Home | History | Annotate | Download | only in src
      1 /* -----------------------------------------------------------------------------
      2 Software License for The Fraunhofer FDK AAC Codec Library for Android
      3 
      4  Copyright  1995 - 2018 Fraunhofer-Gesellschaft zur Frderung der angewandten
      5 Forschung e.V. All rights reserved.
      6 
      7  1.    INTRODUCTION
      8 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software
      9 that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding
     10 scheme for digital audio. This FDK AAC Codec software is intended to be used on
     11 a wide variety of Android devices.
     12 
     13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient
     14 general perceptual audio codecs. AAC-ELD is considered the best-performing
     15 full-bandwidth communications codec by independent studies and is widely
     16 deployed. AAC has been standardized by ISO and IEC as part of the MPEG
     17 specifications.
     18 
     19 Patent licenses for necessary patent claims for the FDK AAC Codec (including
     20 those of Fraunhofer) may be obtained through Via Licensing
     21 (www.vialicensing.com) or through the respective patent owners individually for
     22 the purpose of encoding or decoding bit streams in products that are compliant
     23 with the ISO/IEC MPEG audio standards. Please note that most manufacturers of
     24 Android devices already license these patent claims through Via Licensing or
     25 directly from the patent owners, and therefore FDK AAC Codec software may
     26 already be covered under those patent licenses when it is used for those
     27 licensed purposes only.
     28 
     29 Commercially-licensed AAC software libraries, including floating-point versions
     30 with enhanced sound quality, are also available from Fraunhofer. Users are
     31 encouraged to check the Fraunhofer website for additional applications
     32 information and documentation.
     33 
     34 2.    COPYRIGHT LICENSE
     35 
     36 Redistribution and use in source and binary forms, with or without modification,
     37 are permitted without payment of copyright license fees provided that you
     38 satisfy the following conditions:
     39 
     40 You must retain the complete text of this software license in redistributions of
     41 the FDK AAC Codec or your modifications thereto in source code form.
     42 
     43 You must retain the complete text of this software license in the documentation
     44 and/or other materials provided with redistributions of the FDK AAC Codec or
     45 your modifications thereto in binary form. You must make available free of
     46 charge copies of the complete source code of the FDK AAC Codec and your
     47 modifications thereto to recipients of copies in binary form.
     48 
     49 The name of Fraunhofer may not be used to endorse or promote products derived
     50 from this library without prior written permission.
     51 
     52 You may not charge copyright license fees for anyone to use, copy or distribute
     53 the FDK AAC Codec software or your modifications thereto.
     54 
     55 Your modified versions of the FDK AAC Codec must carry prominent notices stating
     56 that you changed the software and the date of any change. For modified versions
     57 of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android"
     58 must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK
     59 AAC Codec Library for Android."
     60 
     61 3.    NO PATENT LICENSE
     62 
     63 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without
     64 limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE.
     65 Fraunhofer provides no warranty of patent non-infringement with respect to this
     66 software.
     67 
     68 You may use this FDK AAC Codec software or modifications thereto only for
     69 purposes that are authorized by appropriate patent licenses.
     70 
     71 4.    DISCLAIMER
     72 
     73 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright
     74 holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES,
     75 including but not limited to the implied warranties of merchantability and
     76 fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
     77 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary,
     78 or consequential damages, including but not limited to procurement of substitute
     79 goods or services; loss of use, data, or profits, or business interruption,
     80 however caused and on any theory of liability, whether in contract, strict
     81 liability, or tort (including negligence), arising in any way out of the use of
     82 this software, even if advised of the possibility of such damage.
     83 
     84 5.    CONTACT INFORMATION
     85 
     86 Fraunhofer Institute for Integrated Circuits IIS
     87 Attention: Audio and Multimedia Departments - FDK AAC LL
     88 Am Wolfsmantel 33
     89 91058 Erlangen, Germany
     90 
     91 www.iis.fraunhofer.de/amm
     92 amm-info (at) iis.fraunhofer.de
     93 ----------------------------------------------------------------------------- */
     94 
     95 /******************* Library for basic calculation routines ********************
     96 
     97    Author(s):   M. Lohwasser, M. Gayer
     98 
     99    Description:
    100 
    101 *******************************************************************************/
    102 
    103 #include "fft_rad2.h"
    104 
    105 #include "scramble.h"
    106 
    107 #define __FFT_RAD2_CPP__
    108 
    109 #if defined(__arm__)
    110 #include "arm/fft_rad2_arm.cpp"
    111 
    112 #elif defined(__GNUC__) && defined(__mips__) && defined(__mips_dsp)
    113 #include "mips/fft_rad2_mips.cpp"
    114 
    115 #endif
    116 
    117 /*****************************************************************************
    118 
    119     functionname: dit_fft (analysis)
    120     description:  dit-tukey-algorithm
    121                   scrambles data at entry
    122                   i.e. loop is made with scrambled data
    123     returns:
    124     input:
    125     output:
    126 
    127 *****************************************************************************/
    128 
    129 #ifndef FUNCTION_dit_fft
    130 
    131 void dit_fft(FIXP_DBL *x, const INT ldn, const FIXP_STP *trigdata,
    132              const INT trigDataSize) {
    133   const INT n = 1 << ldn;
    134   INT trigstep, i, ldm;
    135 
    136   C_ALLOC_ALIGNED_CHECK(x);
    137 
    138   scramble(x, n);
    139   /*
    140    * 1+2 stage radix 4
    141    */
    142 
    143   for (i = 0; i < n * 2; i += 8) {
    144     FIXP_DBL a00, a10, a20, a30;
    145     a00 = (x[i + 0] + x[i + 2]) >> 1; /* Re A + Re B */
    146     a10 = (x[i + 4] + x[i + 6]) >> 1; /* Re C + Re D */
    147     a20 = (x[i + 1] + x[i + 3]) >> 1; /* Im A + Im B */
    148     a30 = (x[i + 5] + x[i + 7]) >> 1; /* Im C + Im D */
    149 
    150     x[i + 0] = a00 + a10; /* Re A' = Re A + Re B + Re C + Re D */
    151     x[i + 4] = a00 - a10; /* Re C' = Re A + Re B - Re C - Re D */
    152     x[i + 1] = a20 + a30; /* Im A' = Im A + Im B + Im C + Im D */
    153     x[i + 5] = a20 - a30; /* Im C' = Im A + Im B - Im C - Im D */
    154 
    155     a00 = a00 - x[i + 2]; /* Re A - Re B */
    156     a10 = a10 - x[i + 6]; /* Re C - Re D */
    157     a20 = a20 - x[i + 3]; /* Im A - Im B */
    158     a30 = a30 - x[i + 7]; /* Im C - Im D */
    159 
    160     x[i + 2] = a00 + a30; /* Re B' = Re A - Re B + Im C - Im D */
    161     x[i + 6] = a00 - a30; /* Re D' = Re A - Re B - Im C + Im D */
    162     x[i + 3] = a20 - a10; /* Im B' = Im A - Im B - Re C + Re D */
    163     x[i + 7] = a20 + a10; /* Im D' = Im A - Im B + Re C - Re D */
    164   }
    165 
    166   for (ldm = 3; ldm <= ldn; ++ldm) {
    167     INT m = (1 << ldm);
    168     INT mh = (m >> 1);
    169     INT j, r;
    170 
    171     trigstep = ((trigDataSize << 2) >> ldm);
    172 
    173     FDK_ASSERT(trigstep > 0);
    174 
    175     /* Do first iteration with c=1.0 and s=0.0 separately to avoid loosing to
    176        much precision. Beware: The impact on the overal FFT precision is rather
    177        large. */
    178     { /* block 1 */
    179 
    180       j = 0;
    181 
    182       for (r = 0; r < n; r += m) {
    183         INT t1 = (r + j) << 1;
    184         INT t2 = t1 + (mh << 1);
    185         FIXP_DBL vr, vi, ur, ui;
    186 
    187         // cplxMultDiv2(&vi, &vr, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0);
    188         vi = x[t2 + 1] >> 1;
    189         vr = x[t2] >> 1;
    190 
    191         ur = x[t1] >> 1;
    192         ui = x[t1 + 1] >> 1;
    193 
    194         x[t1] = ur + vr;
    195         x[t1 + 1] = ui + vi;
    196 
    197         x[t2] = ur - vr;
    198         x[t2 + 1] = ui - vi;
    199 
    200         t1 += mh;
    201         t2 = t1 + (mh << 1);
    202 
    203         // cplxMultDiv2(&vr, &vi, x[t2+1], x[t2], (FIXP_SGL)1.0, (FIXP_SGL)0.0);
    204         vr = x[t2 + 1] >> 1;
    205         vi = x[t2] >> 1;
    206 
    207         ur = x[t1] >> 1;
    208         ui = x[t1 + 1] >> 1;
    209 
    210         x[t1] = ur + vr;
    211         x[t1 + 1] = ui - vi;
    212 
    213         x[t2] = ur - vr;
    214         x[t2 + 1] = ui + vi;
    215       }
    216 
    217     } /* end of  block 1 */
    218 
    219     for (j = 1; j < mh / 4; ++j) {
    220       FIXP_STP cs;
    221 
    222       cs = trigdata[j * trigstep];
    223 
    224       for (r = 0; r < n; r += m) {
    225         INT t1 = (r + j) << 1;
    226         INT t2 = t1 + (mh << 1);
    227         FIXP_DBL vr, vi, ur, ui;
    228 
    229         cplxMultDiv2(&vi, &vr, x[t2 + 1], x[t2], cs);
    230 
    231         ur = x[t1] >> 1;
    232         ui = x[t1 + 1] >> 1;
    233 
    234         x[t1] = ur + vr;
    235         x[t1 + 1] = ui + vi;
    236 
    237         x[t2] = ur - vr;
    238         x[t2 + 1] = ui - vi;
    239 
    240         t1 += mh;
    241         t2 = t1 + (mh << 1);
    242 
    243         cplxMultDiv2(&vr, &vi, x[t2 + 1], x[t2], cs);
    244 
    245         ur = x[t1] >> 1;
    246         ui = x[t1 + 1] >> 1;
    247 
    248         x[t1] = ur + vr;
    249         x[t1 + 1] = ui - vi;
    250 
    251         x[t2] = ur - vr;
    252         x[t2 + 1] = ui + vi;
    253 
    254         /* Same as above but for t1,t2 with j>mh/4 and thus cs swapped */
    255         t1 = (r + mh / 2 - j) << 1;
    256         t2 = t1 + (mh << 1);
    257 
    258         cplxMultDiv2(&vi, &vr, x[t2], x[t2 + 1], cs);
    259 
    260         ur = x[t1] >> 1;
    261         ui = x[t1 + 1] >> 1;
    262 
    263         x[t1] = ur + vr;
    264         x[t1 + 1] = ui - vi;
    265 
    266         x[t2] = ur - vr;
    267         x[t2 + 1] = ui + vi;
    268 
    269         t1 += mh;
    270         t2 = t1 + (mh << 1);
    271 
    272         cplxMultDiv2(&vr, &vi, x[t2], x[t2 + 1], cs);
    273 
    274         ur = x[t1] >> 1;
    275         ui = x[t1 + 1] >> 1;
    276 
    277         x[t1] = ur - vr;
    278         x[t1 + 1] = ui - vi;
    279 
    280         x[t2] = ur + vr;
    281         x[t2 + 1] = ui + vi;
    282       }
    283     }
    284 
    285     { /* block 2 */
    286       j = mh / 4;
    287 
    288       for (r = 0; r < n; r += m) {
    289         INT t1 = (r + j) << 1;
    290         INT t2 = t1 + (mh << 1);
    291         FIXP_DBL vr, vi, ur, ui;
    292 
    293         cplxMultDiv2(&vi, &vr, x[t2 + 1], x[t2], STC(0x5a82799a),
    294                      STC(0x5a82799a));
    295 
    296         ur = x[t1] >> 1;
    297         ui = x[t1 + 1] >> 1;
    298 
    299         x[t1] = ur + vr;
    300         x[t1 + 1] = ui + vi;
    301 
    302         x[t2] = ur - vr;
    303         x[t2 + 1] = ui - vi;
    304 
    305         t1 += mh;
    306         t2 = t1 + (mh << 1);
    307 
    308         cplxMultDiv2(&vr, &vi, x[t2 + 1], x[t2], STC(0x5a82799a),
    309                      STC(0x5a82799a));
    310 
    311         ur = x[t1] >> 1;
    312         ui = x[t1 + 1] >> 1;
    313 
    314         x[t1] = ur + vr;
    315         x[t1 + 1] = ui - vi;
    316 
    317         x[t2] = ur - vr;
    318         x[t2 + 1] = ui + vi;
    319       }
    320     } /* end of block 2 */
    321   }
    322 }
    323 
    324 #endif
    325