Home | History | Annotate | Download | only in rtest
      1 /*
      2  * dotest.c - actually generate mathlib test cases
      3  *
      4  * Copyright (c) 1999-2018, Arm Limited.
      5  * SPDX-License-Identifier: MIT
      6  */
      7 
      8 #include <stdio.h>
      9 #include <string.h>
     10 #include <stdlib.h>
     11 #include <stdint.h>
     12 #include <assert.h>
     13 #include <limits.h>
     14 
     15 #include "semi.h"
     16 #include "intern.h"
     17 #include "random.h"
     18 
     19 #define MPFR_PREC 96 /* good enough for float or double + a few extra bits */
     20 
     21 extern int lib_fo, lib_no_arith, ntests;
     22 
     23 /*
     24  * Prototypes.
     25  */
     26 static void cases_biased(uint32 *, uint32, uint32);
     27 static void cases_biased_positive(uint32 *, uint32, uint32);
     28 static void cases_biased_float(uint32 *, uint32, uint32);
     29 static void cases_uniform(uint32 *, uint32, uint32);
     30 static void cases_uniform_positive(uint32 *, uint32, uint32);
     31 static void cases_uniform_float(uint32 *, uint32, uint32);
     32 static void cases_uniform_float_positive(uint32 *, uint32, uint32);
     33 static void log_cases(uint32 *, uint32, uint32);
     34 static void log_cases_float(uint32 *, uint32, uint32);
     35 static void log1p_cases(uint32 *, uint32, uint32);
     36 static void log1p_cases_float(uint32 *, uint32, uint32);
     37 static void minmax_cases(uint32 *, uint32, uint32);
     38 static void minmax_cases_float(uint32 *, uint32, uint32);
     39 static void atan2_cases(uint32 *, uint32, uint32);
     40 static void atan2_cases_float(uint32 *, uint32, uint32);
     41 static void pow_cases(uint32 *, uint32, uint32);
     42 static void pow_cases_float(uint32 *, uint32, uint32);
     43 static void rred_cases(uint32 *, uint32, uint32);
     44 static void rred_cases_float(uint32 *, uint32, uint32);
     45 static void cases_semi1(uint32 *, uint32, uint32);
     46 static void cases_semi1_float(uint32 *, uint32, uint32);
     47 static void cases_semi2(uint32 *, uint32, uint32);
     48 static void cases_semi2_float(uint32 *, uint32, uint32);
     49 static void cases_ldexp(uint32 *, uint32, uint32);
     50 static void cases_ldexp_float(uint32 *, uint32, uint32);
     51 
     52 static void complex_cases_uniform(uint32 *, uint32, uint32);
     53 static void complex_cases_uniform_float(uint32 *, uint32, uint32);
     54 static void complex_cases_biased(uint32 *, uint32, uint32);
     55 static void complex_cases_biased_float(uint32 *, uint32, uint32);
     56 static void complex_log_cases(uint32 *, uint32, uint32);
     57 static void complex_log_cases_float(uint32 *, uint32, uint32);
     58 static void complex_pow_cases(uint32 *, uint32, uint32);
     59 static void complex_pow_cases_float(uint32 *, uint32, uint32);
     60 static void complex_arithmetic_cases(uint32 *, uint32, uint32);
     61 static void complex_arithmetic_cases_float(uint32 *, uint32, uint32);
     62 
     63 static uint32 doubletop(int x, int scale);
     64 static uint32 floatval(int x, int scale);
     65 
     66 /*
     67  * Convert back and forth between IEEE bit patterns and the
     68  * mpfr_t/mpc_t types.
     69  */
     70 static void set_mpfr_d(mpfr_t x, uint32 h, uint32 l)
     71 {
     72     uint64_t hl = ((uint64_t)h << 32) | l;
     73     uint32 exp = (hl >> 52) & 0x7ff;
     74     int64_t mantissa = hl & (((uint64_t)1 << 52) - 1);
     75     int sign = (hl >> 63) ? -1 : +1;
     76     if (exp == 0x7ff) {
     77         if (mantissa == 0)
     78             mpfr_set_inf(x, sign);
     79         else
     80             mpfr_set_nan(x);
     81     } else if (exp == 0 && mantissa == 0) {
     82         mpfr_set_ui(x, 0, GMP_RNDN);
     83         mpfr_setsign(x, x, sign < 0, GMP_RNDN);
     84     } else {
     85         if (exp != 0)
     86             mantissa |= ((uint64_t)1 << 52);
     87         else
     88             exp++;
     89         mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x3ff - 52, GMP_RNDN);
     90     }
     91 }
     92 static void set_mpfr_f(mpfr_t x, uint32 f)
     93 {
     94     uint32 exp = (f >> 23) & 0xff;
     95     int32 mantissa = f & ((1 << 23) - 1);
     96     int sign = (f >> 31) ? -1 : +1;
     97     if (exp == 0xff) {
     98         if (mantissa == 0)
     99             mpfr_set_inf(x, sign);
    100         else
    101             mpfr_set_nan(x);
    102     } else if (exp == 0 && mantissa == 0) {
    103         mpfr_set_ui(x, 0, GMP_RNDN);
    104         mpfr_setsign(x, x, sign < 0, GMP_RNDN);
    105     } else {
    106         if (exp != 0)
    107             mantissa |= (1 << 23);
    108         else
    109             exp++;
    110         mpfr_set_sj_2exp(x, mantissa * sign, (int)exp - 0x7f - 23, GMP_RNDN);
    111     }
    112 }
    113 static void set_mpc_d(mpc_t z, uint32 rh, uint32 rl, uint32 ih, uint32 il)
    114 {
    115     mpfr_t x, y;
    116     mpfr_init2(x, MPFR_PREC);
    117     mpfr_init2(y, MPFR_PREC);
    118     set_mpfr_d(x, rh, rl);
    119     set_mpfr_d(y, ih, il);
    120     mpc_set_fr_fr(z, x, y, MPC_RNDNN);
    121     mpfr_clear(x);
    122     mpfr_clear(y);
    123 }
    124 static void set_mpc_f(mpc_t z, uint32 r, uint32 i)
    125 {
    126     mpfr_t x, y;
    127     mpfr_init2(x, MPFR_PREC);
    128     mpfr_init2(y, MPFR_PREC);
    129     set_mpfr_f(x, r);
    130     set_mpfr_f(y, i);
    131     mpc_set_fr_fr(z, x, y, MPC_RNDNN);
    132     mpfr_clear(x);
    133     mpfr_clear(y);
    134 }
    135 static void get_mpfr_d(const mpfr_t x, uint32 *h, uint32 *l, uint32 *extra)
    136 {
    137     uint32_t sign, expfield, mantfield;
    138     mpfr_t significand;
    139     int exp;
    140 
    141     if (mpfr_nan_p(x)) {
    142         *h = 0x7ff80000;
    143         *l = 0;
    144         *extra = 0;
    145         return;
    146     }
    147 
    148     sign = mpfr_signbit(x) ? 0x80000000U : 0;
    149 
    150     if (mpfr_inf_p(x)) {
    151         *h = 0x7ff00000 | sign;
    152         *l = 0;
    153         *extra = 0;
    154         return;
    155     }
    156 
    157     if (mpfr_zero_p(x)) {
    158         *h = 0x00000000 | sign;
    159         *l = 0;
    160         *extra = 0;
    161         return;
    162     }
    163 
    164     mpfr_init2(significand, MPFR_PREC);
    165     mpfr_set(significand, x, GMP_RNDN);
    166     exp = mpfr_get_exp(significand);
    167     mpfr_set_exp(significand, 0);
    168 
    169     /* Now significand is in [1/2,1), and significand * 2^exp == x.
    170      * So the IEEE exponent corresponding to exp==0 is 0x3fe. */
    171     if (exp > 0x400) {
    172         /* overflow to infinity anyway */
    173         *h = 0x7ff00000 | sign;
    174         *l = 0;
    175         *extra = 0;
    176         mpfr_clear(significand);
    177         return;
    178     }
    179 
    180     if (exp <= -0x3fe || mpfr_zero_p(x))
    181         exp = -0x3fd;       /* denormalise */
    182     expfield = exp + 0x3fd; /* offset to cancel leading mantissa bit */
    183 
    184     mpfr_div_2si(significand, x, exp - 21, GMP_RNDN);
    185     mpfr_abs(significand, significand, GMP_RNDN);
    186     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    187     *h = sign + ((uint64_t)expfield << 20) + mantfield;
    188     mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
    189     mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
    190     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    191     *l = mantfield;
    192     mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
    193     mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
    194     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    195     *extra = mantfield;
    196 
    197     mpfr_clear(significand);
    198 }
    199 static void get_mpfr_f(const mpfr_t x, uint32 *f, uint32 *extra)
    200 {
    201     uint32_t sign, expfield, mantfield;
    202     mpfr_t significand;
    203     int exp;
    204 
    205     if (mpfr_nan_p(x)) {
    206         *f = 0x7fc00000;
    207         *extra = 0;
    208         return;
    209     }
    210 
    211     sign = mpfr_signbit(x) ? 0x80000000U : 0;
    212 
    213     if (mpfr_inf_p(x)) {
    214         *f = 0x7f800000 | sign;
    215         *extra = 0;
    216         return;
    217     }
    218 
    219     if (mpfr_zero_p(x)) {
    220         *f = 0x00000000 | sign;
    221         *extra = 0;
    222         return;
    223     }
    224 
    225     mpfr_init2(significand, MPFR_PREC);
    226     mpfr_set(significand, x, GMP_RNDN);
    227     exp = mpfr_get_exp(significand);
    228     mpfr_set_exp(significand, 0);
    229 
    230     /* Now significand is in [1/2,1), and significand * 2^exp == x.
    231      * So the IEEE exponent corresponding to exp==0 is 0x7e. */
    232     if (exp > 0x80) {
    233         /* overflow to infinity anyway */
    234         *f = 0x7f800000 | sign;
    235         *extra = 0;
    236         mpfr_clear(significand);
    237         return;
    238     }
    239 
    240     if (exp <= -0x7e || mpfr_zero_p(x))
    241         exp = -0x7d;                   /* denormalise */
    242     expfield = exp + 0x7d; /* offset to cancel leading mantissa bit */
    243 
    244     mpfr_div_2si(significand, x, exp - 24, GMP_RNDN);
    245     mpfr_abs(significand, significand, GMP_RNDN);
    246     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    247     *f = sign + ((uint64_t)expfield << 23) + mantfield;
    248     mpfr_sub_ui(significand, significand, mantfield, GMP_RNDN);
    249     mpfr_mul_2ui(significand, significand, 32, GMP_RNDN);
    250     mantfield = mpfr_get_ui(significand, GMP_RNDZ);
    251     *extra = mantfield;
    252 
    253     mpfr_clear(significand);
    254 }
    255 static void get_mpc_d(const mpc_t z,
    256                       uint32 *rh, uint32 *rl, uint32 *rextra,
    257                       uint32 *ih, uint32 *il, uint32 *iextra)
    258 {
    259     mpfr_t x, y;
    260     mpfr_init2(x, MPFR_PREC);
    261     mpfr_init2(y, MPFR_PREC);
    262     mpc_real(x, z, GMP_RNDN);
    263     mpc_imag(y, z, GMP_RNDN);
    264     get_mpfr_d(x, rh, rl, rextra);
    265     get_mpfr_d(y, ih, il, iextra);
    266     mpfr_clear(x);
    267     mpfr_clear(y);
    268 }
    269 static void get_mpc_f(const mpc_t z,
    270                       uint32 *r, uint32 *rextra,
    271                       uint32 *i, uint32 *iextra)
    272 {
    273     mpfr_t x, y;
    274     mpfr_init2(x, MPFR_PREC);
    275     mpfr_init2(y, MPFR_PREC);
    276     mpc_real(x, z, GMP_RNDN);
    277     mpc_imag(y, z, GMP_RNDN);
    278     get_mpfr_f(x, r, rextra);
    279     get_mpfr_f(y, i, iextra);
    280     mpfr_clear(x);
    281     mpfr_clear(y);
    282 }
    283 
    284 /*
    285  * Implementation of mathlib functions that aren't trivially
    286  * implementable using an existing mpfr or mpc function.
    287  */
    288 int test_rred(mpfr_t ret, const mpfr_t x, int *quadrant)
    289 {
    290     mpfr_t halfpi;
    291     long quo;
    292     int status;
    293 
    294     /*
    295      * In the worst case of range reduction, we get an input of size
    296      * around 2^1024, and must find its remainder mod pi, which means
    297      * we need 1024 bits of pi at least. Plus, the remainder might
    298      * happen to come out very very small if we're unlucky. How
    299      * unlucky can we be? Well, conveniently, I once went through and
    300      * actually worked that out using Paxson's modular minimisation
    301      * algorithm, and it turns out that the smallest exponent you can
    302      * get out of a nontrivial[1] double precision range reduction is
    303      * 0x3c2, i.e. of the order of 2^-61. So we need 1024 bits of pi
    304      * to get us down to the units digit, another 61 or so bits (say
    305      * 64) to get down to the highest set bit of the output, and then
    306      * some bits to make the actual mantissa big enough.
    307      *
    308      *   [1] of course the output of range reduction can have an
    309      *   arbitrarily small exponent in the trivial case, where the
    310      *   input is so small that it's the identity function. That
    311      *   doesn't count.
    312      */
    313     mpfr_init2(halfpi, MPFR_PREC + 1024 + 64);
    314     mpfr_const_pi(halfpi, GMP_RNDN);
    315     mpfr_div_ui(halfpi, halfpi, 2, GMP_RNDN);
    316 
    317     status = mpfr_remquo(ret, &quo, x, halfpi, GMP_RNDN);
    318     *quadrant = quo & 3;
    319 
    320     mpfr_clear(halfpi);
    321 
    322     return status;
    323 }
    324 int test_lgamma(mpfr_t ret, const mpfr_t x, mpfr_rnd_t rnd)
    325 {
    326     /*
    327      * mpfr_lgamma takes an extra int * parameter to hold the output
    328      * sign. We don't bother testing that, so this wrapper throws away
    329      * the sign and hence fits into the same function prototype as all
    330      * the other real->real mpfr functions.
    331      *
    332      * There is also mpfr_lngamma which has no sign output and hence
    333      * has the right prototype already, but unfortunately it returns
    334      * NaN in cases where gamma(x) < 0, so it's no use to us.
    335      */
    336     int sign;
    337     return mpfr_lgamma(ret, &sign, x, rnd);
    338 }
    339 int test_cpow(mpc_t ret, const mpc_t x, const mpc_t y, mpc_rnd_t rnd)
    340 {
    341     /*
    342      * For complex pow, we must bump up the precision by a huge amount
    343      * if we want it to get the really difficult cases right. (Not
    344      * that we expect the library under test to be getting those cases
    345      * right itself, but we'd at least like the test suite to report
    346      * them as wrong for the _right reason_.)
    347      *
    348      * This works around a bug in mpc_pow(), fixed by r1455 in the MPC
    349      * svn repository (2014-10-14) and expected to be in any MPC
    350      * release after 1.0.2 (which was the latest release already made
    351      * at the time of the fix). So as and when we update to an MPC
    352      * with the fix in it, we could remove this workaround.
    353      *
    354      * For the reasons for choosing this amount of extra precision,
    355      * see analysis in complex/cpownotes.txt for the rationale for the
    356      * amount.
    357      */
    358     mpc_t xbig, ybig, retbig;
    359     int status;
    360 
    361     mpc_init2(xbig, 1034 + 53 + 60 + MPFR_PREC);
    362     mpc_init2(ybig, 1034 + 53 + 60 + MPFR_PREC);
    363     mpc_init2(retbig, 1034 + 53 + 60 + MPFR_PREC);
    364 
    365     mpc_set(xbig, x, MPC_RNDNN);
    366     mpc_set(ybig, y, MPC_RNDNN);
    367     status = mpc_pow(retbig, xbig, ybig, rnd);
    368     mpc_set(ret, retbig, rnd);
    369 
    370     mpc_clear(xbig);
    371     mpc_clear(ybig);
    372     mpc_clear(retbig);
    373 
    374     return status;
    375 }
    376 
    377 /*
    378  * Identify 'hard' values (NaN, Inf, nonzero denormal) for deciding
    379  * whether microlib will decline to run a test.
    380  */
    381 #define is_shard(in) ( \
    382     (((in)[0] & 0x7F800000) == 0x7F800000 || \
    383      (((in)[0] & 0x7F800000) == 0 && ((in)[0]&0x7FFFFFFF) != 0)))
    384 
    385 #define is_dhard(in) ( \
    386     (((in)[0] & 0x7FF00000) == 0x7FF00000 || \
    387      (((in)[0] & 0x7FF00000) == 0 && (((in)[0] & 0xFFFFF) | (in)[1]) != 0)))
    388 
    389 /*
    390  * Identify integers.
    391  */
    392 int is_dinteger(uint32 *in)
    393 {
    394     uint32 out[3];
    395     if ((0x7FF00000 & ~in[0]) == 0)
    396         return 0;                      /* not finite, hence not integer */
    397     test_ceil(in, out);
    398     return in[0] == out[0] && in[1] == out[1];
    399 }
    400 int is_sinteger(uint32 *in)
    401 {
    402     uint32 out[3];
    403     if ((0x7F800000 & ~in[0]) == 0)
    404         return 0;                      /* not finite, hence not integer */
    405     test_ceilf(in, out);
    406     return in[0] == out[0];
    407 }
    408 
    409 /*
    410  * Identify signalling NaNs.
    411  */
    412 int is_dsnan(const uint32 *in)
    413 {
    414     if ((in[0] & 0x7FF00000) != 0x7FF00000)
    415         return 0;                      /* not the inf/nan exponent */
    416     if ((in[0] << 12) == 0 && in[1] == 0)
    417         return 0;                      /* inf */
    418     if (in[0] & 0x00080000)
    419         return 0;                      /* qnan */
    420     return 1;
    421 }
    422 int is_ssnan(const uint32 *in)
    423 {
    424     if ((in[0] & 0x7F800000) != 0x7F800000)
    425         return 0;                      /* not the inf/nan exponent */
    426     if ((in[0] << 9) == 0)
    427         return 0;                      /* inf */
    428     if (in[0] & 0x00400000)
    429         return 0;                      /* qnan */
    430     return 1;
    431 }
    432 int is_snan(const uint32 *in, int size)
    433 {
    434     return size == 2 ? is_dsnan(in) : is_ssnan(in);
    435 }
    436 
    437 /*
    438  * Wrapper functions called to fix up unusual results after the main
    439  * test function has run.
    440  */
    441 void universal_wrapper(wrapperctx *ctx)
    442 {
    443     /*
    444      * Any SNaN input gives rise to a QNaN output.
    445      */
    446     int op;
    447     for (op = 0; op < wrapper_get_nops(ctx); op++) {
    448         int size = wrapper_get_size(ctx, op);
    449 
    450         if (!wrapper_is_complex(ctx, op) &&
    451             is_snan(wrapper_get_ieee(ctx, op), size)) {
    452             wrapper_set_nan(ctx);
    453         }
    454     }
    455 }
    456 
    457 Testable functions[] = {
    458     /*
    459      * Trig functions: sin, cos, tan. We test the core function
    460      * between -16 and +16: we assume that range reduction exists
    461      * and will be used for larger arguments, and we'll test that
    462      * separately. Also we only go down to 2^-27 in magnitude,
    463      * because below that sin(x)=tan(x)=x and cos(x)=1 as far as
    464      * double precision can tell, which is boring.
    465      */
    466     {"sin", (funcptr)mpfr_sin, args1, {NULL},
    467         cases_uniform, 0x3e400000, 0x40300000},
    468     {"sinf", (funcptr)mpfr_sin, args1f, {NULL},
    469         cases_uniform_float, 0x39800000, 0x41800000},
    470     {"cos", (funcptr)mpfr_cos, args1, {NULL},
    471         cases_uniform, 0x3e400000, 0x40300000},
    472     {"cosf", (funcptr)mpfr_cos, args1f, {NULL},
    473         cases_uniform_float, 0x39800000, 0x41800000},
    474     {"tan", (funcptr)mpfr_tan, args1, {NULL},
    475         cases_uniform, 0x3e400000, 0x40300000},
    476     {"tanf", (funcptr)mpfr_tan, args1f, {NULL},
    477         cases_uniform_float, 0x39800000, 0x41800000},
    478     {"sincosf_sinf", (funcptr)mpfr_sin, args1f, {NULL},
    479         cases_uniform_float, 0x39800000, 0x41800000},
    480     {"sincosf_cosf", (funcptr)mpfr_cos, args1f, {NULL},
    481         cases_uniform_float, 0x39800000, 0x41800000},
    482     /*
    483      * Inverse trig: asin, acos. Between 1 and -1, of course. acos
    484      * goes down to 2^-54, asin to 2^-27.
    485      */
    486     {"asin", (funcptr)mpfr_asin, args1, {NULL},
    487         cases_uniform, 0x3e400000, 0x3fefffff},
    488     {"asinf", (funcptr)mpfr_asin, args1f, {NULL},
    489         cases_uniform_float, 0x39800000, 0x3f7fffff},
    490     {"acos", (funcptr)mpfr_acos, args1, {NULL},
    491         cases_uniform, 0x3c900000, 0x3fefffff},
    492     {"acosf", (funcptr)mpfr_acos, args1f, {NULL},
    493         cases_uniform_float, 0x33800000, 0x3f7fffff},
    494     /*
    495      * Inverse trig: atan. atan is stable (in double prec) with
    496      * argument magnitude past 2^53, so we'll test up to there.
    497      * atan(x) is boringly just x below 2^-27.
    498      */
    499     {"atan", (funcptr)mpfr_atan, args1, {NULL},
    500         cases_uniform, 0x3e400000, 0x43400000},
    501     {"atanf", (funcptr)mpfr_atan, args1f, {NULL},
    502         cases_uniform_float, 0x39800000, 0x4b800000},
    503     /*
    504      * atan2. Interesting cases arise when the exponents of the
    505      * arguments differ by at most about 50.
    506      */
    507     {"atan2", (funcptr)mpfr_atan2, args2, {NULL},
    508         atan2_cases, 0},
    509     {"atan2f", (funcptr)mpfr_atan2, args2f, {NULL},
    510         atan2_cases_float, 0},
    511     /*
    512      * The exponentials: exp, sinh, cosh. They overflow at around
    513      * 710. exp and sinh are boring below 2^-54, cosh below 2^-27.
    514      */
    515     {"exp", (funcptr)mpfr_exp, args1, {NULL},
    516         cases_uniform, 0x3c900000, 0x40878000},
    517     {"expf", (funcptr)mpfr_exp, args1f, {NULL},
    518         cases_uniform_float, 0x33800000, 0x42dc0000},
    519     {"sinh", (funcptr)mpfr_sinh, args1, {NULL},
    520         cases_uniform, 0x3c900000, 0x40878000},
    521     {"sinhf", (funcptr)mpfr_sinh, args1f, {NULL},
    522         cases_uniform_float, 0x33800000, 0x42dc0000},
    523     {"cosh", (funcptr)mpfr_cosh, args1, {NULL},
    524         cases_uniform, 0x3e400000, 0x40878000},
    525     {"coshf", (funcptr)mpfr_cosh, args1f, {NULL},
    526         cases_uniform_float, 0x39800000, 0x42dc0000},
    527     /*
    528      * tanh is stable past around 20. It's boring below 2^-27.
    529      */
    530     {"tanh", (funcptr)mpfr_tanh, args1, {NULL},
    531         cases_uniform, 0x3e400000, 0x40340000},
    532     {"tanhf", (funcptr)mpfr_tanh, args1f, {NULL},
    533         cases_uniform, 0x39800000, 0x41100000},
    534     /*
    535      * log must be tested only on positive numbers, but can cover
    536      * the whole range of positive nonzero finite numbers. It never
    537      * gets boring.
    538      */
    539     {"log", (funcptr)mpfr_log, args1, {NULL}, log_cases, 0},
    540     {"logf", (funcptr)mpfr_log, args1f, {NULL}, log_cases_float, 0},
    541     {"log10", (funcptr)mpfr_log10, args1, {NULL}, log_cases, 0},
    542     {"log10f", (funcptr)mpfr_log10, args1f, {NULL}, log_cases_float, 0},
    543     /*
    544      * pow.
    545      */
    546     {"pow", (funcptr)mpfr_pow, args2, {NULL}, pow_cases, 0},
    547     {"powf", (funcptr)mpfr_pow, args2f, {NULL}, pow_cases_float, 0},
    548     /*
    549      * Trig range reduction. We are able to test this for all
    550      * finite values, but will only bother for things between 2^-3
    551      * and 2^+52.
    552      */
    553     {"rred", (funcptr)test_rred, rred, {NULL}, rred_cases, 0},
    554     {"rredf", (funcptr)test_rred, rredf, {NULL}, rred_cases_float, 0},
    555     /*
    556      * Square and cube root.
    557      */
    558     {"sqrt", (funcptr)mpfr_sqrt, args1, {NULL}, log_cases, 0},
    559     {"sqrtf", (funcptr)mpfr_sqrt, args1f, {NULL}, log_cases_float, 0},
    560     {"cbrt", (funcptr)mpfr_cbrt, args1, {NULL}, log_cases, 0},
    561     {"cbrtf", (funcptr)mpfr_cbrt, args1f, {NULL}, log_cases_float, 0},
    562     {"hypot", (funcptr)mpfr_hypot, args2, {NULL}, atan2_cases, 0},
    563     {"hypotf", (funcptr)mpfr_hypot, args2f, {NULL}, atan2_cases_float, 0},
    564     /*
    565      * Seminumerical functions.
    566      */
    567     {"ceil", (funcptr)test_ceil, semi1, {NULL}, cases_semi1},
    568     {"ceilf", (funcptr)test_ceilf, semi1f, {NULL}, cases_semi1_float},
    569     {"floor", (funcptr)test_floor, semi1, {NULL}, cases_semi1},
    570     {"floorf", (funcptr)test_floorf, semi1f, {NULL}, cases_semi1_float},
    571     {"fmod", (funcptr)test_fmod, semi2, {NULL}, cases_semi2},
    572     {"fmodf", (funcptr)test_fmodf, semi2f, {NULL}, cases_semi2_float},
    573     {"ldexp", (funcptr)test_ldexp, t_ldexp, {NULL}, cases_ldexp},
    574     {"ldexpf", (funcptr)test_ldexpf, t_ldexpf, {NULL}, cases_ldexp_float},
    575     {"frexp", (funcptr)test_frexp, t_frexp, {NULL}, cases_semi1},
    576     {"frexpf", (funcptr)test_frexpf, t_frexpf, {NULL}, cases_semi1_float},
    577     {"modf", (funcptr)test_modf, t_modf, {NULL}, cases_semi1},
    578     {"modff", (funcptr)test_modff, t_modff, {NULL}, cases_semi1_float},
    579 
    580     /*
    581      * Classification and more semi-numericals
    582      */
    583     {"copysign", (funcptr)test_copysign, semi2, {NULL}, cases_semi2},
    584     {"copysignf", (funcptr)test_copysignf, semi2f, {NULL}, cases_semi2_float},
    585     {"isfinite", (funcptr)test_isfinite, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    586     {"isfinitef", (funcptr)test_isfinitef, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    587     {"isinf", (funcptr)test_isinf, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    588     {"isinff", (funcptr)test_isinff, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    589     {"isnan", (funcptr)test_isnan, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    590     {"isnanf", (funcptr)test_isnanf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    591     {"isnormal", (funcptr)test_isnormal, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    592     {"isnormalf", (funcptr)test_isnormalf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    593     {"signbit", (funcptr)test_signbit, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    594     {"signbitf", (funcptr)test_signbitf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    595     {"fpclassify", (funcptr)test_fpclassify, classify, {NULL}, cases_uniform, 0, 0x7fffffff},
    596     {"fpclassifyf", (funcptr)test_fpclassifyf, classifyf, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    597     /*
    598      * Comparisons
    599      */
    600     {"isgreater", (funcptr)test_isgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    601     {"isgreaterequal", (funcptr)test_isgreaterequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    602     {"isless", (funcptr)test_isless, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    603     {"islessequal", (funcptr)test_islessequal, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    604     {"islessgreater", (funcptr)test_islessgreater, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    605     {"isunordered", (funcptr)test_isunordered, compare, {NULL}, cases_uniform, 0, 0x7fffffff},
    606 
    607     {"isgreaterf", (funcptr)test_isgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    608     {"isgreaterequalf", (funcptr)test_isgreaterequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    609     {"islessf", (funcptr)test_islessf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    610     {"islessequalf", (funcptr)test_islessequalf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    611     {"islessgreaterf", (funcptr)test_islessgreaterf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    612     {"isunorderedf", (funcptr)test_isunorderedf, comparef, {NULL}, cases_uniform_float, 0, 0x7fffffff},
    613 
    614     /*
    615      * Inverse Hyperbolic functions
    616      */
    617     {"atanh", (funcptr)mpfr_atanh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff},
    618     {"asinh", (funcptr)mpfr_asinh, args1, {NULL}, cases_uniform, 0x3e400000, 0x3fefffff},
    619     {"acosh", (funcptr)mpfr_acosh, args1, {NULL}, cases_uniform_positive, 0x3ff00000, 0x7fefffff},
    620 
    621     {"atanhf", (funcptr)mpfr_atanh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff},
    622     {"asinhf", (funcptr)mpfr_asinh, args1f, {NULL}, cases_uniform_float, 0x32000000, 0x3f7fffff},
    623     {"acoshf", (funcptr)mpfr_acosh, args1f, {NULL}, cases_uniform_float_positive, 0x3f800000, 0x7f800000},
    624 
    625     /*
    626      * Everything else (sitting in a section down here at the bottom
    627      * because historically they were not tested because we didn't
    628      * have reference implementations for them)
    629      */
    630     {"csin", (funcptr)mpc_sin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    631     {"csinf", (funcptr)mpc_sin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    632     {"ccos", (funcptr)mpc_cos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    633     {"ccosf", (funcptr)mpc_cos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    634     {"ctan", (funcptr)mpc_tan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    635     {"ctanf", (funcptr)mpc_tan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    636 
    637     {"casin", (funcptr)mpc_asin, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    638     {"casinf", (funcptr)mpc_asin, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    639     {"cacos", (funcptr)mpc_acos, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    640     {"cacosf", (funcptr)mpc_acos, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    641     {"catan", (funcptr)mpc_atan, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    642     {"catanf", (funcptr)mpc_atan, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    643 
    644     {"csinh", (funcptr)mpc_sinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    645     {"csinhf", (funcptr)mpc_sinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    646     {"ccosh", (funcptr)mpc_cosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    647     {"ccoshf", (funcptr)mpc_cosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    648     {"ctanh", (funcptr)mpc_tanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    649     {"ctanhf", (funcptr)mpc_tanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    650 
    651     {"casinh", (funcptr)mpc_asinh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    652     {"casinhf", (funcptr)mpc_asinh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    653     {"cacosh", (funcptr)mpc_acosh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    654     {"cacoshf", (funcptr)mpc_acosh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    655     {"catanh", (funcptr)mpc_atanh, args1c, {NULL}, complex_cases_uniform, 0x3f000000, 0x40300000},
    656     {"catanhf", (funcptr)mpc_atanh, args1fc, {NULL}, complex_cases_uniform_float, 0x38000000, 0x41800000},
    657 
    658     {"cexp", (funcptr)mpc_exp, args1c, {NULL}, complex_cases_uniform, 0x3c900000, 0x40862000},
    659     {"cpow", (funcptr)test_cpow, args2c, {NULL}, complex_pow_cases, 0x3fc00000, 0x40000000},
    660     {"clog", (funcptr)mpc_log, args1c, {NULL}, complex_log_cases, 0, 0},
    661     {"csqrt", (funcptr)mpc_sqrt, args1c, {NULL}, complex_log_cases, 0, 0},
    662 
    663     {"cexpf", (funcptr)mpc_exp, args1fc, {NULL}, complex_cases_uniform_float, 0x24800000, 0x42b00000},
    664     {"cpowf", (funcptr)test_cpow, args2fc, {NULL}, complex_pow_cases_float, 0x3e000000, 0x41000000},
    665     {"clogf", (funcptr)mpc_log, args1fc, {NULL}, complex_log_cases_float, 0, 0},
    666     {"csqrtf", (funcptr)mpc_sqrt, args1fc, {NULL}, complex_log_cases_float, 0, 0},
    667 
    668     {"cdiv", (funcptr)mpc_div, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
    669     {"cmul", (funcptr)mpc_mul, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
    670     {"cadd", (funcptr)mpc_add, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
    671     {"csub", (funcptr)mpc_sub, args2c, {NULL}, complex_arithmetic_cases, 0, 0},
    672 
    673     {"cdivf", (funcptr)mpc_div, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    674     {"cmulf", (funcptr)mpc_mul, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    675     {"caddf", (funcptr)mpc_add, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    676     {"csubf", (funcptr)mpc_sub, args2fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    677 
    678     {"cabsf", (funcptr)mpc_abs, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
    679     {"cabs", (funcptr)mpc_abs, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
    680     {"cargf", (funcptr)mpc_arg, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
    681     {"carg", (funcptr)mpc_arg, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
    682     {"cimagf", (funcptr)mpc_imag, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
    683     {"cimag", (funcptr)mpc_imag, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
    684     {"conjf", (funcptr)mpc_conj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    685     {"conj", (funcptr)mpc_conj, args1c, {NULL}, complex_arithmetic_cases, 0, 0},
    686     {"cprojf", (funcptr)mpc_proj, args1fc, {NULL}, complex_arithmetic_cases_float, 0, 0},
    687     {"cproj", (funcptr)mpc_proj, args1c, {NULL}, complex_arithmetic_cases, 0, 0},
    688     {"crealf", (funcptr)mpc_real, args1fcr, {NULL}, complex_arithmetic_cases_float, 0, 0},
    689     {"creal", (funcptr)mpc_real, args1cr, {NULL}, complex_arithmetic_cases, 0, 0},
    690     {"erfcf", (funcptr)mpfr_erfc, args1f, {NULL}, cases_biased_float, 0x1e800000, 0x41000000},
    691     {"erfc", (funcptr)mpfr_erfc, args1, {NULL}, cases_biased, 0x3bd00000, 0x403c0000},
    692     {"erff", (funcptr)mpfr_erf, args1f, {NULL}, cases_biased_float, 0x03800000, 0x40700000},
    693     {"erf", (funcptr)mpfr_erf, args1, {NULL}, cases_biased, 0x00800000, 0x40200000},
    694     {"exp2f", (funcptr)mpfr_exp2, args1f, {NULL}, cases_uniform_float, 0x33800000, 0x43c00000},
    695     {"exp2", (funcptr)mpfr_exp2, args1, {NULL}, cases_uniform, 0x3ca00000, 0x40a00000},
    696     {"expm1f", (funcptr)mpfr_expm1, args1f, {NULL}, cases_uniform_float, 0x33000000, 0x43800000},
    697     {"expm1", (funcptr)mpfr_expm1, args1, {NULL}, cases_uniform, 0x3c900000, 0x409c0000},
    698     {"fmaxf", (funcptr)mpfr_max, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff},
    699     {"fmax", (funcptr)mpfr_max, args2, {NULL}, minmax_cases, 0, 0x7fefffff},
    700     {"fminf", (funcptr)mpfr_min, args2f, {NULL}, minmax_cases_float, 0, 0x7f7fffff},
    701     {"fmin", (funcptr)mpfr_min, args2, {NULL}, minmax_cases, 0, 0x7fefffff},
    702     {"lgammaf", (funcptr)test_lgamma, args1f, {NULL}, cases_uniform_float, 0x01800000, 0x7f800000},
    703     {"lgamma", (funcptr)test_lgamma, args1, {NULL}, cases_uniform, 0x00100000, 0x7ff00000},
    704     {"log1pf", (funcptr)mpfr_log1p, args1f, {NULL}, log1p_cases_float, 0, 0},
    705     {"log1p", (funcptr)mpfr_log1p, args1, {NULL}, log1p_cases, 0, 0},
    706     {"log2f", (funcptr)mpfr_log2, args1f, {NULL}, log_cases_float, 0, 0},
    707     {"log2", (funcptr)mpfr_log2, args1, {NULL}, log_cases, 0, 0},
    708     {"tgammaf", (funcptr)mpfr_gamma, args1f, {NULL}, cases_uniform_float, 0x2f800000, 0x43000000},
    709     {"tgamma", (funcptr)mpfr_gamma, args1, {NULL}, cases_uniform, 0x3c000000, 0x40800000},
    710 };
    711 
    712 const int nfunctions = ( sizeof(functions)/sizeof(*functions) );
    713 
    714 #define random_sign ( random_upto(1) ? 0x80000000 : 0 )
    715 
    716 static int iszero(uint32 *x) {
    717     return !((x[0] & 0x7FFFFFFF) || x[1]);
    718 }
    719 
    720 
    721 static void complex_log_cases(uint32 *out, uint32 param1,
    722                               uint32 param2) {
    723     cases_uniform(out,0x00100000,0x7fefffff);
    724     cases_uniform(out+2,0x00100000,0x7fefffff);
    725 }
    726 
    727 
    728 static void complex_log_cases_float(uint32 *out, uint32 param1,
    729                                     uint32 param2) {
    730     cases_uniform_float(out,0x00800000,0x7f7fffff);
    731     cases_uniform_float(out+2,0x00800000,0x7f7fffff);
    732 }
    733 
    734 static void complex_cases_biased(uint32 *out, uint32 lowbound,
    735                                  uint32 highbound) {
    736     cases_biased(out,lowbound,highbound);
    737     cases_biased(out+2,lowbound,highbound);
    738 }
    739 
    740 static void complex_cases_biased_float(uint32 *out, uint32 lowbound,
    741                                        uint32 highbound) {
    742     cases_biased_float(out,lowbound,highbound);
    743     cases_biased_float(out+2,lowbound,highbound);
    744 }
    745 
    746 static void complex_cases_uniform(uint32 *out, uint32 lowbound,
    747                                  uint32 highbound) {
    748     cases_uniform(out,lowbound,highbound);
    749     cases_uniform(out+2,lowbound,highbound);
    750 }
    751 
    752 static void complex_cases_uniform_float(uint32 *out, uint32 lowbound,
    753                                        uint32 highbound) {
    754     cases_uniform_float(out,lowbound,highbound);
    755     cases_uniform(out+2,lowbound,highbound);
    756 }
    757 
    758 static void complex_pow_cases(uint32 *out, uint32 lowbound,
    759                               uint32 highbound) {
    760     /*
    761      * Generating non-overflowing cases for complex pow:
    762      *
    763      * Our base has both parts within the range [1/2,2], and hence
    764      * its magnitude is within [1/2,2*sqrt(2)]. The magnitude of its
    765      * logarithm in base 2 is therefore at most the magnitude of
    766      * (log2(2*sqrt(2)) + i*pi/log(2)), or in other words
    767      * hypot(3/2,pi/log(2)) = 4.77. So the magnitude of the exponent
    768      * input must be at most our output magnitude limit (as a power
    769      * of two) divided by that.
    770      *
    771      * I also set the output magnitude limit a bit low, because we
    772      * don't guarantee (and neither does glibc) to prevent internal
    773      * overflow in cases where the output _magnitude_ overflows but
    774      * scaling it back down by cos and sin of the argument brings it
    775      * back in range.
    776      */
    777     cases_uniform(out,0x3fe00000, 0x40000000);
    778     cases_uniform(out+2,0x3fe00000, 0x40000000);
    779     cases_uniform(out+4,0x3f800000, 0x40600000);
    780     cases_uniform(out+6,0x3f800000, 0x40600000);
    781 }
    782 
    783 static void complex_pow_cases_float(uint32 *out, uint32 lowbound,
    784                                     uint32 highbound) {
    785     /*
    786      * Reasoning as above, though of course the detailed numbers are
    787      * all different.
    788      */
    789     cases_uniform_float(out,0x3f000000, 0x40000000);
    790     cases_uniform_float(out+2,0x3f000000, 0x40000000);
    791     cases_uniform_float(out+4,0x3d600000, 0x41900000);
    792     cases_uniform_float(out+6,0x3d600000, 0x41900000);
    793 }
    794 
    795 static void complex_arithmetic_cases(uint32 *out, uint32 lowbound,
    796                                      uint32 highbound) {
    797     cases_uniform(out,0,0x7fefffff);
    798     cases_uniform(out+2,0,0x7fefffff);
    799     cases_uniform(out+4,0,0x7fefffff);
    800     cases_uniform(out+6,0,0x7fefffff);
    801 }
    802 
    803 static void complex_arithmetic_cases_float(uint32 *out, uint32 lowbound,
    804                                            uint32 highbound) {
    805     cases_uniform_float(out,0,0x7f7fffff);
    806     cases_uniform_float(out+2,0,0x7f7fffff);
    807     cases_uniform_float(out+4,0,0x7f7fffff);
    808     cases_uniform_float(out+6,0,0x7f7fffff);
    809 }
    810 
    811 /*
    812  * Included from fplib test suite, in a compact self-contained
    813  * form.
    814  */
    815 
    816 void float32_case(uint32 *ret) {
    817     int n, bits;
    818     uint32 f;
    819     static int premax, preptr;
    820     static uint32 *specifics = NULL;
    821 
    822     if (!ret) {
    823         if (specifics)
    824             free(specifics);
    825         specifics = NULL;
    826         premax = preptr = 0;
    827         return;
    828     }
    829 
    830     if (!specifics) {
    831         int exps[] = {
    832             -127, -126, -125, -24, -4, -3, -2, -1, 0, 1, 2, 3, 4,
    833                 24, 29, 30, 31, 32, 61, 62, 63, 64, 126, 127, 128
    834         };
    835         int sign, eptr;
    836         uint32 se, j;
    837         /*
    838          * We want a cross product of:
    839          *  - each of two sign bits (2)
    840          *  - each of the above (unbiased) exponents (25)
    841          *  - the following list of fraction parts:
    842          *    * zero (1)
    843          *    * all bits (1)
    844          *    * one-bit-set (23)
    845          *    * one-bit-clear (23)
    846          *    * one-bit-and-above (20: 3 are duplicates)
    847          *    * one-bit-and-below (20: 3 are duplicates)
    848          *    (total 88)
    849          *  (total 4400)
    850          */
    851         specifics = malloc(4400 * sizeof(*specifics));
    852         preptr = 0;
    853         for (sign = 0; sign <= 1; sign++) {
    854             for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) {
    855                 se = (sign ? 0x80000000 : 0) | ((exps[eptr]+127) << 23);
    856                 /*
    857                  * Zero.
    858                  */
    859                 specifics[preptr++] = se | 0;
    860                 /*
    861                  * All bits.
    862                  */
    863                 specifics[preptr++] = se | 0x7FFFFF;
    864                 /*
    865                  * One-bit-set.
    866                  */
    867                 for (j = 1; j && j <= 0x400000; j <<= 1)
    868                     specifics[preptr++] = se | j;
    869                 /*
    870                  * One-bit-clear.
    871                  */
    872                 for (j = 1; j && j <= 0x400000; j <<= 1)
    873                     specifics[preptr++] = se | (0x7FFFFF ^ j);
    874                 /*
    875                  * One-bit-and-everything-below.
    876                  */
    877                 for (j = 2; j && j <= 0x100000; j <<= 1)
    878                     specifics[preptr++] = se | (2*j-1);
    879                 /*
    880                  * One-bit-and-everything-above.
    881                  */
    882                 for (j = 4; j && j <= 0x200000; j <<= 1)
    883                     specifics[preptr++] = se | (0x7FFFFF ^ (j-1));
    884                 /*
    885                  * Done.
    886                  */
    887             }
    888         }
    889         assert(preptr == 4400);
    890         premax = preptr;
    891     }
    892 
    893     /*
    894      * Decide whether to return a pre or a random case.
    895      */
    896     n = random32() % (premax+1);
    897     if (n < preptr) {
    898         /*
    899          * Return pre[n].
    900          */
    901         uint32 t;
    902         t = specifics[n];
    903         specifics[n] = specifics[preptr-1];
    904         specifics[preptr-1] = t;        /* (not really needed) */
    905         preptr--;
    906         *ret = t;
    907     } else {
    908         /*
    909          * Random case.
    910          * Sign and exponent:
    911          *  - FIXME
    912          * Significand:
    913          *  - with prob 1/5, a totally random bit pattern
    914          *  - with prob 1/5, all 1s down to some point and then random
    915          *  - with prob 1/5, all 1s up to some point and then random
    916          *  - with prob 1/5, all 0s down to some point and then random
    917          *  - with prob 1/5, all 0s up to some point and then random
    918          */
    919         n = random32() % 5;
    920         f = random32();                /* some random bits */
    921         bits = random32() % 22 + 1;    /* 1-22 */
    922         switch (n) {
    923           case 0:
    924             break;                     /* leave f alone */
    925           case 1:
    926             f |= (1<<bits)-1;
    927             break;
    928           case 2:
    929             f &= ~((1<<bits)-1);
    930             break;
    931           case 3:
    932             f |= ~((1<<bits)-1);
    933             break;
    934           case 4:
    935             f &= (1<<bits)-1;
    936             break;
    937         }
    938         f &= 0x7FFFFF;
    939         f |= (random32() & 0xFF800000);/* FIXME - do better */
    940         *ret = f;
    941     }
    942 }
    943 static void float64_case(uint32 *ret) {
    944     int n, bits;
    945     uint32 f, g;
    946     static int premax, preptr;
    947     static uint32 (*specifics)[2] = NULL;
    948 
    949     if (!ret) {
    950         if (specifics)
    951             free(specifics);
    952         specifics = NULL;
    953         premax = preptr = 0;
    954         return;
    955     }
    956 
    957     if (!specifics) {
    958         int exps[] = {
    959             -1023, -1022, -1021, -129, -128, -127, -126, -53, -4, -3, -2,
    960             -1, 0, 1, 2, 3, 4, 29, 30, 31, 32, 53, 61, 62, 63, 64, 127,
    961             128, 129, 1022, 1023, 1024
    962         };
    963         int sign, eptr;
    964         uint32 se, j;
    965         /*
    966          * We want a cross product of:
    967          *  - each of two sign bits (2)
    968          *  - each of the above (unbiased) exponents (32)
    969          *  - the following list of fraction parts:
    970          *    * zero (1)
    971          *    * all bits (1)
    972          *    * one-bit-set (52)
    973          *    * one-bit-clear (52)
    974          *    * one-bit-and-above (49: 3 are duplicates)
    975          *    * one-bit-and-below (49: 3 are duplicates)
    976          *    (total 204)
    977          *  (total 13056)
    978          */
    979         specifics = malloc(13056 * sizeof(*specifics));
    980         preptr = 0;
    981         for (sign = 0; sign <= 1; sign++) {
    982             for (eptr = 0; eptr < sizeof(exps)/sizeof(*exps); eptr++) {
    983                 se = (sign ? 0x80000000 : 0) | ((exps[eptr]+1023) << 20);
    984                 /*
    985                  * Zero.
    986                  */
    987                 specifics[preptr][0] = 0;
    988                 specifics[preptr][1] = 0;
    989                 specifics[preptr++][0] |= se;
    990                 /*
    991                  * All bits.
    992                  */
    993                 specifics[preptr][0] = 0xFFFFF;
    994                 specifics[preptr][1] = ~0;
    995                 specifics[preptr++][0] |= se;
    996                 /*
    997                  * One-bit-set.
    998                  */
    999                 for (j = 1; j && j <= 0x80000000; j <<= 1) {
   1000                     specifics[preptr][0] = 0;
   1001                     specifics[preptr][1] = j;
   1002                     specifics[preptr++][0] |= se;
   1003                     if (j & 0xFFFFF) {
   1004                         specifics[preptr][0] = j;
   1005                         specifics[preptr][1] = 0;
   1006                         specifics[preptr++][0] |= se;
   1007                     }
   1008                 }
   1009                 /*
   1010                  * One-bit-clear.
   1011                  */
   1012                 for (j = 1; j && j <= 0x80000000; j <<= 1) {
   1013                     specifics[preptr][0] = 0xFFFFF;
   1014                     specifics[preptr][1] = ~j;
   1015                     specifics[preptr++][0] |= se;
   1016                     if (j & 0xFFFFF) {
   1017                         specifics[preptr][0] = 0xFFFFF ^ j;
   1018                         specifics[preptr][1] = ~0;
   1019                         specifics[preptr++][0] |= se;
   1020                     }
   1021                 }
   1022                 /*
   1023                  * One-bit-and-everything-below.
   1024                  */
   1025                 for (j = 2; j && j <= 0x80000000; j <<= 1) {
   1026                     specifics[preptr][0] = 0;
   1027                     specifics[preptr][1] = 2*j-1;
   1028                     specifics[preptr++][0] |= se;
   1029                 }
   1030                 for (j = 1; j && j <= 0x20000; j <<= 1) {
   1031                     specifics[preptr][0] = 2*j-1;
   1032                     specifics[preptr][1] = ~0;
   1033                     specifics[preptr++][0] |= se;
   1034                 }
   1035                 /*
   1036                  * One-bit-and-everything-above.
   1037                  */
   1038                 for (j = 4; j && j <= 0x80000000; j <<= 1) {
   1039                     specifics[preptr][0] = 0xFFFFF;
   1040                     specifics[preptr][1] = ~(j-1);
   1041                     specifics[preptr++][0] |= se;
   1042                 }
   1043                 for (j = 1; j && j <= 0x40000; j <<= 1) {
   1044                     specifics[preptr][0] = 0xFFFFF ^ (j-1);
   1045                     specifics[preptr][1] = 0;
   1046                     specifics[preptr++][0] |= se;
   1047                 }
   1048                 /*
   1049                  * Done.
   1050                  */
   1051             }
   1052         }
   1053         assert(preptr == 13056);
   1054         premax = preptr;
   1055     }
   1056 
   1057     /*
   1058      * Decide whether to return a pre or a random case.
   1059      */
   1060     n = (uint32) random32() % (uint32) (premax+1);
   1061     if (n < preptr) {
   1062         /*
   1063          * Return pre[n].
   1064          */
   1065         uint32 t;
   1066         t = specifics[n][0];
   1067         specifics[n][0] = specifics[preptr-1][0];
   1068         specifics[preptr-1][0] = t;     /* (not really needed) */
   1069         ret[0] = t;
   1070         t = specifics[n][1];
   1071         specifics[n][1] = specifics[preptr-1][1];
   1072         specifics[preptr-1][1] = t;     /* (not really needed) */
   1073         ret[1] = t;
   1074         preptr--;
   1075     } else {
   1076         /*
   1077          * Random case.
   1078          * Sign and exponent:
   1079          *  - FIXME
   1080          * Significand:
   1081          *  - with prob 1/5, a totally random bit pattern
   1082          *  - with prob 1/5, all 1s down to some point and then random
   1083          *  - with prob 1/5, all 1s up to some point and then random
   1084          *  - with prob 1/5, all 0s down to some point and then random
   1085          *  - with prob 1/5, all 0s up to some point and then random
   1086          */
   1087         n = random32() % 5;
   1088         f = random32();                /* some random bits */
   1089         g = random32();                /* some random bits */
   1090         bits = random32() % 51 + 1;    /* 1-51 */
   1091         switch (n) {
   1092           case 0:
   1093             break;                     /* leave f alone */
   1094           case 1:
   1095             if (bits <= 32)
   1096                 f |= (1<<bits)-1;
   1097             else {
   1098                 bits -= 32;
   1099                 g |= (1<<bits)-1;
   1100                 f = ~0;
   1101             }
   1102             break;
   1103           case 2:
   1104             if (bits <= 32)
   1105                 f &= ~((1<<bits)-1);
   1106             else {
   1107                 bits -= 32;
   1108                 g &= ~((1<<bits)-1);
   1109                 f = 0;
   1110             }
   1111             break;
   1112           case 3:
   1113             if (bits <= 32)
   1114                 g &= (1<<bits)-1;
   1115             else {
   1116                 bits -= 32;
   1117                 f &= (1<<bits)-1;
   1118                 g = 0;
   1119             }
   1120             break;
   1121           case 4:
   1122             if (bits <= 32)
   1123                 g |= ~((1<<bits)-1);
   1124             else {
   1125                 bits -= 32;
   1126                 f |= ~((1<<bits)-1);
   1127                 g = ~0;
   1128             }
   1129             break;
   1130         }
   1131         g &= 0xFFFFF;
   1132         g |= (random32() & 0xFFF00000);/* FIXME - do better */
   1133         ret[0] = g;
   1134         ret[1] = f;
   1135     }
   1136 }
   1137 
   1138 static void cases_biased(uint32 *out, uint32 lowbound,
   1139                           uint32 highbound) {
   1140     do {
   1141         out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
   1142         out[1] = random_upto(0xFFFFFFFF);
   1143         out[0] |= random_sign;
   1144     } while (iszero(out));             /* rule out zero */
   1145 }
   1146 
   1147 static void cases_biased_positive(uint32 *out, uint32 lowbound,
   1148                                   uint32 highbound) {
   1149     do {
   1150         out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
   1151         out[1] = random_upto(0xFFFFFFFF);
   1152     } while (iszero(out));             /* rule out zero */
   1153 }
   1154 
   1155 static void cases_biased_float(uint32 *out, uint32 lowbound,
   1156                                uint32 highbound) {
   1157     do {
   1158         out[0] = highbound - random_upto_biased(highbound-lowbound, 8);
   1159         out[1] = 0;
   1160         out[0] |= random_sign;
   1161     } while (iszero(out));             /* rule out zero */
   1162 }
   1163 
   1164 static void cases_semi1(uint32 *out, uint32 param1,
   1165                         uint32 param2) {
   1166     float64_case(out);
   1167 }
   1168 
   1169 static void cases_semi1_float(uint32 *out, uint32 param1,
   1170                               uint32 param2) {
   1171     float32_case(out);
   1172 }
   1173 
   1174 static void cases_semi2(uint32 *out, uint32 param1,
   1175                         uint32 param2) {
   1176     float64_case(out);
   1177     float64_case(out+2);
   1178 }
   1179 
   1180 static void cases_semi2_float(uint32 *out, uint32 param1,
   1181                         uint32 param2) {
   1182     float32_case(out);
   1183     float32_case(out+2);
   1184 }
   1185 
   1186 static void cases_ldexp(uint32 *out, uint32 param1,
   1187                         uint32 param2) {
   1188     float64_case(out);
   1189     out[2] = random_upto(2048)-1024;
   1190 }
   1191 
   1192 static void cases_ldexp_float(uint32 *out, uint32 param1,
   1193                               uint32 param2) {
   1194     float32_case(out);
   1195     out[2] = random_upto(256)-128;
   1196 }
   1197 
   1198 static void cases_uniform(uint32 *out, uint32 lowbound,
   1199                           uint32 highbound) {
   1200     do {
   1201         out[0] = highbound - random_upto(highbound-lowbound);
   1202         out[1] = random_upto(0xFFFFFFFF);
   1203         out[0] |= random_sign;
   1204     } while (iszero(out));             /* rule out zero */
   1205 }
   1206 static void cases_uniform_float(uint32 *out, uint32 lowbound,
   1207                                 uint32 highbound) {
   1208     do {
   1209         out[0] = highbound - random_upto(highbound-lowbound);
   1210         out[1] = 0;
   1211         out[0] |= random_sign;
   1212     } while (iszero(out));             /* rule out zero */
   1213 }
   1214 
   1215 static void cases_uniform_positive(uint32 *out, uint32 lowbound,
   1216                                    uint32 highbound) {
   1217     do {
   1218         out[0] = highbound - random_upto(highbound-lowbound);
   1219         out[1] = random_upto(0xFFFFFFFF);
   1220     } while (iszero(out));             /* rule out zero */
   1221 }
   1222 static void cases_uniform_float_positive(uint32 *out, uint32 lowbound,
   1223                                          uint32 highbound) {
   1224     do {
   1225         out[0] = highbound - random_upto(highbound-lowbound);
   1226         out[1] = 0;
   1227     } while (iszero(out));             /* rule out zero */
   1228 }
   1229 
   1230 
   1231 static void log_cases(uint32 *out, uint32 param1,
   1232                       uint32 param2) {
   1233     do {
   1234         out[0] = random_upto(0x7FEFFFFF);
   1235         out[1] = random_upto(0xFFFFFFFF);
   1236     } while (iszero(out));             /* rule out zero */
   1237 }
   1238 
   1239 static void log_cases_float(uint32 *out, uint32 param1,
   1240                             uint32 param2) {
   1241     do {
   1242         out[0] = random_upto(0x7F7FFFFF);
   1243         out[1] = 0;
   1244     } while (iszero(out));             /* rule out zero */
   1245 }
   1246 
   1247 static void log1p_cases(uint32 *out, uint32 param1, uint32 param2)
   1248 {
   1249     uint32 sign = random_sign;
   1250     if (sign == 0) {
   1251         cases_uniform_positive(out, 0x3c700000, 0x43400000);
   1252     } else {
   1253         cases_uniform_positive(out, 0x3c000000, 0x3ff00000);
   1254     }
   1255     out[0] |= sign;
   1256 }
   1257 
   1258 static void log1p_cases_float(uint32 *out, uint32 param1, uint32 param2)
   1259 {
   1260     uint32 sign = random_sign;
   1261     if (sign == 0) {
   1262         cases_uniform_float_positive(out, 0x32000000, 0x4c000000);
   1263     } else {
   1264         cases_uniform_float_positive(out, 0x30000000, 0x3f800000);
   1265     }
   1266     out[0] |= sign;
   1267 }
   1268 
   1269 static void minmax_cases(uint32 *out, uint32 param1, uint32 param2)
   1270 {
   1271     do {
   1272         out[0] = random_upto(0x7FEFFFFF);
   1273         out[1] = random_upto(0xFFFFFFFF);
   1274         out[0] |= random_sign;
   1275         out[2] = random_upto(0x7FEFFFFF);
   1276         out[3] = random_upto(0xFFFFFFFF);
   1277         out[2] |= random_sign;
   1278     } while (iszero(out));             /* rule out zero */
   1279 }
   1280 
   1281 static void minmax_cases_float(uint32 *out, uint32 param1, uint32 param2)
   1282 {
   1283     do {
   1284         out[0] = random_upto(0x7F7FFFFF);
   1285         out[1] = 0;
   1286         out[0] |= random_sign;
   1287         out[2] = random_upto(0x7F7FFFFF);
   1288         out[3] = 0;
   1289         out[2] |= random_sign;
   1290     } while (iszero(out));             /* rule out zero */
   1291 }
   1292 
   1293 static void rred_cases(uint32 *out, uint32 param1,
   1294                        uint32 param2) {
   1295     do {
   1296         out[0] = ((0x3fc00000 + random_upto(0x036fffff)) |
   1297                   (random_upto(1) << 31));
   1298         out[1] = random_upto(0xFFFFFFFF);
   1299     } while (iszero(out));             /* rule out zero */
   1300 }
   1301 
   1302 static void rred_cases_float(uint32 *out, uint32 param1,
   1303                              uint32 param2) {
   1304     do {
   1305         out[0] = ((0x3e000000 + random_upto(0x0cffffff)) |
   1306                   (random_upto(1) << 31));
   1307         out[1] = 0;                    /* for iszero */
   1308     } while (iszero(out));             /* rule out zero */
   1309 }
   1310 
   1311 static void atan2_cases(uint32 *out, uint32 param1,
   1312                         uint32 param2) {
   1313     do {
   1314         int expdiff = random_upto(101)-51;
   1315         int swap;
   1316         if (expdiff < 0) {
   1317             expdiff = -expdiff;
   1318             swap = 2;
   1319         } else
   1320             swap = 0;
   1321         out[swap ^ 0] = random_upto(0x7FEFFFFF-((expdiff+1)<<20));
   1322         out[swap ^ 2] = random_upto(((expdiff+1)<<20)-1) + out[swap ^ 0];
   1323         out[1] = random_upto(0xFFFFFFFF);
   1324         out[3] = random_upto(0xFFFFFFFF);
   1325         out[0] |= random_sign;
   1326         out[2] |= random_sign;
   1327     } while (iszero(out) || iszero(out+2));/* rule out zero */
   1328 }
   1329 
   1330 static void atan2_cases_float(uint32 *out, uint32 param1,
   1331                               uint32 param2) {
   1332     do {
   1333         int expdiff = random_upto(44)-22;
   1334         int swap;
   1335         if (expdiff < 0) {
   1336             expdiff = -expdiff;
   1337             swap = 2;
   1338         } else
   1339             swap = 0;
   1340         out[swap ^ 0] = random_upto(0x7F7FFFFF-((expdiff+1)<<23));
   1341         out[swap ^ 2] = random_upto(((expdiff+1)<<23)-1) + out[swap ^ 0];
   1342         out[0] |= random_sign;
   1343         out[2] |= random_sign;
   1344         out[1] = out[3] = 0;           /* for iszero */
   1345     } while (iszero(out) || iszero(out+2));/* rule out zero */
   1346 }
   1347 
   1348 static void pow_cases(uint32 *out, uint32 param1,
   1349                       uint32 param2) {
   1350     /*
   1351      * Pick an exponent e (-0x33 to +0x7FE) for x, and here's the
   1352      * range of numbers we can use as y:
   1353      *
   1354      * For e < 0x3FE, the range is [-0x400/(0x3FE-e),+0x432/(0x3FE-e)]
   1355      * For e > 0x3FF, the range is [-0x432/(e-0x3FF),+0x400/(e-0x3FF)]
   1356      *
   1357      * For e == 0x3FE or e == 0x3FF, the range gets infinite at one
   1358      * end or the other, so we have to be cleverer: pick a number n
   1359      * of useful bits in the mantissa (1 thru 52, so 1 must imply
   1360      * 0x3ff00000.00000001 whereas 52 is anything at least as big
   1361      * as 0x3ff80000.00000000; for e == 0x3fe, 1 necessarily means
   1362      * 0x3fefffff.ffffffff and 52 is anything at most as big as
   1363      * 0x3fe80000.00000000). Then, as it happens, a sensible
   1364      * maximum power is 2^(63-n) for e == 0x3fe, and 2^(62-n) for
   1365      * e == 0x3ff.
   1366      *
   1367      * We inevitably get some overflows in approximating the log
   1368      * curves by these nasty step functions, but that's all right -
   1369      * we do want _some_ overflows to be tested.
   1370      *
   1371      * Having got that, then, it's just a matter of inventing a
   1372      * probability distribution for all of this.
   1373      */
   1374     int e, n;
   1375     uint32 dmin, dmax;
   1376     const uint32 pmin = 0x3e100000;
   1377 
   1378     /*
   1379      * Generate exponents in a slightly biased fashion.
   1380      */
   1381     e = (random_upto(1) ?              /* is exponent small or big? */
   1382          0x3FE - random_upto_biased(0x431,2) :   /* small */
   1383          0x3FF + random_upto_biased(0x3FF,2));   /* big */
   1384 
   1385     /*
   1386      * Now split into cases.
   1387      */
   1388     if (e < 0x3FE || e > 0x3FF) {
   1389         uint32 imin, imax;
   1390         if (e < 0x3FE)
   1391             imin = 0x40000 / (0x3FE - e), imax = 0x43200 / (0x3FE - e);
   1392         else
   1393             imin = 0x43200 / (e - 0x3FF), imax = 0x40000 / (e - 0x3FF);
   1394         /* Power range runs from -imin to imax. Now convert to doubles */
   1395         dmin = doubletop(imin, -8);
   1396         dmax = doubletop(imax, -8);
   1397         /* Compute the number of mantissa bits. */
   1398         n = (e > 0 ? 53 : 52+e);
   1399     } else {
   1400         /* Critical exponents. Generate a top bit index. */
   1401         n = 52 - random_upto_biased(51, 4);
   1402         if (e == 0x3FE)
   1403             dmax = 63 - n;
   1404         else
   1405             dmax = 62 - n;
   1406         dmax = (dmax << 20) + 0x3FF00000;
   1407         dmin = dmax;
   1408     }
   1409     /* Generate a mantissa. */
   1410     if (n <= 32) {
   1411         out[0] = 0;
   1412         out[1] = random_upto((1 << (n-1)) - 1) + (1 << (n-1));
   1413     } else if (n == 33) {
   1414         out[0] = 1;
   1415         out[1] = random_upto(0xFFFFFFFF);
   1416     } else if (n > 33) {
   1417         out[0] = random_upto((1 << (n-33)) - 1) + (1 << (n-33));
   1418         out[1] = random_upto(0xFFFFFFFF);
   1419     }
   1420     /* Negate the mantissa if e == 0x3FE. */
   1421     if (e == 0x3FE) {
   1422         out[1] = -out[1];
   1423         out[0] = -out[0];
   1424         if (out[1]) out[0]--;
   1425     }
   1426     /* Put the exponent on. */
   1427     out[0] &= 0xFFFFF;
   1428     out[0] |= ((e > 0 ? e : 0) << 20);
   1429     /* Generate a power. Powers don't go below 2^-30. */
   1430     if (random_upto(1)) {
   1431         /* Positive power */
   1432         out[2] = dmax - random_upto_biased(dmax-pmin, 10);
   1433     } else {
   1434         /* Negative power */
   1435         out[2] = (dmin - random_upto_biased(dmin-pmin, 10)) | 0x80000000;
   1436     }
   1437     out[3] = random_upto(0xFFFFFFFF);
   1438 }
   1439 static void pow_cases_float(uint32 *out, uint32 param1,
   1440                             uint32 param2) {
   1441     /*
   1442      * Pick an exponent e (-0x16 to +0xFE) for x, and here's the
   1443      * range of numbers we can use as y:
   1444      *
   1445      * For e < 0x7E, the range is [-0x80/(0x7E-e),+0x95/(0x7E-e)]
   1446      * For e > 0x7F, the range is [-0x95/(e-0x7F),+0x80/(e-0x7F)]
   1447      *
   1448      * For e == 0x7E or e == 0x7F, the range gets infinite at one
   1449      * end or the other, so we have to be cleverer: pick a number n
   1450      * of useful bits in the mantissa (1 thru 23, so 1 must imply
   1451      * 0x3f800001 whereas 23 is anything at least as big as
   1452      * 0x3fc00000; for e == 0x7e, 1 necessarily means 0x3f7fffff
   1453      * and 23 is anything at most as big as 0x3f400000). Then, as
   1454      * it happens, a sensible maximum power is 2^(31-n) for e ==
   1455      * 0x7e, and 2^(30-n) for e == 0x7f.
   1456      *
   1457      * We inevitably get some overflows in approximating the log
   1458      * curves by these nasty step functions, but that's all right -
   1459      * we do want _some_ overflows to be tested.
   1460      *
   1461      * Having got that, then, it's just a matter of inventing a
   1462      * probability distribution for all of this.
   1463      */
   1464     int e, n;
   1465     uint32 dmin, dmax;
   1466     const uint32 pmin = 0x38000000;
   1467 
   1468     /*
   1469      * Generate exponents in a slightly biased fashion.
   1470      */
   1471     e = (random_upto(1) ?              /* is exponent small or big? */
   1472          0x7E - random_upto_biased(0x94,2) :   /* small */
   1473          0x7F + random_upto_biased(0x7f,2));   /* big */
   1474 
   1475     /*
   1476      * Now split into cases.
   1477      */
   1478     if (e < 0x7E || e > 0x7F) {
   1479         uint32 imin, imax;
   1480         if (e < 0x7E)
   1481             imin = 0x8000 / (0x7e - e), imax = 0x9500 / (0x7e - e);
   1482         else
   1483             imin = 0x9500 / (e - 0x7f), imax = 0x8000 / (e - 0x7f);
   1484         /* Power range runs from -imin to imax. Now convert to doubles */
   1485         dmin = floatval(imin, -8);
   1486         dmax = floatval(imax, -8);
   1487         /* Compute the number of mantissa bits. */
   1488         n = (e > 0 ? 24 : 23+e);
   1489     } else {
   1490         /* Critical exponents. Generate a top bit index. */
   1491         n = 23 - random_upto_biased(22, 4);
   1492         if (e == 0x7E)
   1493             dmax = 31 - n;
   1494         else
   1495             dmax = 30 - n;
   1496         dmax = (dmax << 23) + 0x3F800000;
   1497         dmin = dmax;
   1498     }
   1499     /* Generate a mantissa. */
   1500     out[0] = random_upto((1 << (n-1)) - 1) + (1 << (n-1));
   1501     out[1] = 0;
   1502     /* Negate the mantissa if e == 0x7E. */
   1503     if (e == 0x7E) {
   1504         out[0] = -out[0];
   1505     }
   1506     /* Put the exponent on. */
   1507     out[0] &= 0x7FFFFF;
   1508     out[0] |= ((e > 0 ? e : 0) << 23);
   1509     /* Generate a power. Powers don't go below 2^-15. */
   1510     if (random_upto(1)) {
   1511         /* Positive power */
   1512         out[2] = dmax - random_upto_biased(dmax-pmin, 10);
   1513     } else {
   1514         /* Negative power */
   1515         out[2] = (dmin - random_upto_biased(dmin-pmin, 10)) | 0x80000000;
   1516     }
   1517     out[3] = 0;
   1518 }
   1519 
   1520 void vet_for_decline(Testable *fn, uint32 *args, uint32 *result, int got_errno_in) {
   1521     int declined = 0;
   1522 
   1523     switch (fn->type) {
   1524       case args1:
   1525       case rred:
   1526       case semi1:
   1527       case t_frexp:
   1528       case t_modf:
   1529       case classify:
   1530       case t_ldexp:
   1531         declined |= lib_fo && is_dhard(args+0);
   1532         break;
   1533       case args1f:
   1534       case rredf:
   1535       case semi1f:
   1536       case t_frexpf:
   1537       case t_modff:
   1538       case classifyf:
   1539         declined |= lib_fo && is_shard(args+0);
   1540         break;
   1541       case args2:
   1542       case semi2:
   1543       case args1c:
   1544       case args1cr:
   1545       case compare:
   1546         declined |= lib_fo && is_dhard(args+0);
   1547         declined |= lib_fo && is_dhard(args+2);
   1548         break;
   1549       case args2f:
   1550       case semi2f:
   1551       case t_ldexpf:
   1552       case comparef:
   1553       case args1fc:
   1554       case args1fcr:
   1555         declined |= lib_fo && is_shard(args+0);
   1556         declined |= lib_fo && is_shard(args+2);
   1557         break;
   1558       case args2c:
   1559         declined |= lib_fo && is_dhard(args+0);
   1560         declined |= lib_fo && is_dhard(args+2);
   1561         declined |= lib_fo && is_dhard(args+4);
   1562         declined |= lib_fo && is_dhard(args+6);
   1563         break;
   1564       case args2fc:
   1565         declined |= lib_fo && is_shard(args+0);
   1566         declined |= lib_fo && is_shard(args+2);
   1567         declined |= lib_fo && is_shard(args+4);
   1568         declined |= lib_fo && is_shard(args+6);
   1569         break;
   1570     }
   1571 
   1572     switch (fn->type) {
   1573       case args1:              /* return an extra-precise result */
   1574       case args2:
   1575       case rred:
   1576       case semi1:              /* return a double result */
   1577       case semi2:
   1578       case t_ldexp:
   1579       case t_frexp:            /* return double * int */
   1580       case args1cr:
   1581         declined |= lib_fo && is_dhard(result);
   1582         break;
   1583       case args1f:
   1584       case args2f:
   1585       case rredf:
   1586       case semi1f:
   1587       case semi2f:
   1588       case t_ldexpf:
   1589       case args1fcr:
   1590         declined |= lib_fo && is_shard(result);
   1591         break;
   1592       case t_modf:             /* return double * double */
   1593         declined |= lib_fo && is_dhard(result+0);
   1594         declined |= lib_fo && is_dhard(result+2);
   1595         break;
   1596       case t_modff:                    /* return float * float */
   1597         declined |= lib_fo && is_shard(result+2);
   1598         /* fall through */
   1599       case t_frexpf:                   /* return float * int */
   1600         declined |= lib_fo && is_shard(result+0);
   1601         break;
   1602       case args1c:
   1603       case args2c:
   1604         declined |= lib_fo && is_dhard(result+0);
   1605         declined |= lib_fo && is_dhard(result+4);
   1606         break;
   1607       case args1fc:
   1608       case args2fc:
   1609         declined |= lib_fo && is_shard(result+0);
   1610         declined |= lib_fo && is_shard(result+4);
   1611         break;
   1612     }
   1613 
   1614     /* Expect basic arithmetic tests to be declined if the command
   1615      * line said that would happen */
   1616     declined |= (lib_no_arith && (fn->func == (funcptr)mpc_add ||
   1617                                   fn->func == (funcptr)mpc_sub ||
   1618                                   fn->func == (funcptr)mpc_mul ||
   1619                                   fn->func == (funcptr)mpc_div));
   1620 
   1621     if (!declined) {
   1622         if (got_errno_in)
   1623             ntests++;
   1624         else
   1625             ntests += 3;
   1626     }
   1627 }
   1628 
   1629 void docase(Testable *fn, uint32 *args) {
   1630     uint32 result[8];  /* real part in first 4, imaginary part in last 4 */
   1631     char *errstr = NULL;
   1632     mpfr_t a, b, r;
   1633     mpc_t ac, bc, rc;
   1634     int rejected, printextra;
   1635     wrapperctx ctx;
   1636 
   1637     mpfr_init2(a, MPFR_PREC);
   1638     mpfr_init2(b, MPFR_PREC);
   1639     mpfr_init2(r, MPFR_PREC);
   1640     mpc_init2(ac, MPFR_PREC);
   1641     mpc_init2(bc, MPFR_PREC);
   1642     mpc_init2(rc, MPFR_PREC);
   1643 
   1644     printf("func=%s", fn->name);
   1645 
   1646     rejected = 0; /* FIXME */
   1647 
   1648     switch (fn->type) {
   1649       case args1:
   1650       case rred:
   1651       case semi1:
   1652       case t_frexp:
   1653       case t_modf:
   1654       case classify:
   1655         printf(" op1=%08x.%08x", args[0], args[1]);
   1656         break;
   1657       case args1f:
   1658       case rredf:
   1659       case semi1f:
   1660       case t_frexpf:
   1661       case t_modff:
   1662       case classifyf:
   1663         printf(" op1=%08x", args[0]);
   1664         break;
   1665       case args2:
   1666       case semi2:
   1667       case compare:
   1668         printf(" op1=%08x.%08x", args[0], args[1]);
   1669         printf(" op2=%08x.%08x", args[2], args[3]);
   1670         break;
   1671       case args2f:
   1672       case semi2f:
   1673       case t_ldexpf:
   1674       case comparef:
   1675         printf(" op1=%08x", args[0]);
   1676         printf(" op2=%08x", args[2]);
   1677         break;
   1678       case t_ldexp:
   1679         printf(" op1=%08x.%08x", args[0], args[1]);
   1680         printf(" op2=%08x", args[2]);
   1681         break;
   1682       case args1c:
   1683       case args1cr:
   1684         printf(" op1r=%08x.%08x", args[0], args[1]);
   1685         printf(" op1i=%08x.%08x", args[2], args[3]);
   1686         break;
   1687       case args2c:
   1688         printf(" op1r=%08x.%08x", args[0], args[1]);
   1689         printf(" op1i=%08x.%08x", args[2], args[3]);
   1690         printf(" op2r=%08x.%08x", args[4], args[5]);
   1691         printf(" op2i=%08x.%08x", args[6], args[7]);
   1692         break;
   1693       case args1fc:
   1694       case args1fcr:
   1695         printf(" op1r=%08x", args[0]);
   1696         printf(" op1i=%08x", args[2]);
   1697         break;
   1698       case args2fc:
   1699         printf(" op1r=%08x", args[0]);
   1700         printf(" op1i=%08x", args[2]);
   1701         printf(" op2r=%08x", args[4]);
   1702         printf(" op2i=%08x", args[6]);
   1703         break;
   1704       default:
   1705         fprintf(stderr, "internal inconsistency?!\n");
   1706         abort();
   1707     }
   1708 
   1709     if (rejected == 2) {
   1710         printf(" - test case rejected\n");
   1711         goto cleanup;
   1712     }
   1713 
   1714     wrapper_init(&ctx);
   1715 
   1716     if (rejected == 0) {
   1717         switch (fn->type) {
   1718           case args1:
   1719             set_mpfr_d(a, args[0], args[1]);
   1720             wrapper_op_real(&ctx, a, 2, args);
   1721             ((testfunc1)(fn->func))(r, a, GMP_RNDN);
   1722             get_mpfr_d(r, &result[0], &result[1], &result[2]);
   1723             wrapper_result_real(&ctx, r, 2, result);
   1724             if (wrapper_run(&ctx, fn->wrappers))
   1725                 get_mpfr_d(r, &result[0], &result[1], &result[2]);
   1726             break;
   1727           case args1cr:
   1728             set_mpc_d(ac, args[0], args[1], args[2], args[3]);
   1729             wrapper_op_complex(&ctx, ac, 2, args);
   1730             ((testfunc1cr)(fn->func))(r, ac, GMP_RNDN);
   1731             get_mpfr_d(r, &result[0], &result[1], &result[2]);
   1732             wrapper_result_real(&ctx, r, 2, result);
   1733             if (wrapper_run(&ctx, fn->wrappers))
   1734                 get_mpfr_d(r, &result[0], &result[1], &result[2]);
   1735             break;
   1736           case args1f:
   1737             set_mpfr_f(a, args[0]);
   1738             wrapper_op_real(&ctx, a, 1, args);
   1739             ((testfunc1)(fn->func))(r, a, GMP_RNDN);
   1740             get_mpfr_f(r, &result[0], &result[1]);
   1741             wrapper_result_real(&ctx, r, 1, result);
   1742             if (wrapper_run(&ctx, fn->wrappers))
   1743                 get_mpfr_f(r, &result[0], &result[1]);
   1744             break;
   1745           case args1fcr:
   1746             set_mpc_f(ac, args[0], args[2]);
   1747             wrapper_op_complex(&ctx, ac, 1, args);
   1748             ((testfunc1cr)(fn->func))(r, ac, GMP_RNDN);
   1749             get_mpfr_f(r, &result[0], &result[1]);
   1750             wrapper_result_real(&ctx, r, 1, result);
   1751             if (wrapper_run(&ctx, fn->wrappers))
   1752                 get_mpfr_f(r, &result[0], &result[1]);
   1753             break;
   1754           case args2:
   1755             set_mpfr_d(a, args[0], args[1]);
   1756             wrapper_op_real(&ctx, a, 2, args);
   1757             set_mpfr_d(b, args[2], args[3]);
   1758             wrapper_op_real(&ctx, b, 2, args+2);
   1759             ((testfunc2)(fn->func))(r, a, b, GMP_RNDN);
   1760             get_mpfr_d(r, &result[0], &result[1], &result[2]);
   1761             wrapper_result_real(&ctx, r, 2, result);
   1762             if (wrapper_run(&ctx, fn->wrappers))
   1763                 get_mpfr_d(r, &result[0], &result[1], &result[2]);
   1764             break;
   1765           case args2f:
   1766             set_mpfr_f(a, args[0]);
   1767             wrapper_op_real(&ctx, a, 1, args);
   1768             set_mpfr_f(b, args[2]);
   1769             wrapper_op_real(&ctx, b, 1, args+2);
   1770             ((testfunc2)(fn->func))(r, a, b, GMP_RNDN);
   1771             get_mpfr_f(r, &result[0], &result[1]);
   1772             wrapper_result_real(&ctx, r, 1, result);
   1773             if (wrapper_run(&ctx, fn->wrappers))
   1774                 get_mpfr_f(r, &result[0], &result[1]);
   1775             break;
   1776           case rred:
   1777             set_mpfr_d(a, args[0], args[1]);
   1778             wrapper_op_real(&ctx, a, 2, args);
   1779             ((testrred)(fn->func))(r, a, (int *)&result[3]);
   1780             get_mpfr_d(r, &result[0], &result[1], &result[2]);
   1781             wrapper_result_real(&ctx, r, 2, result);
   1782             /* We never need to mess about with the integer auxiliary
   1783              * output. */
   1784             if (wrapper_run(&ctx, fn->wrappers))
   1785                 get_mpfr_d(r, &result[0], &result[1], &result[2]);
   1786             break;
   1787           case rredf:
   1788             set_mpfr_f(a, args[0]);
   1789             wrapper_op_real(&ctx, a, 1, args);
   1790             ((testrred)(fn->func))(r, a, (int *)&result[3]);
   1791             get_mpfr_f(r, &result[0], &result[1]);
   1792             wrapper_result_real(&ctx, r, 1, result);
   1793             /* We never need to mess about with the integer auxiliary
   1794              * output. */
   1795             if (wrapper_run(&ctx, fn->wrappers))
   1796                 get_mpfr_f(r, &result[0], &result[1]);
   1797             break;
   1798           case semi1:
   1799           case semi1f:
   1800             errstr = ((testsemi1)(fn->func))(args, result);
   1801             break;
   1802           case semi2:
   1803           case compare:
   1804             errstr = ((testsemi2)(fn->func))(args, args+2, result);
   1805             break;
   1806           case semi2f:
   1807           case comparef:
   1808           case t_ldexpf:
   1809             errstr = ((testsemi2f)(fn->func))(args, args+2, result);
   1810             break;
   1811           case t_ldexp:
   1812             errstr = ((testldexp)(fn->func))(args, args+2, result);
   1813             break;
   1814           case t_frexp:
   1815             errstr = ((testfrexp)(fn->func))(args, result, result+2);
   1816             break;
   1817           case t_frexpf:
   1818             errstr = ((testfrexp)(fn->func))(args, result, result+2);
   1819             break;
   1820           case t_modf:
   1821             errstr = ((testmodf)(fn->func))(args, result, result+2);
   1822             break;
   1823           case t_modff:
   1824             errstr = ((testmodf)(fn->func))(args, result, result+2);
   1825             break;
   1826           case classify:
   1827             errstr = ((testclassify)(fn->func))(args, &result[0]);
   1828             break;
   1829           case classifyf:
   1830             errstr = ((testclassifyf)(fn->func))(args, &result[0]);
   1831             break;
   1832           case args1c:
   1833             set_mpc_d(ac, args[0], args[1], args[2], args[3]);
   1834             wrapper_op_complex(&ctx, ac, 2, args);
   1835             ((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN);
   1836             get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
   1837             wrapper_result_complex(&ctx, rc, 2, result);
   1838             if (wrapper_run(&ctx, fn->wrappers))
   1839                 get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
   1840             break;
   1841           case args2c:
   1842             set_mpc_d(ac, args[0], args[1], args[2], args[3]);
   1843             wrapper_op_complex(&ctx, ac, 2, args);
   1844             set_mpc_d(bc, args[4], args[5], args[6], args[7]);
   1845             wrapper_op_complex(&ctx, bc, 2, args+4);
   1846             ((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN);
   1847             get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
   1848             wrapper_result_complex(&ctx, rc, 2, result);
   1849             if (wrapper_run(&ctx, fn->wrappers))
   1850                 get_mpc_d(rc, &result[0], &result[1], &result[2], &result[4], &result[5], &result[6]);
   1851             break;
   1852           case args1fc:
   1853             set_mpc_f(ac, args[0], args[2]);
   1854             wrapper_op_complex(&ctx, ac, 1, args);
   1855             ((testfunc1c)(fn->func))(rc, ac, MPC_RNDNN);
   1856             get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
   1857             wrapper_result_complex(&ctx, rc, 1, result);
   1858             if (wrapper_run(&ctx, fn->wrappers))
   1859                 get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
   1860             break;
   1861           case args2fc:
   1862             set_mpc_f(ac, args[0], args[2]);
   1863             wrapper_op_complex(&ctx, ac, 1, args);
   1864             set_mpc_f(bc, args[4], args[6]);
   1865             wrapper_op_complex(&ctx, bc, 1, args+4);
   1866             ((testfunc2c)(fn->func))(rc, ac, bc, MPC_RNDNN);
   1867             get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
   1868             wrapper_result_complex(&ctx, rc, 1, result);
   1869             if (wrapper_run(&ctx, fn->wrappers))
   1870                 get_mpc_f(rc, &result[0], &result[1], &result[4], &result[5]);
   1871             break;
   1872           default:
   1873             fprintf(stderr, "internal inconsistency?!\n");
   1874             abort();
   1875         }
   1876     }
   1877 
   1878     switch (fn->type) {
   1879       case args1:              /* return an extra-precise result */
   1880       case args2:
   1881       case args1cr:
   1882       case rred:
   1883         printextra = 1;
   1884         if (rejected == 0) {
   1885             errstr = NULL;
   1886             if (!mpfr_zero_p(a)) {
   1887                 if ((result[0] & 0x7FFFFFFF) == 0 && result[1] == 0) {
   1888                     /*
   1889                      * If the output is +0 or -0 apart from the extra
   1890                      * precision in result[2], then there's a tricky
   1891                      * judgment call about what we require in the
   1892                      * output. If we output the extra bits and set
   1893                      * errstr="?underflow" then mathtest will tolerate
   1894                      * the function under test rounding down to zero
   1895                      * _or_ up to the minimum denormal; whereas if we
   1896                      * suppress the extra bits and set
   1897                      * errstr="underflow", then mathtest will enforce
   1898                      * that the function really does underflow to zero.
   1899                      *
   1900                      * But where to draw the line? It seems clear to
   1901                      * me that numbers along the lines of
   1902                      * 00000000.00000000.7ff should be treated
   1903                      * similarly to 00000000.00000000.801, but on the
   1904                      * other hand, we must surely be prepared to
   1905                      * enforce a genuine underflow-to-zero in _some_
   1906                      * case where the true mathematical output is
   1907                      * nonzero but absurdly tiny.
   1908                      *
   1909                      * I think a reasonable place to draw the
   1910                      * distinction is at 00000000.00000000.400, i.e.
   1911                      * one quarter of the minimum positive denormal.
   1912                      * If a value less than that rounds up to the
   1913                      * minimum denormal, that must mean the function
   1914                      * under test has managed to make an error of an
   1915                      * entire factor of two, and that's something we
   1916                      * should fix. Above that, you can misround within
   1917                      * the limits of your accuracy bound if you have
   1918                      * to.
   1919                      */
   1920                     if (result[2] < 0x40000000) {
   1921                         /* Total underflow (ERANGE + UFL) is required,
   1922                          * and we suppress the extra bits to make
   1923                          * mathtest enforce that the output is really
   1924                          * zero. */
   1925                         errstr = "underflow";
   1926                         printextra = 0;
   1927                     } else {
   1928                         /* Total underflow is not required, but if the
   1929                          * function rounds down to zero anyway, then
   1930                          * we should be prepared to tolerate it. */
   1931                         errstr = "?underflow";
   1932                     }
   1933                 } else if (!(result[0] & 0x7ff00000)) {
   1934                     /*
   1935                      * If the output is denormal, we usually expect a
   1936                      * UFL exception, warning the user of partial
   1937                      * underflow. The exception is if the denormal
   1938                      * being returned is just one of the input values,
   1939                      * unchanged even in principle. I bodgily handle
   1940                      * this by just special-casing the functions in
   1941                      * question below.
   1942                      */
   1943                     if (!strcmp(fn->name, "fmax") ||
   1944                         !strcmp(fn->name, "fmin") ||
   1945                         !strcmp(fn->name, "creal") ||
   1946                         !strcmp(fn->name, "cimag")) {
   1947                         /* no error expected */
   1948                     } else {
   1949                         errstr = "u";
   1950                     }
   1951                 } else if ((result[0] & 0x7FFFFFFF) > 0x7FEFFFFF) {
   1952                     /*
   1953                      * Infinite results are usually due to overflow,
   1954                      * but one exception is lgamma of a negative
   1955                      * integer.
   1956                      */
   1957                     if (!strcmp(fn->name, "lgamma") &&
   1958                         (args[0] & 0x80000000) != 0 && /* negative */
   1959                         is_dinteger(args)) {
   1960                         errstr = "ERANGE status=z";
   1961                     } else {
   1962                         errstr = "overflow";
   1963                     }
   1964                     printextra = 0;
   1965                 }
   1966             } else {
   1967                 /* lgamma(0) is also a pole. */
   1968                 if (!strcmp(fn->name, "lgamma")) {
   1969                     errstr = "ERANGE status=z";
   1970                     printextra = 0;
   1971                 }
   1972             }
   1973         }
   1974 
   1975         if (!printextra || (rejected && !(rejected==1 && result[2]!=0))) {
   1976             printf(" result=%08x.%08x",
   1977                    result[0], result[1]);
   1978         } else {
   1979             printf(" result=%08x.%08x.%03x",
   1980                    result[0], result[1], (result[2] >> 20) & 0xFFF);
   1981         }
   1982         if (fn->type == rred) {
   1983             printf(" res2=%08x", result[3]);
   1984         }
   1985         break;
   1986       case args1f:
   1987       case args2f:
   1988       case args1fcr:
   1989       case rredf:
   1990         printextra = 1;
   1991         if (rejected == 0) {
   1992             errstr = NULL;
   1993             if (!mpfr_zero_p(a)) {
   1994                 if ((result[0] & 0x7FFFFFFF) == 0) {
   1995                     /*
   1996                      * Decide whether to print the extra bits based on
   1997                      * just how close to zero the number is. See the
   1998                      * big comment in the double-precision case for
   1999                      * discussion.
   2000                      */
   2001                     if (result[1] < 0x40000000) {
   2002                         errstr = "underflow";
   2003                         printextra = 0;
   2004                     } else {
   2005                         errstr = "?underflow";
   2006                     }
   2007                 } else if (!(result[0] & 0x7f800000)) {
   2008                     /*
   2009                      * Functions which do not report partial overflow
   2010                      * are listed here as special cases. (See the
   2011                      * corresponding double case above for a fuller
   2012                      * comment.)
   2013                      */
   2014                     if (!strcmp(fn->name, "fmaxf") ||
   2015                         !strcmp(fn->name, "fminf") ||
   2016                         !strcmp(fn->name, "crealf") ||
   2017                         !strcmp(fn->name, "cimagf")) {
   2018                         /* no error expected */
   2019                     } else {
   2020                         errstr = "u";
   2021                     }
   2022                 } else if ((result[0] & 0x7FFFFFFF) > 0x7F7FFFFF) {
   2023                     /*
   2024                      * Infinite results are usually due to overflow,
   2025                      * but one exception is lgamma of a negative
   2026                      * integer.
   2027                      */
   2028                     if (!strcmp(fn->name, "lgammaf") &&
   2029                         (args[0] & 0x80000000) != 0 && /* negative */
   2030                         is_sinteger(args)) {
   2031                         errstr = "ERANGE status=z";
   2032                     } else {
   2033                         errstr = "overflow";
   2034                     }
   2035                     printextra = 0;
   2036                 }
   2037             } else {
   2038                 /* lgamma(0) is also a pole. */
   2039                 if (!strcmp(fn->name, "lgammaf")) {
   2040                     errstr = "ERANGE status=z";
   2041                     printextra = 0;
   2042                 }
   2043             }
   2044         }
   2045 
   2046         if (!printextra || (rejected && !(rejected==1 && result[1]!=0))) {
   2047             printf(" result=%08x",
   2048                    result[0]);
   2049         } else {
   2050             printf(" result=%08x.%03x",
   2051                    result[0], (result[1] >> 20) & 0xFFF);
   2052         }
   2053         if (fn->type == rredf) {
   2054             printf(" res2=%08x", result[3]);
   2055         }
   2056         break;
   2057       case semi1:              /* return a double result */
   2058       case semi2:
   2059       case t_ldexp:
   2060         printf(" result=%08x.%08x", result[0], result[1]);
   2061         break;
   2062       case semi1f:
   2063       case semi2f:
   2064       case t_ldexpf:
   2065         printf(" result=%08x", result[0]);
   2066         break;
   2067       case t_frexp:            /* return double * int */
   2068         printf(" result=%08x.%08x res2=%08x", result[0], result[1],
   2069                result[2]);
   2070         break;
   2071       case t_modf:             /* return double * double */
   2072         printf(" result=%08x.%08x res2=%08x.%08x",
   2073                result[0], result[1], result[2], result[3]);
   2074         break;
   2075       case t_modff:                    /* return float * float */
   2076         /* fall through */
   2077       case t_frexpf:                   /* return float * int */
   2078         printf(" result=%08x res2=%08x", result[0], result[2]);
   2079         break;
   2080       case classify:
   2081       case classifyf:
   2082       case compare:
   2083       case comparef:
   2084         printf(" result=%x", result[0]);
   2085         break;
   2086       case args1c:
   2087       case args2c:
   2088         if (0/* errstr */) {
   2089             printf(" resultr=%08x.%08x", result[0], result[1]);
   2090             printf(" resulti=%08x.%08x", result[4], result[5]);
   2091         } else {
   2092             printf(" resultr=%08x.%08x.%03x",
   2093                    result[0], result[1], (result[2] >> 20) & 0xFFF);
   2094             printf(" resulti=%08x.%08x.%03x",
   2095                    result[4], result[5], (result[6] >> 20) & 0xFFF);
   2096         }
   2097         /* Underflow behaviour doesn't seem to be specified for complex arithmetic */
   2098         errstr = "?underflow";
   2099         break;
   2100       case args1fc:
   2101       case args2fc:
   2102         if (0/* errstr */) {
   2103             printf(" resultr=%08x", result[0]);
   2104             printf(" resulti=%08x", result[4]);
   2105         } else {
   2106             printf(" resultr=%08x.%03x",
   2107                    result[0], (result[1] >> 20) & 0xFFF);
   2108             printf(" resulti=%08x.%03x",
   2109                    result[4], (result[5] >> 20) & 0xFFF);
   2110         }
   2111         /* Underflow behaviour doesn't seem to be specified for complex arithmetic */
   2112         errstr = "?underflow";
   2113         break;
   2114     }
   2115 
   2116     if (errstr && *(errstr+1) == '\0') {
   2117         printf(" errno=0 status=%c",*errstr);
   2118     } else if (errstr && *errstr == '?') {
   2119         printf(" maybeerror=%s", errstr+1);
   2120     } else if (errstr && errstr[0] == 'E') {
   2121         printf(" errno=%s", errstr);
   2122     } else {
   2123         printf(" error=%s", errstr && *errstr ? errstr : "0");
   2124     }
   2125 
   2126     printf("\n");
   2127 
   2128     vet_for_decline(fn, args, result, 0);
   2129 
   2130   cleanup:
   2131     mpfr_clear(a);
   2132     mpfr_clear(b);
   2133     mpfr_clear(r);
   2134     mpc_clear(ac);
   2135     mpc_clear(bc);
   2136     mpc_clear(rc);
   2137 }
   2138 
   2139 void gencases(Testable *fn, int number) {
   2140     int i;
   2141     uint32 args[8];
   2142 
   2143     float32_case(NULL);
   2144     float64_case(NULL);
   2145 
   2146     printf("random=on\n"); /* signal to runtests.pl that the following tests are randomly generated */
   2147     for (i = 0; i < number; i++) {
   2148         /* generate test point */
   2149         fn->cases(args, fn->caseparam1, fn->caseparam2);
   2150         docase(fn, args);
   2151     }
   2152     printf("random=off\n");
   2153 }
   2154 
   2155 static uint32 doubletop(int x, int scale) {
   2156     int e = 0x412 + scale;
   2157     while (!(x & 0x100000))
   2158         x <<= 1, e--;
   2159     return (e << 20) + x;
   2160 }
   2161 
   2162 static uint32 floatval(int x, int scale) {
   2163     int e = 0x95 + scale;
   2164     while (!(x & 0x800000))
   2165         x <<= 1, e--;
   2166     return (e << 23) + x;
   2167 }
   2168