Home | History | Annotate | Download | only in math
      1 /*
      2  * Double-precision 2^x function.
      3  *
      4  * Copyright (c) 2018, Arm Limited.
      5  * SPDX-License-Identifier: MIT
      6  */
      7 
      8 #include <math.h>
      9 #include <stdint.h>
     10 #include "math_config.h"
     11 
     12 #define N (1 << EXP_TABLE_BITS)
     13 #define Shift __exp_data.exp2_shift
     14 #define T __exp_data.tab
     15 #define C1 __exp_data.exp2_poly[0]
     16 #define C2 __exp_data.exp2_poly[1]
     17 #define C3 __exp_data.exp2_poly[2]
     18 #define C4 __exp_data.exp2_poly[3]
     19 #define C5 __exp_data.exp2_poly[4]
     20 #define C6 __exp_data.exp2_poly[5]
     21 
     22 /* Handle cases that may overflow or underflow when computing the result that
     23    is scale*(1+TMP) without intermediate rounding.  The bit representation of
     24    scale is in SBITS, however it has a computed exponent that may have
     25    overflown into the sign bit so that needs to be adjusted before using it as
     26    a double.  (int32_t)KI is the k used in the argument reduction and exponent
     27    adjustment of scale, positive k here means the result may overflow and
     28    negative k means the result may underflow.  */
     29 static inline double
     30 specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
     31 {
     32   double_t scale, y;
     33 
     34   if ((ki & 0x80000000) == 0)
     35     {
     36       /* k > 0, the exponent of scale might have overflowed by 1.  */
     37       sbits -= 1ull << 52;
     38       scale = asdouble (sbits);
     39       y = 2 * (scale + scale * tmp);
     40       return check_oflow (eval_as_double (y));
     41     }
     42   /* k < 0, need special care in the subnormal range.  */
     43   sbits += 1022ull << 52;
     44   scale = asdouble (sbits);
     45   y = scale + scale * tmp;
     46   if (y < 1.0)
     47     {
     48       /* Round y to the right precision before scaling it into the subnormal
     49 	 range to avoid double rounding that can cause 0.5+E/2 ulp error where
     50 	 E is the worst-case ulp error outside the subnormal range.  So this
     51 	 is only useful if the goal is better than 1 ulp worst-case error.  */
     52       double_t hi, lo;
     53       lo = scale - y + scale * tmp;
     54       hi = 1.0 + y;
     55       lo = 1.0 - hi + y + lo;
     56       y = eval_as_double (hi + lo) - 1.0;
     57       /* Avoid -0.0 with downward rounding.  */
     58       if (WANT_ROUNDING && y == 0.0)
     59 	y = 0.0;
     60       /* The underflow exception needs to be signaled explicitly.  */
     61       force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
     62     }
     63   y = 0x1p-1022 * y;
     64   return check_uflow (eval_as_double (y));
     65 }
     66 
     67 /* Top 12 bits of a double (sign and exponent bits).  */
     68 static inline uint32_t
     69 top12 (double x)
     70 {
     71   return asuint64 (x) >> 52;
     72 }
     73 
     74 double
     75 exp2 (double x)
     76 {
     77   uint32_t abstop;
     78   uint64_t ki, idx, top, sbits;
     79   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
     80   double_t kd, r, r2, scale, tail, tmp;
     81 
     82   abstop = top12 (x) & 0x7ff;
     83   if (unlikely (abstop - top12 (0x1p-54) >= top12 (512.0) - top12 (0x1p-54)))
     84     {
     85       if (abstop - top12 (0x1p-54) >= 0x80000000)
     86 	/* Avoid spurious underflow for tiny x.  */
     87 	/* Note: 0 is common input.  */
     88 	return WANT_ROUNDING ? 1.0 + x : 1.0;
     89       if (abstop >= top12 (1024.0))
     90 	{
     91 	  if (asuint64 (x) == asuint64 (-INFINITY))
     92 	    return 0.0;
     93 	  if (abstop >= top12 (INFINITY))
     94 	    return 1.0 + x;
     95 	  if (!(asuint64 (x) >> 63))
     96 	    return __math_oflow (0);
     97 	  else if (asuint64 (x) >= asuint64 (-1075.0))
     98 	    return __math_uflow (0);
     99 	}
    100       if (2 * asuint64 (x) > 2 * asuint64 (928.0))
    101 	/* Large x is special cased below.  */
    102 	abstop = 0;
    103     }
    104 
    105   /* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)].  */
    106   /* x = k/N + r, with int k and r in [-1/2N, 1/2N].  */
    107   kd = eval_as_double (x + Shift);
    108   ki = asuint64 (kd); /* k.  */
    109   kd -= Shift; /* k/N for int k.  */
    110   r = x - kd;
    111   /* 2^(k/N) ~= scale * (1 + tail).  */
    112   idx = 2 * (ki % N);
    113   top = ki << (52 - EXP_TABLE_BITS);
    114   tail = asdouble (T[idx]);
    115   /* This is only a valid scale when -1023*N < k < 1024*N.  */
    116   sbits = T[idx + 1] + top;
    117   /* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1).  */
    118   /* Evaluation is optimized assuming superscalar pipelined execution.  */
    119   r2 = r * r;
    120   /* Without fma the worst case error is 0.5/N ulp larger.  */
    121   /* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp.  */
    122 #if EXP2_POLY_ORDER == 4
    123   tmp = tail + r * C1 + r2 * C2 + r * r2 * (C3 + r * C4);
    124 #elif EXP2_POLY_ORDER == 5
    125   tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
    126 #elif EXP2_POLY_ORDER == 6
    127   tmp = tail + r * C1 + r2 * (0.5 + r * C3) + r2 * r2 * (C4 + r * C5 + r2 * C6);
    128 #endif
    129   if (unlikely (abstop == 0))
    130     return specialcase (tmp, sbits, ki);
    131   scale = asdouble (sbits);
    132   /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
    133      is no spurious underflow here even without fma.  */
    134   return eval_as_double (scale + scale * tmp);
    135 }
    136 #if USE_GLIBC_ABI
    137 strong_alias (exp2, __exp2_finite)
    138 hidden_alias (exp2, __ieee754_exp2)
    139 #endif
    140