block of pixels, any scanline, multiple scanlines, any row, or multiple rows with the GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels, GetCacheViewVirtualPixels(), GetCacheViewAuthenticPixels(), and QueueCacheViewAuthenticPixels() methods, ImageMagick is optimized to return a few pixels or a few pixels rows at time.  There are additional optimizations if you request a single scanline or a few scanlines at a time.  These methods also permit random access to the pixel cache, however, ImageMagick is optimized for sequential access.  Although you can access scanlines of pixels sequentially from the last row of the image to the first, you may get a performance boost if you access scanlines from the first row of the image to the last, in sequential order.</p>
    406 
    407 <p>You can get, modify, or set pixels in row or column order.  However, it is more efficient to access the pixels by row rather than by column.</p>
    408 
    409 <p>If you update pixels returned from GetAuthenticPixels() or GetCacheViewAuthenticPixels(), don't forget to call SyncAuthenticPixels() or SyncCacheViewAuthenticPixels() respectively to ensure your changes are synchronized with the pixel cache.</p>
    410 
    411 <p>Use QueueAuthenticPixels() or QueueCacheViewAuthenticPixels() if you are setting an initial pixel value.  The GetAuthenticPixels() or GetCacheViewAuthenticPixels() method reads pixels from the cache and if you are setting an initial pixel value, this read is unnecessary. Don't forget to call SyncAuthenticPixels() or SyncCacheViewAuthenticPixels() respectively to push any pixel changes to the pixel cache.</p>
    412 
    413 <p>GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), and SyncAuthenticPixels() are slightly more efficient than their cache view counter-parts.  However, cache views are required if you need access to more than one region of the image simultaneously or if more than one <a href="architecture.html#threads">thread of execution</a> is accessing the image.</p>
    414 
    415 <p>You can request pixels outside the bounds of the image with GetVirtualPixels() or GetCacheViewVirtualPixels(), however, it is more efficient to request pixels within the confines of the image region.</p>
    416 
    417 <p>Although you can force the pixel cache to disk using appropriate resource limits, disk access can be upwards of 1000 times slower than memory access.  For fast, efficient, access to the pixel cache, try to keep the pixel cache in heap memory.</p>
    418 
    419 <p>The ImageMagick Q16 version of ImageMagick permits you to read and write 16 bit images without scaling but the pixel cache consumes twice as many resources as the Q8 version.  If your system has constrained memory or disk resources, consider the Q8 version of ImageMagick.  In addition, the Q8 version typically executes faster than the Q16 version.</p>
    420 
    421 <p>A great majority of image formats and algorithms restrict themselves to a fixed range of pixel values from 0 to some maximum value, for example, the Q16 version of ImageMagick permit intensities from 0 to 65535.  High dynamic-range imaging (HDRI), however, permits a far greater dynamic range of exposures (i.e. a large difference between light and dark areas) than standard digital imaging techniques. HDRI accurately represents the wide range of intensity levels found in real scenes ranging from the brightest direct sunlight to the deepest darkest shadows.  Enable <a href="high-dynamic-range.html">HDRI</a> at ImageMagick build time to deal with high dynamic-range images, but be mindful that each pixel component is a 32-bit floating point value. In addition, pixel values are not clamped by default so some algorithms may have unexpected results due to out-of-band pixel values than the non-HDRI version.</p>
    422 
    423 <p>If you are dealing with large images, make sure the pixel cache is written to a disk area with plenty of free space.  Under Unix, this is typically <code>/tmp</code> and for Windows, <code>c:/temp</code>.  You can tell ImageMagick to write the pixel cache to an alternate location and conserve memory with these options:</p>
    424 <pre class="highlight"><code>convert -limit memory 2GB -limit map 4GB -define registry:temporary-path=/data/tmp ...
    425 </code></pre>
    426 
    427 <p>Set global resource limits for your environment in the <code>policy.xml</code> configuration file.</p>
    428 
    429 <p>If you plan on processing the same image many times, consider the MPC format.  Reading a MPC image has near-zero overhead because its in the native pixel cache format eliminating the need for decoding the image pixels.  Here is an example:</p>
    430 <pre class="highlight"><code>convert image.tif image.mpc
    431 convert image.mpc -crop 100x100+0+0 +repage 1.png
    432 convert image.mpc -crop 100x100+100+0 +repage 2.png
    433 convert image.mpc -crop 100x100+200+0 +repage 3.png
    434 </code></pre>
    435 
    436 <p>MPC is ideal for web sites.  It reduces the overhead of reading and writing an image.  We use it exclusively at our <a href="../MagickStudio/scripts/MagickStudio.cgi">online image studio</a>.</p>
    437 
    438 <h2><a class="anchor" id="stream"></a>Streaming Pixels</h2>
    439 
    440 <p>ImageMagick provides for streaming pixels as they are read from or written to an image.  This has several advantages over the pixel cache.  The time and resources consumed by the pixel cache scale with the area of an image, whereas the pixel stream resources scale with the width of an image.  The disadvantage is the pixels must be consumed as they are streamed so there is no persistence.</p>
    441 
    442 <p>Use <a href="api/stream.html#ReadStream">ReadStream()</a> or <a href="api/stream.html#WriteStream">WriteStream()</a> with an appropriate callback method in your MagickCore program to consume the pixels as they are streaming.  Here's an abbreviated example of using ReadStream:</p>
    443 <pre class="pre-scrollable"><code>static size_t StreamPixels(const Image *image,const void *pixels,const size_t columns)
    444 {
    445   register const Quantum
    446     *p;
    447 
    448   MyData
    449     *my_data;
    450 
    451   my_data=(MyData *) image->client_data;
    452   p=(Quantum *) pixels;
    453   if (p != (const Quantum *) NULL)
    454     {
    455       /* process pixels here */
    456     }
    457   return(columns);
    458 }
    459 
    460 ...
    461 
    462 /* invoke the pixel stream here */
    463 image_info->client_data=(void *) MyData;
    464 image=ReadStream(image_info,&amp;StreamPixels,exception);
    465 </code></pre>
    466 
    467 <p>We also provide a lightweight tool, <a href="../www/stream.html">stream</a>, to stream one or more pixel components of the image or portion of the image to your choice of storage formats.  It writes the pixel components as they are read from the input image a row at a time making <a href="../www/stream.html">stream</a> desirable when working with large images or when you require raw pixel components.  A majority of the image formats stream pixels (red, green, and blue) from left to right and top to bottom.  However, a few formats do not support this common ordering (e.g. the PSD format).</p>
    468 
    469 <h2><a class="anchor" id="properties"></a>Image Properties and Profiles</h2>
    470 
    471 <p>Images have metadata associated with them in the form of properties (e.g. width, height, description, etc.) and profiles (e.g. EXIF, IPTC, color management).  ImageMagick provides convenient methods to get, set, or update image properties and get, set, update, or apply profiles.  Some of the more popular image properties are associated with the Image structure in the MagickCore API.  For example:</p>
    472 <pre class="highlight"><code>(void) printf("image width: %lu, height: %lu\n",image-&gt;columns,image-&gt;rows);
    473 </code></pre>
    474 
    475 <p>For a great majority of image properties, such as an image comment or description, we use the <a href="api/property.html#GetImageProperty">GetImageProperty()</a> and <a href="api/property.html#SetImageProperty">SetImageProperty()</a> methods.  Here we set a property and fetch it right back:</p>
    476 <pre class="highlight"><code>const char
    477   *comment;
    478 
    479 (void) SetImageProperty(image,"comment","This space for rent");
    480 comment=GetImageProperty(image,"comment");
    481 if (comment == (const char *) NULL)
    482   (void) printf("Image comment: %s\n",comment);
    483 </code></pre>
    484 
    485 <p>ImageMagick supports artifacts with the GetImageArtifact() and SetImageArtifact() methods.  Artifacts are stealth properties that are not exported to image formats (e.g. PNG).</p>
    486 
    487 <p>Image profiles are handled with <a href="api/profile.html#GetImageProfile">GetImageProfile()</a>, <a href="api/profile.html#SetImageProfile">SetImageProfile()</a>, and <a href="api/profile.html#ProfileImage">ProfileImage()</a> methods.  Here we set a profile and fetch it right back:</p>
    488 <pre class="highlight"><code>StringInfo
    489   *profile;
    490 
    491 profile=AcquireStringInfo(length);
    492 SetStringInfoDatum(profile,my_exif_profile);
    493 (void) SetImageProfile(image,"EXIF",profile);
    494 DestroyStringInfo(profile);
    495 profile=GetImageProfile(image,"EXIF");
    496 if (profile != (StringInfo *) NULL)
    497   (void) PrintStringInfo(stdout,"EXIF",profile);
    498 </code></pre>
    499 
    500 <h2><a class="anchor" id="tera-pixel"></a>Large Image Support</h2>
    501 <p>ImageMagick can read, process, or write mega-, giga-, or tera-pixel image sizes.  An image width or height can range from 1 to 2 giga-pixels on a 32 bit OS and up to 9 exa-pixels on a 64-bit OS.  Note, that some image formats have restrictions on image size.  For example, Photoshop images are limited to 300,000 pixels for width or height.  Here we resize an image to a quarter million pixels square:</p>
    502 <pre class="highlight"><code>convert logo: -resize 250000x250000 logo.miff
    503 </code></pre>
    504 
    505 <p>For large images, memory resources will likely be exhausted and ImageMagick will instead create a pixel cache on disk.  Make sure you have plenty of temporary disk space.  If your default temporary disk partition is too small, tell ImageMagick to use another partition with plenty of free space.  For example:</p>
    506 <pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp logo:  \ <br/>     -resize 250000x250000 logo.miff
    507 </code></pre>
    508 
    509 <p>To ensure large images do not consume all the memory on your system, force the image pixels to memory-mapped disk with resource limits:</p>
    510 <pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp -limit memory 16mb \
    511   logo: -resize 250000x250000 logo.miff
    512 </code></pre>
    513 
    514 <p>Here we force all image pixels to disk:</p>
    515 <pre class="highlight"><code>convert -define registry:temporary-path=/data/tmp -limit area 0 \
    516   logo: -resize 250000x250000 logo.miff
    517 </code></pre>
    518 
    519 <p>Caching pixels to disk is about 1000 times slower than memory.  Expect long run times when processing large images on disk with ImageMagick.  You can monitor progress with this command:</p>
    520 <pre class="highlight"><code>convert -monitor -limit memory 2GiB -limit map 4GiB -define registry:temporary-path=/data/tmp \
    521   logo: -resize 250000x250000 logo.miff
    522 </code></pre>
    523 
    524 <p>For really large images, or if there is limited resources on your host, you can utilize a distributed pixel cache on one or more remote hosts:</p>
    525 <pre class="highlight"><code>convert -distribute-cache 6668 &amp;  // start on 192.168.100.50
    526 convert -distribute-cache 6668 &amp;  // start on 192.168.100.51
    527 convert -limit memory 2mb -limit map 2mb -limit disk 2gb \
    528   -define registry:cache:hosts=192.168.100.50:6668,192.168.100.51:6668 \
    529   myhugeimage.jpg -sharpen 5x2 myhugeimage.png
    530 </code></pre>
    531 <p>Due to network latency, expect a substantial slow-down in processing your workflow.</p>
    532 
    533 <h2><a class="anchor" id="threads"></a>Threads of Execution</h2>
    534 
    535 <p>Many of ImageMagick's internal algorithms are threaded to take advantage of speed-ups offered by the multicore processor chips. However, you are welcome to use ImageMagick algorithms in your threads of execution with the exception of the MagickCore's GetVirtualPixels(), GetAuthenticPixels(), QueueAuthenticPixels(), or SyncAuthenticPixels() pixel cache methods.  These methods are intended for one thread of execution only with the exception of an OpenMP parallel section.  To access the pixel cache with more than one thread of execution, use a cache view.  We do this for the <a href="api/composite.html#CompositeImage">CompositeImage()</a> method, for example.  Suppose we want to composite a single source image over a different destination image in each thread of execution.  If we use GetVirtualPixels(), the results are unpredictable because multiple threads would likely be asking for different areas of the pixel cache simultaneously.  Instead we use GetCacheViewVirtualPixels() which creates a unique view for each thread of execution ensuring our program behaves properly regardless of how many threads are invoked.  The other program interfaces, such as the <a href="../www/magick-wand.html">MagickWand API</a>, are completely thread safe so there are no special precautions for threads of execution.</p>
    536 
    537 <p>Here is an MagickCore code snippet that takes advantage of threads of execution with the <a href="../www/openmp.html">OpenMP</a> programming paradigm:</p>
    538 <pre class="pre-scrollable"><code>CacheView
    539   *image_view;
    540 
    541 MagickBooleanType
    542   status;
    543 
    544 ssize_t
    545   y;
    546 
    547 status=MagickTrue;
    548 image_view=AcquireVirtualCacheView(image,exception);
    549 #pragma omp parallel for schedule(static,4) shared(status)
    550 for (y=0; y &lt; (ssize_t) image-&gt;rows; y++)
    551 {
    552   register Quantum
    553     *q;
    554 
    555   register ssize_t
    556     x;
    557 
    558   register void
    559     *metacontent;
    560 
    561   if (status == MagickFalse)
    562     continue;
    563   q=GetCacheViewAuthenticPixels(image_view,0,y,image-&gt;columns,1,exception);
    564   if (q == (Quantum *) NULL)
    565     {
    566       status=MagickFalse;
    567       continue;
    568     }
    569   metacontent=GetCacheViewAuthenticMetacontent(image_view);
    570   for (x=0; x &lt; (ssize_t) image-&gt;columns; x++)
    571   {
    572     SetPixelRed(image,...,q);
    573     SetPixelGreen(image,...,q);
    574     SetPixelBlue(image,...,q);
    575     SetPixelAlpha(image,...,q);
    576     if (metacontent != NULL)
    577       metacontent[indexes+x]=...;
    578     q+=GetPixelChannels(image);
    579   }
    580   if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
    581     status=MagickFalse;
    582 }
    583 image_view=DestroyCacheView(image_view);
    584 if (status == MagickFalse)
    585   perror("something went wrong");
    586 </code></pre>
    587 
    588 <p>This code snippet converts an uncompressed Windows bitmap to a Magick++ image:</p>
    589 <pre class="pre-scrollable"><code>#include "Magick++.h"
    590 #include &lt;assert.h&gt;
    591 #include "omp.h"
    592 
    593 void ConvertBMPToImage(const BITMAPINFOHEADER *bmp_info,
    594   const unsigned char *restrict pixels,Magick::Image *image)
    595 {
    596   /*
    597     Prepare the image so that we can modify the pixels directly.
    598   */
    599   assert(bmp_info->biCompression == BI_RGB);
    600   assert(bmp_info->biWidth == image->columns());
    601   assert(abs(bmp_info->biHeight) == image->rows());
    602   image->modifyImage();
    603   if (bmp_info->biBitCount == 24)
    604     image->type(MagickCore::TrueColorType);
    605   else
    606     image->type(MagickCore::TrueColorMatteType);
    607   register unsigned int bytes_per_row=bmp_info->biWidth*bmp_info->biBitCount/8;
    608   if (bytes_per_row % 4 != 0) {
    609     bytes_per_row=bytes_per_row+(4-bytes_per_row % 4);  // divisible by 4.
    610   }
    611   /*
    612     Copy all pixel data, row by row.
    613   */
    614   #pragma omp parallel for
    615   for (int y=0; y &lt; int(image->rows()); y++)
    616   {
    617     int
    618       row;
    619 
    620     register const unsigned char
    621       *restrict p;
    622 
    623     register MagickCore::Quantum
    624       *restrict q;
    625 
    626     row=(bmp_info->biHeight > 0) ? (image->rows()-y-1) : y;
    627     p=pixels+row*bytes_per_row;
    628     q=image->setPixels(0,y,image->columns(),1);
    629     for (int x=0; x &lt; int(image->columns()); x++)
    630     {
    631       SetPixelBlue(image,p[0],q);
    632       SetPixelGreen(image,p[1],q);
    633       SetPixelRed(image,p[2],q);
    634       if (bmp_info->biBitCount == 32) {
    635         SetPixelAlpha(image,p[3],q);
    636       }
    637       q+=GetPixelChannels(image);
    638       p+=bmp_info->biBitCount/8;
    639     }
    640     image->syncPixels();  // sync pixels to pixel cache.
    641   }
    642   return;
    643 }</code></pre>
    644 
    645 <p>If you call the ImageMagick API from your OpenMP-enabled application and you intend to dynamically increase the number of threads available in subsequent parallel regions, be sure to perform the increase <var>before</var> you call the API otherwise ImageMagick may fault.</p>
    646 
    647 <p><a href="api/wand-view.html">MagickWand</a> supports wand views.  A view iterates over the entire, or portion, of the image in parallel and for each row of pixels, it invokes a callback method you provide.  This limits most of your parallel programming activity to just that one module.  There are similar methods in <a href="api/image-view.html">MagickCore</a>.  For an example, see the same sigmoidal contrast algorithm implemented in both <a href="../www/magick-wand.html#wand-view">MagickWand</a> and <a href="../www/magick-core.html#image-view">MagickCore</a>.</p>
    648 
    649 <p>In most circumstances, the default number of threads is set to the number of processor cores on your system for optimal performance.  However, if your system is hyperthreaded or if you are running on a virtual host and only a subset of the processors are available to your server instance, you might get an increase in performance by setting the thread <a href="resources.html#configure">policy</a> or the <a href="resources.html#environment">MAGICK_THREAD_LIMIT</a> environment variable.  For example, your virtual host has 8 processors but only 2 are assigned to your server instance.  The default of 8 threads can cause severe performance problems.  One solution is to limit the number of threads to the available processors in your <a href="https://imagemagick.org/source/policy.xml">policy.xml</a> configuration file:</p>
    650 <pre class="highlight"><code>&lt;policy domain="resource" name="thread" value="2"/>
    651 </code></pre>
    652 
    653 <p>Or suppose your 12 core hyperthreaded computer defaults to 24 threads.  Set the MAGICK_THREAD_LIMIT environment variable and you will likely get improved performance:</p>
    654 <pre class="highlight"><code>export MAGICK_THREAD_LIMIT=12
    655 </code></pre>
    656 
    657 <p>The OpenMP committee has not defined the behavior of mixing OpenMP with other threading models such as Posix threads.  However, using modern releases of Linux, OpenMP and Posix threads appear to interoperate without complaint.  If you want to use Posix threads from a program module that calls one of the ImageMagick application programming interfaces (e.g. MagickCore, MagickWand, Magick++, etc.) from Mac OS X or an older Linux release, you may need to disable OpenMP support within ImageMagick.  Add the <code>--disable-openmp</code> option to the configure script command line and rebuild and reinstall ImageMagick.</p>
    658 
    659 <h5>Threading Performance</h5>
    660 <p>It can be difficult to predict behavior in a parallel environment.   Performance might depend on a number of factors including the compiler, the version of the OpenMP library, the processor type, the number of cores, the amount of memory, whether hyperthreading is enabled, the mix of applications that are executing concurrently with ImageMagick, or the particular image-processing algorithm you utilize.  The only way to be certain of optimal performance, in terms of the number of threads, is to benchmark.   ImageMagick includes progressive threading when benchmarking a command and returns the elapsed time and efficiency for one or more threads.  This can help you identify how many threads is the most efficient in your environment.  For this benchmark we sharpen a 1920x1080 image of a model 10 times with 1 to 12 threads:</p>
    661 <pre class="highlight">-> convert -bench 10 model.png -sharpen 5x2 null:
    662 Performance[1]: 10i 1.135ips 1.000e 8.760u 0:08.810
    663 Performance[2]: 10i 2.020ips 0.640e 9.190u 0:04.950
    664 Performance[3]: 10i 2.786ips 0.710e 9.400u 0:03.590
    665 Performance[4]: 10i 3.378ips 0.749e 9.580u 0:02.960
    666 Performance[5]: 10i 4.032ips 0.780e 9.580u 0:02.480
    667 Performance[6]: 10i 4.566ips 0.801e 9.640u 0:02.190
    668 Performance[7]: 10i 3.788ips 0.769e 10.980u 0:02.640
    669 Performance[8]: 10i 4.115ips 0.784e 12.030u 0:02.430
    670 Performance[9]: 10i 4.484ips 0.798e 12.860u 0:02.230
    671 Performance[10]: 10i 4.274ips 0.790e 14.830u 0:02.340
    672 Performance[11]: 10i 4.348ips 0.793e 16.500u 0:02.300
    673 Performance[12]: 10i 4.525ips 0.799e 18.320u 0:02.210
    674 </pre>
    675 <p>The sweet spot for this example is 6 threads. This makes sense since there are 6 physical cores.  The other 6 are hyperthreads. It appears that sharpening does not benefit from hyperthreading.</p>
    676 <p>In certain cases, it might be optimal to set the number of threads to 1 or to disable OpenMP completely with the <a href="resources.html#environment">MAGICK_THREAD_LIMIT</a> environment variable, <a href="command-line-options.html#limit">-limit</a> command line option,  or the  <a href="resources.html#configure">policy.xml</a> configuration file.</p>
    677 
    678 <h2><a class="anchor" id="distributed"></a>Heterogeneous Distributed Processing</h2>
    679 <p>ImageMagick includes support for heterogeneous distributed processing with the <a href="http://en.wikipedia.org/wiki/OpenCL">OpenCL</a> framework.  OpenCL kernels within ImageMagick permit image processing algorithms to execute across heterogeneous platforms consisting of CPUs, GPUs, and other processors.  Depending on your platform, speed-ups can be an order of magnitude faster than the traditional single CPU.</p>
    680 
    681 <p>First verify that your version of ImageMagick includes support for the OpenCL feature:</p>
    682 <pre class="highlight"><code>identify -version
    683 Features: DPC Cipher Modules OpenCL OpenMP
    684 </code></pre>
    685 
    686 <p>If so, run this command to realize a significant speed-up for image convolution:</p>
    687 
    688 <pre class="highlight"><code>convert image.png -convolve '-1, -1, -1, -1, 9, -1, -1, -1, -1' convolve.png
    689 </code></pre>
    690 
    691 <p>If an accelerator is not available or if the accelerator fails to respond, ImageMagick reverts to the non-accelerated convolution algorithm.</p>
    692 
    693 <p>Here is an example OpenCL kernel that convolves an image:</p>
    694 <pre class="pre-scrollable"><code>static inline long ClampToCanvas(const long offset,const ulong range)
    695 {
    696   if (offset &lt; 0L)
    697     return(0L);
    698   if (offset >= range)
    699     return((long) (range-1L));
    700   return(offset);
    701 }
    702 
    703 static inline CLQuantum ClampToQuantum(const float value)
    704 {
    705   if (value &lt; 0.0)
    706     return((CLQuantum) 0);
    707   if (value >= (float) QuantumRange)
    708     return((CLQuantum) QuantumRange);
    709   return((CLQuantum) (value+0.5));
    710 }
    711 
    712 __kernel void Convolve(const __global CLPixelType *source,__constant float *filter,
    713   const ulong width,const ulong height,__global CLPixelType *destination)
    714 {
    715   const ulong columns = get_global_size(0);
    716   const ulong rows = get_global_size(1);
    717 
    718   const long x = get_global_id(0);
    719   const long y = get_global_id(1);
    720 
    721   const float scale = (1.0/QuantumRange);
    722   const long mid_width = (width-1)/2;
    723   const long mid_height = (height-1)/2;
    724   float4 sum = { 0.0, 0.0, 0.0, 0.0 };
    725   float gamma = 0.0;
    726   register ulong i = 0;
    727 
    728   for (long v=(-mid_height); v &lt;= mid_height; v++)
    729   {
    730     for (long u=(-mid_width); u &lt;= mid_width; u++)
    731     {
    732       register const ulong index=ClampToCanvas(y+v,rows)*columns+ClampToCanvas(x+u,
    733         columns);
    734       const float alpha=scale*(QuantumRange-source[index].w);
    735       sum.x+=alpha*filter[i]*source[index].x;
    736       sum.y+=alpha*filter[i]*source[index].y;
    737       sum.z+=alpha*filter[i]*source[index].z;
    738       sum.w+=filter[i]*source[index].w;
    739       gamma+=alpha*filter[i];
    740       i++;
    741     }
    742   }
    743 
    744   gamma=1.0/(fabs(gamma) &lt;= MagickEpsilon ? 1.0 : gamma);
    745   const ulong index=y*columns+x;
    746   destination[index].x=ClampToQuantum(gamma*sum.x);
    747   destination[index].y=ClampToQuantum(gamma*sum.y);
    748   destination[index].z=ClampToQuantum(gamma*sum.z);
    749   destination[index].w=ClampToQuantum(sum.w);
    750 };</code></pre>
    751 
    752 <p>See <a href="https://github.com/ImageMagick/ImageMagick/tree/ImageMagick-7/magick/accelerate.c">magick/accelerate.c</a> for a complete implementation of image convolution with an OpenCL kernel.</p>
    753 
    754 <p>Note, that under Windows, you might have an issue with TDR (Timeout Detection and Recovery of GPUs). Its purpose is to detect runaway tasks hanging the GPU by using an execution time threshold.  For some older low-end GPUs running the OpenCL filters in ImageMagick, longer execution times might trigger the TDR mechanism and pre-empt the GPU image filter.  When this happens, ImageMagick automatically falls back to the CPU code path and returns the expected results.  To avoid pre-emption, increase the <a href="http://msdn.microsoft.com/en-us/library/windows/hardware/gg487368.aspx">TdrDelay</a> registry key.</p>
    755 
    756 <h2><a class="anchor" id="coders"></a>Custom Image Coders</h2>
    757 
    758 <p>An image coder (i.e. encoder / decoder) is responsible for registering, optionally classifying, optionally reading, optionally writing, and unregistering one image format (e.g.  PNG, GIF, JPEG, etc.).  Registering an image coder alerts ImageMagick a particular format is available to read or write.  While unregistering tells ImageMagick the format is no longer available.  The classifying method looks at the first few bytes of an image and determines if the image is in the expected format.  The reader sets the image size, colorspace, and other properties and loads the pixel cache with the pixels.  The reader returns a single image or an image sequence (if the format supports multiple images per file), or if an error occurs, an exception and a null image.  The writer does the reverse.  It takes the image properties and unloads the pixel cache and writes them as required by the image format.</p>
    759 
    760 <p>Here is a listing of a sample <a href="https://imagemagick.org/source/mgk.c">custom coder</a>.  It reads and writes images in the MGK image format which is simply an ID followed by the image width and height followed by the RGB pixel values.</p>
    761 <pre class="pre-scrollable"><code>#include &lt;MagickCore/studio.h>
    762 #include &lt;MagickCore/blob.h>
    763 #include &lt;MagickCore/cache.h>
    764 #include &lt;MagickCore/colorspace.h>
    765 #include &lt;MagickCore/exception.h>
    766 #include &lt;MagickCore/image.h>
    767 #include &lt;MagickCore/list.h>
    768 #include &lt;MagickCore/magick.h>
    769 #include &lt;MagickCore/memory_.h>
    770 #include &lt;MagickCore/monitor.h>
    771 #include &lt;MagickCore/pixel-accessor.h>
    772 #include &lt;MagickCore/string_.h>
    773 #include &lt;MagickCore/module.h>
    774 #include "filter/blob-private.h"
    775 #include "filter/exception-private.h"
    776 #include "filter/image-private.h"
    777 #include "filter/monitor-private.h"
    778 #include "filter/quantum-private.h"
    779 
    781 /*
    782   Forward declarations.
    783 */
    784 static MagickBooleanType
    785   WriteMGKImage(const ImageInfo *,Image *,ExceptionInfo *);
    786 
    788 /*
    789 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    790 %                                                                             %
    791 %                                                                             %
    792 %                                                                             %
    793 %   I s M G K                                                                 %
    794 %                                                                             %
    795 %                                                                             %
    796 %                                                                             %
    797 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    798 %
    799 %  IsMGK() returns MagickTrue if the image format type, identified by the
    800 %  magick string, is MGK.
    801 %
    802 %  The format of the IsMGK method is:
    803 %
    804 %      MagickBooleanType IsMGK(const unsigned char *magick,const size_t length)
    805 %
    806 %  A description of each parameter follows:
    807 %
    808 %    o magick: This string is generally the first few bytes of an image file
    809 %      or blob.
    810 %
    811 %    o length: Specifies the length of the magick string.
    812 %
    813 */
    814 static MagickBooleanType IsMGK(const unsigned char *magick,const size_t length)
    815 {
    816   if (length &lt; 7)
    817     return(MagickFalse);
    818   if (LocaleNCompare((char *) magick,"id=mgk",7) == 0)
    819     return(MagickTrue);
    820   return(MagickFalse);
    821 }
    822 
    824 /*
    825 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    826 %                                                                             %
    827 %                                                                             %
    828 %                                                                             %
    829 %   R e a d M G K I m a g e                                                   %
    830 %                                                                             %
    831 %                                                                             %
    832 %                                                                             %
    833 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    834 %
    835 %  ReadMGKImage() reads a MGK image file and returns it.  It allocates the
    836 %  memory necessary for the new Image structure and returns a pointer to the
    837 %  new image.
    838 %
    839 %  The format of the ReadMGKImage method is:
    840 %
    841 %      Image *ReadMGKImage(const ImageInfo *image_info,
    842 %        ExceptionInfo *exception)
    843 %
    844 %  A description of each parameter follows:
    845 %
    846 %    o image_info: the image info.
    847 %
    848 %    o exception: return any errors or warnings in this structure.
    849 %
    850 */
    851 static Image *ReadMGKImage(const ImageInfo *image_info,ExceptionInfo *exception)
    852 {
    853   char
    854     buffer[MaxTextExtent];
    855 
    856   Image
    857     *image;
    858 
    859   long
    860     y;
    861 
    862   MagickBooleanType
    863     status;
    864 
    865   register long
    866     x;
    867 
    868   register Quantum
    869     *q;
    870 
    871   register unsigned char
    872     *p;
    873 
    874   ssize_t
    875     count;
    876 
    877   unsigned char
    878     *pixels;
    879 
    880   unsigned long
    881     columns,
    882     rows;
    883 
    884   /*
    885     Open image file.
    886   */
    887   assert(image_info != (const ImageInfo *) NULL);
    888   assert(image_info->signature == MagickCoreSignature);
    889   if (image_info->debug != MagickFalse)
    890     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",
    891       image_info->filename);
    892   assert(exception != (ExceptionInfo *) NULL);
    893   assert(exception->signature == MagickCoreSignature);
    894   image=AcquireImage(image_info,exception);
    895   status=OpenBlob(image_info,image,ReadBinaryBlobMode,exception);
    896   if (status == MagickFalse)
    897     {
    898       image=DestroyImageList(image);
    899       return((Image *) NULL);
    900     }
    901   /*
    902     Read MGK image.
    903   */
    904   (void) ReadBlobString(image,buffer);  /* read magic number */
    905   if (IsMGK(buffer,7) == MagickFalse)
    906     ThrowReaderException(CorruptImageError,"ImproperImageHeader");
    907   (void) ReadBlobString(image,buffer);
    908   count=(ssize_t) sscanf(buffer,"%lu %lu\n",&columns,&rows);
    909   if (count &lt;= 0)
    910     ThrowReaderException(CorruptImageError,"ImproperImageHeader");
    911   do
    912   {
    913     /*
    914       Initialize image structure.
    915     */
    916     image->columns=columns;
    917     image->rows=rows;
    918     image->depth=8;
    919     if ((image_info->ping != MagickFalse) && (image_info->number_scenes != 0))
    920       if (image->scene >= (image_info->scene+image_info->number_scenes-1))
    921         break;
    922     /*
    923       Convert MGK raster image to pixel packets.
    924     */
    925     if (SetImageExtent(image,image->columns,image->rows,exception) == MagickFalse)
    926       return(DestroyImageList(image));
    927     pixels=(unsigned char *) AcquireQuantumMemory((size_t) image->columns,
    928       3UL*sizeof(*pixels));
    929     if (pixels == (unsigned char *) NULL)
    930       ThrowReaderException(ResourceLimitError,"MemoryAllocationFailed");
    931     for (y=0; y &lt; (long) image->rows; y++)
    932     {
    933       count=(ssize_t) ReadBlob(image,(size_t) (3*image->columns),pixels);
    934       if (count != (ssize_t) (3*image->columns))
    935         ThrowReaderException(CorruptImageError,"UnableToReadImageData");
    936       p=pixels;
    937       q=QueueAuthenticPixels(image,0,y,image->columns,1,exception);
    938       if (q == (Quantum *) NULL)
    939         break;
    940       for (x=0; x &lt; (long) image->columns; x++)
    941       {
    942         SetPixelRed(image,ScaleCharToQuantum(*p++),q);
    943         SetPixelGreen(image,ScaleCharToQuantum(*p++),q);
    944         SetPixelBlue(image,ScaleCharToQuantum(*p++),q);
    945         q+=GetPixelChannels(image);
    946       }
    947       if (SyncAuthenticPixels(image,exception) == MagickFalse)
    948         break;
    949       if (image->previous == (Image *) NULL)
    950         if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
    951             (QuantumTick(y,image->rows) != MagickFalse))
    952           {
    953             status=image->progress_monitor(LoadImageTag,y,image->rows,
    954               image->client_data);
    955             if (status == MagickFalse)
    956               break;
    957           }
    958     }
    959     pixels=(unsigned char *) RelinquishMagickMemory(pixels);
    960     if (EOFBlob(image) != MagickFalse)
    961       {
    962         ThrowFileException(exception,CorruptImageError,"UnexpectedEndOfFile",
    963           image->filename);
    964         break;
    965       }
    966     /*
    967       Proceed to next image.
    968     */
    969     if (image_info->number_scenes != 0)
    970       if (image->scene >= (image_info->scene+image_info->number_scenes-1))
    971         break;
    972     *buffer='\0';
    973     (void) ReadBlobString(image,buffer);
    974     count=(ssize_t) sscanf(buffer,"%lu %lu\n",&columns,&rows);
    975     if (count > 0)
    976       {
    977         /*
    978           Allocate next image structure.
    979         */
    980         AcquireNextImage(image_info,image,exception);
    981         if (GetNextImageInList(image) == (Image *) NULL)
    982           {
    983             image=DestroyImageList(image);
    984             return((Image *) NULL);
    985           }
    986         image=SyncNextImageInList(image);
    987         if (image->progress_monitor != (MagickProgressMonitor) NULL)
    988           {
    989             status=SetImageProgress(image,LoadImageTag,TellBlob(image),
    990               GetBlobSize(image));
    991             if (status == MagickFalse)
    992               break;
    993           }
    994       }
    995   } while (count > 0);
    996   (void) CloseBlob(image);
    997   return(GetFirstImageInList(image));
    998 }
    999 
   1001 /*
   1002 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1003 %                                                                             %
   1004 %                                                                             %
   1005 %                                                                             %
   1006 %   R e g i s t e r M G K I m a g e                                           %
   1007 %                                                                             %
   1008 %                                                                             %
   1009 %                                                                             %
   1010 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1011 %
   1012 %  RegisterMGKImage() adds attributes for the MGK image format to
   1013 %  the list of supported formats.  The attributes include the image format
   1014 %  tag, a method to read and/or write the format, whether the format
   1015 %  supports the saving of more than one frame to the same file or blob,
   1016 %  whether the format supports native in-memory I/O, and a brief
   1017 %  description of the format.
   1018 %
   1019 %  The format of the RegisterMGKImage method is:
   1020 %
   1021 %      unsigned long RegisterMGKImage(void)
   1022 %
   1023 */
   1024 ModuleExport unsigned long RegisterMGKImage(void)
   1025 {
   1026   MagickInfo
   1027     *entry;
   1028 
   1029   entry=AcquireMagickInfo("MGK","MGK","MGK image");
   1030   entry->decoder=(DecodeImageHandler *) ReadMGKImage;
   1031   entry->encoder=(EncodeImageHandler *) WriteMGKImage;
   1032   entry->magick=(IsImageFormatHandler *) IsMGK;
   1033   (void) RegisterMagickInfo(entry);
   1034   return(MagickImageCoderSignature);
   1035 }
   1036 
   1038 /*
   1039 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1040 %                                                                             %
   1041 %                                                                             %
   1042 %                                                                             %
   1043 %   U n r e g i s t e r M G K I m a g e                                       %
   1044 %                                                                             %
   1045 %                                                                             %
   1046 %                                                                             %
   1047 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1048 %
   1049 %  UnregisterMGKImage() removes format registrations made by the
   1050 %  MGK module from the list of supported formats.
   1051 %
   1052 %  The format of the UnregisterMGKImage method is:
   1053 %
   1054 %      UnregisterMGKImage(void)
   1055 %
   1056 */
   1057 ModuleExport void UnregisterMGKImage(void)
   1058 {
   1059   (void) UnregisterMagickInfo("MGK");
   1060 }
   1061 
   1063 /*
   1064 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1065 %                                                                             %
   1066 %                                                                             %
   1067 %                                                                             %
   1068 %   W r i t e M G K I m a g e                                                 %
   1069 %                                                                             %
   1070 %                                                                             %
   1071 %                                                                             %
   1072 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1073 %
   1074 %  WriteMGKImage() writes an image to a file in red, green, and blue MGK
   1075 %  rasterfile format.
   1076 %
   1077 %  The format of the WriteMGKImage method is:
   1078 %
   1079 %      MagickBooleanType WriteMGKImage(const ImageInfo *image_info,
   1080 %        Image *image)
   1081 %
   1082 %  A description of each parameter follows.
   1083 %
   1084 %    o image_info: the image info.
   1085 %
   1086 %    o image:  The image.
   1087 %
   1088 %    o exception:  return any errors or warnings in this structure.
   1089 %
   1090 */
   1091 static MagickBooleanType WriteMGKImage(const ImageInfo *image_info,Image *image,
   1092   ExceptionInfo *exception)
   1093 {
   1094   char
   1095     buffer[MaxTextExtent];
   1096 
   1097   long
   1098     y;
   1099 
   1100   MagickBooleanType
   1101     status;
   1102 
   1103   MagickOffsetType
   1104     scene;
   1105 
   1106   register const Quantum
   1107     *p;
   1108 
   1109   register long
   1110     x;
   1111 
   1112   register unsigned char
   1113     *q;
   1114 
   1115   unsigned char
   1116     *pixels;
   1117 
   1118   /*
   1119     Open output image file.
   1120   */
   1121   assert(image_info != (const ImageInfo *) NULL);
   1122   assert(image_info->signature == MagickCoreSignature);
   1123   assert(image != (Image *) NULL);
   1124   assert(image->signature == MagickCoreSignature);
   1125   if (image->debug != MagickFalse)
   1126     (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
   1127   status=OpenBlob(image_info,image,WriteBinaryBlobMode,exception);
   1128   if (status == MagickFalse)
   1129     return(status);
   1130   scene=0;
   1131   do
   1132   {
   1133     /*
   1134       Allocate memory for pixels.
   1135     */
   1136     if (image->colorspace != RGBColorspace)
   1137       (void) SetImageColorspace(image,RGBColorspace,exception);
   1138     pixels=(unsigned char *) AcquireQuantumMemory((size_t) image->columns,
   1139       3UL*sizeof(*pixels));
   1140     if (pixels == (unsigned char *) NULL)
   1141       ThrowWriterException(ResourceLimitError,"MemoryAllocationFailed");
   1142     /*
   1143       Initialize raster file header.
   1144     */
   1145     (void) WriteBlobString(image,"id=mgk\n");
   1146     (void) FormatLocaleString(buffer,MaxTextExtent,"%lu %lu\n",image->columns,
   1147        image->rows);
   1148     (void) WriteBlobString(image,buffer);
   1149     for (y=0; y &lt; (long) image->rows; y++)
   1150     {
   1151       p=GetVirtualPixels(image,0,y,image->columns,1,exception);
   1152       if (p == (const Quantum *) NULL)
   1153         break;
   1154       q=pixels;
   1155       for (x=0; x &lt; (long) image->columns; x++)
   1156       {
   1157         *q++=ScaleQuantumToChar(GetPixelRed(image,p));
   1158         *q++=ScaleQuantumToChar(GetPixelGreen(image,p));
   1159         *q++=ScaleQuantumToChar(GetPixelBlue(image,p));
   1160         p+=GetPixelChannels(image);
   1161       }
   1162       (void) WriteBlob(image,(size_t) (q-pixels),pixels);
   1163       if (image->previous == (Image *) NULL)
   1164         if ((image->progress_monitor != (MagickProgressMonitor) NULL) &&
   1165             (QuantumTick(y,image->rows) != MagickFalse))
   1166           {
   1167             status=image->progress_monitor(SaveImageTag,y,image->rows,
   1168               image->client_data);
   1169             if (status == MagickFalse)
   1170               break;
   1171           }
   1172     }
   1173     pixels=(unsigned char *) RelinquishMagickMemory(pixels);
   1174     if (GetNextImageInList(image) == (Image *) NULL)
   1175       break;
   1176     image=SyncNextImageInList(image);
   1177     status=SetImageProgress(image,SaveImagesTag,scene,
   1178       GetImageListLength(image));
   1179     if (status == MagickFalse)
   1180       break;
   1181     scene++;
   1182   } while (image_info->adjoin != MagickFalse);
   1183   (void) CloseBlob(image);
   1184   return(MagickTrue);
   1185 }</code></pre>
   1186 
   1187 <p>To invoke the custom coder from the command line, use these commands:</p>
   1188 <pre class="highlight"><code>convert logo: logo.mgk
   1189 display logo.mgk
   1190 </code></pre>
   1191 
   1192 <p>We provide the <a href="https://imagemagick.org/download/kits/">Magick Coder Kit</a> to help you get started writing your own custom coder.</p>
   1193 
   1194 <h2><a class="anchor" id="filters"></a>Custom Image Filters</h2>
   1195 
   1196 <p>ImageMagick provides a convenient mechanism for adding your own custom image processing algorithms.  We call these image filters and they are invoked from the command line with the <a href="command-line-options.html#process">-process</a> option or from the MagickCore API method <a href="api/module.html#ExecuteModuleProcess">ExecuteModuleProcess()</a>.</p>
   1197 
   1198 <p>Here is a listing of a sample <a href="https://imagemagick.org/source/analyze.c">custom image filter</a>.  It computes a few statistics such as the pixel brightness and saturation mean and standard-deviation.</p>
   1199 <pre class="pre-scrollable"><code>#include &lt;stdio.h>
   1200 #include &lt;stdlib.h>
   1201 #include &lt;string.h>
   1202 #include &lt;time.h>
   1203 #include &lt;assert.h>
   1204 #include &lt;math.h>
   1205 #include &lt;MagickCore/MagickCore.h>
   1206 
   1208 /*
   1209 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1210 %                                                                             %
   1211 %                                                                             %
   1212 %                                                                             %
   1213 %   a n a l y z e I m a g e                                                   %
   1214 %                                                                             %
   1215 %                                                                             %
   1216 %                                                                             %
   1217 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   1218 %
   1219 %  analyzeImage() computes the brightness and saturation mean,  standard
   1220 %  deviation, kurtosis and skewness and stores these values as attributes 
   1221 %  of the image.
   1222 %
   1223 %  The format of the analyzeImage method is:
   1224 %
   1225 %      size_t analyzeImage(Image *images,const int argc,char **argv,
   1226 %        ExceptionInfo *exception)
   1227 %
   1228 %  A description of each parameter follows:
   1229 %
   1230 %    o image: the address of a structure of type Image.
   1231 %
   1232 %    o argc: Specifies a pointer to an integer describing the number of
   1233 %      elements in the argument vector.
   1234 %
   1235 %    o argv: Specifies a pointer to a text array containing the command line
   1236 %      arguments.
   1237 %
   1238 %    o exception: return any errors or warnings in this structure.
   1239 %
   1240 */
   1241 
   1242 static void ConvertRGBToHSB(const double red,const double green,
   1243   const double blue,double *hue,double *saturation,double *brightness)
   1244 {
   1245   double
   1246     delta,
   1247     max,
   1248     min;
   1249 
   1250   /*
   1251     Convert RGB to HSB colorspace.
   1252   */
   1253   assert(hue != (double *) NULL);
   1254   assert(saturation != (double *) NULL);
   1255   assert(brightness != (double *) NULL);
   1256   *hue=0.0;
   1257   *saturation=0.0;
   1258   *brightness=0.0;
   1259   min=red &lt; green ? red : green;
   1260   if (blue &lt; min)
   1261     min=blue;
   1262   max=red > green ? red : green;
   1263   if (blue > max)
   1264     max=blue;
   1265   if (fabs(max) &lt; MagickEpsilon)
   1266     return;
   1267   delta=max-min;
   1268   *saturation=delta/max;
   1269   *brightness=QuantumScale*max;
   1270   if (fabs(delta) &lt; MagickEpsilon)
   1271     return;
   1272   if (fabs(red-max) &lt; MagickEpsilon)
   1273     *hue=(green-blue)/delta;
   1274   else
   1275     if (fabs(green-max) &lt; MagickEpsilon)
   1276       *hue=2.0+(blue-red)/delta;
   1277     else
   1278       *hue=4.0+(red-green)/delta;
   1279   *hue/=6.0;
   1280   if (*hue &lt; 0.0)
   1281     *hue+=1.0;
   1282 }
   1283 
   1284 ModuleExport size_t analyzeImage(Image **images,const int argc,
   1285   const char **argv,ExceptionInfo *exception)
   1286 {
   1287   char
   1288     text[MaxTextExtent];
   1289 
   1290   double
   1291     area,
   1292     brightness,
   1293     brightness_mean,
   1294     brightness_standard_deviation,
   1295     brightness_kurtosis,
   1296     brightness_skewness,
   1297     brightness_sum_x,
   1298     brightness_sum_x2,
   1299     brightness_sum_x3,
   1300     brightness_sum_x4,
   1301     hue,
   1302     saturation,
   1303     saturation_mean,
   1304     saturation_standard_deviation,
   1305     saturation_kurtosis,
   1306     saturation_skewness,
   1307     saturation_sum_x,
   1308     saturation_sum_x2,
   1309     saturation_sum_x3,
   1310     saturation_sum_x4;
   1311 
   1312   Image
   1313     *image;
   1314 
   1315   assert(images != (Image **) NULL);
   1316   assert(*images != (Image *) NULL);
   1317   assert((*images)->signature == MagickCoreSignature);
   1318   (void) argc;
   1319   (void) argv;
   1320   image=(*images);
   1321   for ( ; image != (Image *) NULL; image=GetNextImageInList(image))
   1322   {
   1323     CacheView
   1324       *image_view;
   1325 
   1326     long
   1327       y;
   1328 
   1329     MagickBooleanType
   1330       status;
   1331 
   1332     brightness_sum_x=0.0;
   1333     brightness_sum_x2=0.0;
   1334     brightness_sum_x3=0.0;
   1335     brightness_sum_x4=0.0;
   1336     brightness_mean=0.0;
   1337     brightness_standard_deviation=0.0;
   1338     brightness_kurtosis=0.0;
   1339     brightness_skewness=0.0;
   1340     saturation_sum_x=0.0;
   1341     saturation_sum_x2=0.0;
   1342     saturation_sum_x3=0.0;
   1343     saturation_sum_x4=0.0;
   1344     saturation_mean=0.0;
   1345     saturation_standard_deviation=0.0;
   1346     saturation_kurtosis=0.0;
   1347     saturation_skewness=0.0;
   1348     area=0.0;
   1349     status=MagickTrue;
   1350     image_view=AcquireVirtualCacheView(image,exception);
   1351     for (y=0; y &lt; (long) image->rows; y++)
   1352     {
   1353       register const Quantum
   1354         *p;
   1355 
   1356       register long
   1357         x;
   1358 
   1359       if (status == MagickFalse)
   1360         continue;
   1361       p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
   1362       if (p == (const Quantum *) NULL)
   1363         {
   1364           status=MagickFalse;
   1365           continue;
   1366         }
   1367       for (x=0; x &lt; (long) image->columns; x++)
   1368       {
   1369         ConvertRGBToHSB(GetPixelRed(image,p),GetPixelGreen(image,p),
   1370           GetPixelBlue(image,p),&hue,&saturation,&brightness);
   1371         brightness*=QuantumRange;
   1372         brightness_sum_x+=brightness;
   1373         brightness_sum_x2+=brightness*brightness;
   1374         brightness_sum_x3+=brightness*brightness*brightness;
   1375         brightness_sum_x4+=brightness*brightness*brightness*brightness;
   1376         saturation*=QuantumRange;
   1377         saturation_sum_x+=saturation;
   1378         saturation_sum_x2+=saturation*saturation;
   1379         saturation_sum_x3+=saturation*saturation*saturation;
   1380         saturation_sum_x4+=saturation*saturation*saturation*saturation;
   1381         area++;
   1382         p+=GetPixelChannels(image);
   1383       }
   1384     }
   1385     image_view=DestroyCacheView(image_view);
   1386     if (area &lt;= 0.0)
   1387       break;
   1388     brightness_mean=brightness_sum_x/area;
   1389     (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_mean);
   1390     (void) SetImageProperty(image,"filter:brightness:mean",text,exception);
   1391     brightness_standard_deviation=sqrt(brightness_sum_x2/area-(brightness_sum_x/
   1392       area*brightness_sum_x/area));
   1393     (void) FormatLocaleString(text,MaxTextExtent,"%g",
   1394       brightness_standard_deviation);
   1395     (void) SetImageProperty(image,"filter:brightness:standard-deviation",text,
   1396       exception);
   1397     if (brightness_standard_deviation != 0)
   1398       brightness_kurtosis=(brightness_sum_x4/area-4.0*brightness_mean*
   1399         brightness_sum_x3/area+6.0*brightness_mean*brightness_mean*
   1400         brightness_sum_x2/area-3.0*brightness_mean*brightness_mean*
   1401         brightness_mean*brightness_mean)/(brightness_standard_deviation*
   1402         brightness_standard_deviation*brightness_standard_deviation*
   1403         brightness_standard_deviation)-3.0;
   1404     (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_kurtosis);
   1405     (void) SetImageProperty(image,"filter:brightness:kurtosis",text,
   1406       exception);
   1407     if (brightness_standard_deviation != 0)
   1408       brightness_skewness=(brightness_sum_x3/area-3.0*brightness_mean*
   1409         brightness_sum_x2/area+2.0*brightness_mean*brightness_mean*
   1410         brightness_mean)/(brightness_standard_deviation*
   1411         brightness_standard_deviation*brightness_standard_deviation);
   1412     (void) FormatLocaleString(text,MaxTextExtent,"%g",brightness_skewness);
   1413     (void) SetImageProperty(image,"filter:brightness:skewness",text,exception);
   1414     saturation_mean=saturation_sum_x/area;
   1415     (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_mean);
   1416     (void) SetImageProperty(image,"filter:saturation:mean",text,exception);
   1417     saturation_standard_deviation=sqrt(saturation_sum_x2/area-(saturation_sum_x/
   1418       area*saturation_sum_x/area));
   1419     (void) FormatLocaleString(text,MaxTextExtent,"%g",
   1420       saturation_standard_deviation);
   1421     (void) SetImageProperty(image,"filter:saturation:standard-deviation",text,
   1422       exception);
   1423     if (saturation_standard_deviation != 0)
   1424       saturation_kurtosis=(saturation_sum_x4/area-4.0*saturation_mean*
   1425         saturation_sum_x3/area+6.0*saturation_mean*saturation_mean*
   1426         saturation_sum_x2/area-3.0*saturation_mean*saturation_mean*
   1427         saturation_mean*saturation_mean)/(saturation_standard_deviation*
   1428         saturation_standard_deviation*saturation_standard_deviation*
   1429         saturation_standard_deviation)-3.0;
   1430     (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_kurtosis);
   1431     (void) SetImageProperty(image,"filter:saturation:kurtosis",text,exception);
   1432     if (saturation_standard_deviation != 0)
   1433       saturation_skewness=(saturation_sum_x3/area-3.0*saturation_mean*
   1434         saturation_sum_x2/area+2.0*saturation_mean*saturation_mean*
   1435         saturation_mean)/(saturation_standard_deviation*
   1436         saturation_standard_deviation*saturation_standard_deviation);
   1437     (void) FormatLocaleString(text,MaxTextExtent,"%g",saturation_skewness);
   1438     (void) SetImageProperty(image,"filter:saturation:skewness",text,exception);
   1439   }
   1440   return(MagickImageFilterSignature);
   1441 }
   1442 </code></pre>
   1443 
   1444 <p>To invoke the custom filter from the command line, use this command:</p>
   1445 
   1446 <pre class="highlight"><code>convert logo: -process \"analyze\" -verbose info:
   1447   Image: logo:
   1448     Format: LOGO (ImageMagick Logo)
   1449     Class: PseudoClass
   1450     Geometry: 640x480
   1451     ...
   1452     filter:brightness:kurtosis: 8.17947
   1453     filter:brightness:mean: 60632.1
   1454     filter:brightness:skewness: -2.97118
   1455     filter:brightness:standard-deviation: 13742.1
   1456     filter:saturation:kurtosis: 4.33554
   1457     filter:saturation:mean: 5951.55
   1458     filter:saturation:skewness: 2.42848
   1459     filter:saturation:standard-deviation: 15575.9
   1460 </code></pre>
   1461 
   1462 
   1463 <p>We provide the <a href="https://imagemagick.org/download/kits/">Magick Filter Kit</a> to help you get started writing your own custom image filter.</p>
   1464 
   1465 </div>
   1466     </div>
   1467   </main><!-- /.container -->
   1468   <footer class="magick-footer">
   1469     <p><a href="security-policy.html">Security</a> 
   1470     <a href="architecture.html">Architecture</a> 
   1471     <a href="links.html">Related</a> 
   1472      <a href="sitemap.html">Sitemap</a>
   1473        
   1474     <a href="architecture.html#"><img class="d-inline" id="wand" alt="And Now a Touch of Magick" width="16" height="16" src="../images/wand.ico"/></a>
   1475        
   1476     <a href="http://pgp.mit.edu/pks/lookup?op=get&search=0x89AB63D48277377A">Public Key</a> 
   1477     <a href="support.html">Donate</a> 
   1478     <a href="https://imagemagick.org/script/contact.php">Contact Us</a>
   1479     <br/>
   1480     <small> 1999-2019 ImageMagick Studio LLC</small></p>
   1481   </footer>
   1482 
   1483   <!-- Javascript assets -->
   1484   <script src="assets/magick.js" crossorigin="anonymous"></script>
   1485   <script>window.jQuery || document.write('<script src="https://localhost/ajax/libs/jquery/3.3.1/jquery.min.js"><\/script>')</script>
   1486 </body>
   1487 </html>
   1488 <!-- Magick Cache 5th January 2019 11:42 -->