Home | History | Annotate | Download | only in math
      1 /*
      2  * Double-precision log2(x) function.
      3  *
      4  * Copyright (c) 2018, Arm Limited.
      5  * SPDX-License-Identifier: MIT
      6  */
      7 
      8 #include <math.h>
      9 #include <stdint.h>
     10 #include "math_config.h"
     11 
     12 #define T __log2_data.tab
     13 #define T2 __log2_data.tab2
     14 #define B __log2_data.poly1
     15 #define A __log2_data.poly
     16 #define InvLn2hi __log2_data.invln2hi
     17 #define InvLn2lo __log2_data.invln2lo
     18 #define N (1 << LOG2_TABLE_BITS)
     19 #define OFF 0x3fe6000000000000
     20 
     21 /* Top 16 bits of a double.  */
     22 static inline uint32_t
     23 top16 (double x)
     24 {
     25   return asuint64 (x) >> 48;
     26 }
     27 
     28 double
     29 log2 (double x)
     30 {
     31   /* double_t for better performance on targets with FLT_EVAL_METHOD==2.  */
     32   double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
     33   uint64_t ix, iz, tmp;
     34   uint32_t top;
     35   int k, i;
     36 
     37   ix = asuint64 (x);
     38   top = top16 (x);
     39 
     40 #if LOG2_POLY1_ORDER == 11
     41 # define LO asuint64 (1.0 - 0x1.5b51p-5)
     42 # define HI asuint64 (1.0 + 0x1.6ab2p-5)
     43 #endif
     44   if (unlikely (ix - LO < HI - LO))
     45     {
     46       /* Handle close to 1.0 inputs separately.  */
     47       /* Fix sign of zero with downward rounding when x==1.  */
     48       if (WANT_ROUNDING && unlikely (ix == asuint64 (1.0)))
     49 	return 0;
     50       r = x - 1.0;
     51 #if HAVE_FAST_FMA
     52       hi = r * InvLn2hi;
     53       lo = r * InvLn2lo + fma (r, InvLn2hi, -hi);
     54 #else
     55       double_t rhi, rlo;
     56       rhi = asdouble (asuint64 (r) & -1ULL << 32);
     57       rlo = r - rhi;
     58       hi = rhi * InvLn2hi;
     59       lo = rlo * InvLn2hi + r * InvLn2lo;
     60 #endif
     61       r2 = r * r; /* rounding error: 0x1p-62.  */
     62       r4 = r2 * r2;
     63 #if LOG2_POLY1_ORDER == 11
     64       /* Worst-case error is less than 0.54 ULP (0.55 ULP without fma).  */
     65       p = r2 * (B[0] + r * B[1]);
     66       y = hi + p;
     67       lo += hi - y + p;
     68       lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5])
     69 		  + r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
     70       y += lo;
     71 #endif
     72       return eval_as_double (y);
     73     }
     74   if (unlikely (top - 0x0010 >= 0x7ff0 - 0x0010))
     75     {
     76       /* x < 0x1p-1022 or inf or nan.  */
     77       if (ix * 2 == 0)
     78 	return __math_divzero (1);
     79       if (ix == asuint64 (INFINITY)) /* log(inf) == inf.  */
     80 	return x;
     81       if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
     82 	return __math_invalid (x);
     83       /* x is subnormal, normalize it.  */
     84       ix = asuint64 (x * 0x1p52);
     85       ix -= 52ULL << 52;
     86     }
     87 
     88   /* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
     89      The range is split into N subintervals.
     90      The ith subinterval contains z and c is near its center.  */
     91   tmp = ix - OFF;
     92   i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
     93   k = (int64_t) tmp >> 52; /* arithmetic shift */
     94   iz = ix - (tmp & 0xfffULL << 52);
     95   invc = T[i].invc;
     96   logc = T[i].logc;
     97   z = asdouble (iz);
     98   kd = (double_t) k;
     99 
    100   /* log2(x) = log2(z/c) + log2(c) + k.  */
    101   /* r ~= z/c - 1, |r| < 1/(2*N).  */
    102 #if HAVE_FAST_FMA
    103   /* rounding error: 0x1p-55/N.  */
    104   r = fma (z, invc, -1.0);
    105   t1 = r * InvLn2hi;
    106   t2 = r * InvLn2lo + fma (r, InvLn2hi, -t1);
    107 #else
    108   double_t rhi, rlo;
    109   /* rounding error: 0x1p-55/N + 0x1p-65.  */
    110   r = (z - T2[i].chi - T2[i].clo) * invc;
    111   rhi = asdouble (asuint64 (r) & -1ULL << 32);
    112   rlo = r - rhi;
    113   t1 = rhi * InvLn2hi;
    114   t2 = rlo * InvLn2hi + r * InvLn2lo;
    115 #endif
    116 
    117   /* hi + lo = r/ln2 + log2(c) + k.  */
    118   t3 = kd + logc;
    119   hi = t3 + t1;
    120   lo = t3 - hi + t1 + t2;
    121 
    122   /* log2(r+1) = r/ln2 + r^2*poly(r).  */
    123   /* Evaluation is optimized assuming superscalar pipelined execution.  */
    124   r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
    125   r4 = r2 * r2;
    126 #if LOG2_POLY_ORDER == 7
    127   /* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
    128      ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma).  */
    129   p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
    130   y = lo + r2 * p + hi;
    131 #endif
    132   return eval_as_double (y);
    133 }
    134 #if USE_GLIBC_ABI
    135 strong_alias (log2, __log2_finite)
    136 hidden_alias (log2, __ieee754_log2)
    137 #endif
    138