Home | History | Annotate | Download | only in openssl
      1 /* Copyright (c) 2014, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 #ifndef OPENSSL_HEADER_AEAD_H
     16 #define OPENSSL_HEADER_AEAD_H
     17 
     18 #include <openssl/base.h>
     19 
     20 #if defined(__cplusplus)
     21 extern "C" {
     22 #endif
     23 
     24 
     25 // Authenticated Encryption with Additional Data.
     26 //
     27 // AEAD couples confidentiality and integrity in a single primitive. AEAD
     28 // algorithms take a key and then can seal and open individual messages. Each
     29 // message has a unique, per-message nonce and, optionally, additional data
     30 // which is authenticated but not included in the ciphertext.
     31 //
     32 // The |EVP_AEAD_CTX_init| function initialises an |EVP_AEAD_CTX| structure and
     33 // performs any precomputation needed to use |aead| with |key|. The length of
     34 // the key, |key_len|, is given in bytes.
     35 //
     36 // The |tag_len| argument contains the length of the tags, in bytes, and allows
     37 // for the processing of truncated authenticators. A zero value indicates that
     38 // the default tag length should be used and this is defined as
     39 // |EVP_AEAD_DEFAULT_TAG_LENGTH| in order to make the code clear. Using
     40 // truncated tags increases an attacker's chance of creating a valid forgery.
     41 // Be aware that the attacker's chance may increase more than exponentially as
     42 // would naively be expected.
     43 //
     44 // When no longer needed, the initialised |EVP_AEAD_CTX| structure must be
     45 // passed to |EVP_AEAD_CTX_cleanup|, which will deallocate any memory used.
     46 //
     47 // With an |EVP_AEAD_CTX| in hand, one can seal and open messages. These
     48 // operations are intended to meet the standard notions of privacy and
     49 // authenticity for authenticated encryption. For formal definitions see
     50 // Bellare and Namprempre, "Authenticated encryption: relations among notions
     51 // and analysis of the generic composition paradigm," Lecture Notes in Computer
     52 // Science B<1976> (2000), 531545,
     53 // http://www-cse.ucsd.edu/~mihir/papers/oem.html.
     54 //
     55 // When sealing messages, a nonce must be given. The length of the nonce is
     56 // fixed by the AEAD in use and is returned by |EVP_AEAD_nonce_length|. *The
     57 // nonce must be unique for all messages with the same key*. This is critically
     58 // important - nonce reuse may completely undermine the security of the AEAD.
     59 // Nonces may be predictable and public, so long as they are unique. Uniqueness
     60 // may be achieved with a simple counter or, if large enough, may be generated
     61 // randomly. The nonce must be passed into the "open" operation by the receiver
     62 // so must either be implicit (e.g. a counter), or must be transmitted along
     63 // with the sealed message.
     64 //
     65 // The "seal" and "open" operations are atomic - an entire message must be
     66 // encrypted or decrypted in a single call. Large messages may have to be split
     67 // up in order to accommodate this. When doing so, be mindful of the need not to
     68 // repeat nonces and the possibility that an attacker could duplicate, reorder
     69 // or drop message chunks. For example, using a single key for a given (large)
     70 // message and sealing chunks with nonces counting from zero would be secure as
     71 // long as the number of chunks was securely transmitted. (Otherwise an
     72 // attacker could truncate the message by dropping chunks from the end.)
     73 //
     74 // The number of chunks could be transmitted by prefixing it to the plaintext,
     75 // for example. This also assumes that no other message would ever use the same
     76 // key otherwise the rule that nonces must be unique for a given key would be
     77 // violated.
     78 //
     79 // The "seal" and "open" operations also permit additional data to be
     80 // authenticated via the |ad| parameter. This data is not included in the
     81 // ciphertext and must be identical for both the "seal" and "open" call. This
     82 // permits implicit context to be authenticated but may be empty if not needed.
     83 //
     84 // The "seal" and "open" operations may work in-place if the |out| and |in|
     85 // arguments are equal. Otherwise, if |out| and |in| alias, input data may be
     86 // overwritten before it is read. This situation will cause an error.
     87 //
     88 // The "seal" and "open" operations return one on success and zero on error.
     89 
     90 
     91 // AEAD algorithms.
     92 
     93 // EVP_aead_aes_128_gcm is AES-128 in Galois Counter Mode.
     94 //
     95 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
     96 // is specified to take a variable-length nonce, nonces with other lengths are
     97 // effectively randomized, which means one must consider collisions. Unless
     98 // implementing an existing protocol which has already specified incorrect
     99 // parameters, only use 12-byte nonces.
    100 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm(void);
    101 
    102 // EVP_aead_aes_256_gcm is AES-256 in Galois Counter Mode.
    103 //
    104 // Note: AES-GCM should only be used with 12-byte (96-bit) nonces. Although it
    105 // is specified to take a variable-length nonce, nonces with other lengths are
    106 // effectively randomized, which means one must consider collisions. Unless
    107 // implementing an existing protocol which has already specified incorrect
    108 // parameters, only use 12-byte nonces.
    109 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm(void);
    110 
    111 // EVP_aead_chacha20_poly1305 is the AEAD built from ChaCha20 and
    112 // Poly1305 as described in RFC 7539.
    113 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_chacha20_poly1305(void);
    114 
    115 // EVP_aead_xchacha20_poly1305 is ChaCha20-Poly1305 with an extended nonce that
    116 // makes random generation of nonces safe.
    117 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_xchacha20_poly1305(void);
    118 
    119 // EVP_aead_aes_128_ctr_hmac_sha256 is AES-128 in CTR mode with HMAC-SHA256 for
    120 // authentication. The nonce is 12 bytes; the bottom 32-bits are used as the
    121 // block counter, thus the maximum plaintext size is 64GB.
    122 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ctr_hmac_sha256(void);
    123 
    124 // EVP_aead_aes_256_ctr_hmac_sha256 is AES-256 in CTR mode with HMAC-SHA256 for
    125 // authentication. See |EVP_aead_aes_128_ctr_hmac_sha256| for details.
    126 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_ctr_hmac_sha256(void);
    127 
    128 // EVP_aead_aes_128_gcm_siv is AES-128 in GCM-SIV mode. See
    129 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
    130 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void);
    131 
    132 // EVP_aead_aes_256_gcm_siv is AES-256 in GCM-SIV mode. See
    133 // https://tools.ietf.org/html/draft-irtf-cfrg-gcmsiv-02
    134 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void);
    135 
    136 // EVP_aead_aes_128_ccm_bluetooth is AES-128-CCM with M=4 and L=2 (4-byte tags
    137 // and 13-byte nonces), as decribed in the Bluetooth Core Specification v5.0,
    138 // Volume 6, Part E, Section 1.
    139 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth(void);
    140 
    141 // EVP_aead_aes_128_ccm_bluetooth_8 is AES-128-CCM with M=8 and L=2 (8-byte tags
    142 // and 13-byte nonces), as used in the Bluetooth Mesh Networking Specification
    143 // v1.0.
    144 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_ccm_bluetooth_8(void);
    145 
    146 // EVP_has_aes_hardware returns one if we enable hardware support for fast and
    147 // constant-time AES-GCM.
    148 OPENSSL_EXPORT int EVP_has_aes_hardware(void);
    149 
    150 
    151 // Utility functions.
    152 
    153 // EVP_AEAD_key_length returns the length, in bytes, of the keys used by
    154 // |aead|.
    155 OPENSSL_EXPORT size_t EVP_AEAD_key_length(const EVP_AEAD *aead);
    156 
    157 // EVP_AEAD_nonce_length returns the length, in bytes, of the per-message nonce
    158 // for |aead|.
    159 OPENSSL_EXPORT size_t EVP_AEAD_nonce_length(const EVP_AEAD *aead);
    160 
    161 // EVP_AEAD_max_overhead returns the maximum number of additional bytes added
    162 // by the act of sealing data with |aead|.
    163 OPENSSL_EXPORT size_t EVP_AEAD_max_overhead(const EVP_AEAD *aead);
    164 
    165 // EVP_AEAD_max_tag_len returns the maximum tag length when using |aead|. This
    166 // is the largest value that can be passed as |tag_len| to
    167 // |EVP_AEAD_CTX_init|.
    168 OPENSSL_EXPORT size_t EVP_AEAD_max_tag_len(const EVP_AEAD *aead);
    169 
    170 
    171 // AEAD operations.
    172 
    173 union evp_aead_ctx_st_state {
    174   uint8_t opaque[580];
    175   uint64_t alignment;
    176 };
    177 
    178 // An EVP_AEAD_CTX represents an AEAD algorithm configured with a specific key
    179 // and message-independent IV.
    180 typedef struct evp_aead_ctx_st {
    181   const EVP_AEAD *aead;
    182   union evp_aead_ctx_st_state state;
    183   // tag_len may contain the actual length of the authentication tag if it is
    184   // known at initialization time.
    185   uint8_t tag_len;
    186 } EVP_AEAD_CTX;
    187 
    188 // EVP_AEAD_MAX_KEY_LENGTH contains the maximum key length used by
    189 // any AEAD defined in this header.
    190 #define EVP_AEAD_MAX_KEY_LENGTH 80
    191 
    192 // EVP_AEAD_MAX_NONCE_LENGTH contains the maximum nonce length used by
    193 // any AEAD defined in this header.
    194 #define EVP_AEAD_MAX_NONCE_LENGTH 24
    195 
    196 // EVP_AEAD_MAX_OVERHEAD contains the maximum overhead used by any AEAD
    197 // defined in this header.
    198 #define EVP_AEAD_MAX_OVERHEAD 64
    199 
    200 // EVP_AEAD_DEFAULT_TAG_LENGTH is a magic value that can be passed to
    201 // EVP_AEAD_CTX_init to indicate that the default tag length for an AEAD should
    202 // be used.
    203 #define EVP_AEAD_DEFAULT_TAG_LENGTH 0
    204 
    205 // EVP_AEAD_CTX_zero sets an uninitialized |ctx| to the zero state. It must be
    206 // initialized with |EVP_AEAD_CTX_init| before use. It is safe, but not
    207 // necessary, to call |EVP_AEAD_CTX_cleanup| in this state. This may be used for
    208 // more uniform cleanup of |EVP_AEAD_CTX|.
    209 OPENSSL_EXPORT void EVP_AEAD_CTX_zero(EVP_AEAD_CTX *ctx);
    210 
    211 // EVP_AEAD_CTX_new allocates an |EVP_AEAD_CTX|, calls |EVP_AEAD_CTX_init| and
    212 // returns the |EVP_AEAD_CTX|, or NULL on error.
    213 OPENSSL_EXPORT EVP_AEAD_CTX *EVP_AEAD_CTX_new(const EVP_AEAD *aead,
    214                                               const uint8_t *key,
    215                                               size_t key_len, size_t tag_len);
    216 
    217 // EVP_AEAD_CTX_free calls |EVP_AEAD_CTX_cleanup| and |OPENSSL_free| on
    218 // |ctx|.
    219 OPENSSL_EXPORT void EVP_AEAD_CTX_free(EVP_AEAD_CTX *ctx);
    220 
    221 // EVP_AEAD_CTX_init initializes |ctx| for the given AEAD algorithm. The |impl|
    222 // argument is ignored and should be NULL. Authentication tags may be truncated
    223 // by passing a size as |tag_len|. A |tag_len| of zero indicates the default
    224 // tag length and this is defined as EVP_AEAD_DEFAULT_TAG_LENGTH for
    225 // readability.
    226 //
    227 // Returns 1 on success. Otherwise returns 0 and pushes to the error stack. In
    228 // the error case, you do not need to call |EVP_AEAD_CTX_cleanup|, but it's
    229 // harmless to do so.
    230 OPENSSL_EXPORT int EVP_AEAD_CTX_init(EVP_AEAD_CTX *ctx, const EVP_AEAD *aead,
    231                                      const uint8_t *key, size_t key_len,
    232                                      size_t tag_len, ENGINE *impl);
    233 
    234 // EVP_AEAD_CTX_cleanup frees any data allocated by |ctx|. It is a no-op to
    235 // call |EVP_AEAD_CTX_cleanup| on a |EVP_AEAD_CTX| that has been |memset| to
    236 // all zeros.
    237 OPENSSL_EXPORT void EVP_AEAD_CTX_cleanup(EVP_AEAD_CTX *ctx);
    238 
    239 // EVP_AEAD_CTX_seal encrypts and authenticates |in_len| bytes from |in| and
    240 // authenticates |ad_len| bytes from |ad| and writes the result to |out|. It
    241 // returns one on success and zero otherwise.
    242 //
    243 // This function may be called concurrently with itself or any other seal/open
    244 // function on the same |EVP_AEAD_CTX|.
    245 //
    246 // At most |max_out_len| bytes are written to |out| and, in order to ensure
    247 // success, |max_out_len| should be |in_len| plus the result of
    248 // |EVP_AEAD_max_overhead|. On successful return, |*out_len| is set to the
    249 // actual number of bytes written.
    250 //
    251 // The length of |nonce|, |nonce_len|, must be equal to the result of
    252 // |EVP_AEAD_nonce_length| for this AEAD.
    253 //
    254 // |EVP_AEAD_CTX_seal| never results in a partial output. If |max_out_len| is
    255 // insufficient, zero will be returned. If any error occurs, |out| will be
    256 // filled with zero bytes and |*out_len| set to zero.
    257 //
    258 // If |in| and |out| alias then |out| must be == |in|.
    259 OPENSSL_EXPORT int EVP_AEAD_CTX_seal(const EVP_AEAD_CTX *ctx, uint8_t *out,
    260                                      size_t *out_len, size_t max_out_len,
    261                                      const uint8_t *nonce, size_t nonce_len,
    262                                      const uint8_t *in, size_t in_len,
    263                                      const uint8_t *ad, size_t ad_len);
    264 
    265 // EVP_AEAD_CTX_open authenticates |in_len| bytes from |in| and |ad_len| bytes
    266 // from |ad| and decrypts at most |in_len| bytes into |out|. It returns one on
    267 // success and zero otherwise.
    268 //
    269 // This function may be called concurrently with itself or any other seal/open
    270 // function on the same |EVP_AEAD_CTX|.
    271 //
    272 // At most |in_len| bytes are written to |out|. In order to ensure success,
    273 // |max_out_len| should be at least |in_len|. On successful return, |*out_len|
    274 // is set to the the actual number of bytes written.
    275 //
    276 // The length of |nonce|, |nonce_len|, must be equal to the result of
    277 // |EVP_AEAD_nonce_length| for this AEAD.
    278 //
    279 // |EVP_AEAD_CTX_open| never results in a partial output. If |max_out_len| is
    280 // insufficient, zero will be returned. If any error occurs, |out| will be
    281 // filled with zero bytes and |*out_len| set to zero.
    282 //
    283 // If |in| and |out| alias then |out| must be == |in|.
    284 OPENSSL_EXPORT int EVP_AEAD_CTX_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
    285                                      size_t *out_len, size_t max_out_len,
    286                                      const uint8_t *nonce, size_t nonce_len,
    287                                      const uint8_t *in, size_t in_len,
    288                                      const uint8_t *ad, size_t ad_len);
    289 
    290 // EVP_AEAD_CTX_seal_scatter encrypts and authenticates |in_len| bytes from |in|
    291 // and authenticates |ad_len| bytes from |ad|. It writes |in_len| bytes of
    292 // ciphertext to |out| and the authentication tag to |out_tag|. It returns one
    293 // on success and zero otherwise.
    294 //
    295 // This function may be called concurrently with itself or any other seal/open
    296 // function on the same |EVP_AEAD_CTX|.
    297 //
    298 // Exactly |in_len| bytes are written to |out|, and up to
    299 // |EVP_AEAD_max_overhead+extra_in_len| bytes to |out_tag|. On successful
    300 // return, |*out_tag_len| is set to the actual number of bytes written to
    301 // |out_tag|.
    302 //
    303 // |extra_in| may point to an additional plaintext input buffer if the cipher
    304 // supports it. If present, |extra_in_len| additional bytes of plaintext are
    305 // encrypted and authenticated, and the ciphertext is written (before the tag)
    306 // to |out_tag|. |max_out_tag_len| must be sized to allow for the additional
    307 // |extra_in_len| bytes.
    308 //
    309 // The length of |nonce|, |nonce_len|, must be equal to the result of
    310 // |EVP_AEAD_nonce_length| for this AEAD.
    311 //
    312 // |EVP_AEAD_CTX_seal_scatter| never results in a partial output. If
    313 // |max_out_tag_len| is insufficient, zero will be returned. If any error
    314 // occurs, |out| and |out_tag| will be filled with zero bytes and |*out_tag_len|
    315 // set to zero.
    316 //
    317 // If |in| and |out| alias then |out| must be == |in|. |out_tag| may not alias
    318 // any other argument.
    319 OPENSSL_EXPORT int EVP_AEAD_CTX_seal_scatter(
    320     const EVP_AEAD_CTX *ctx, uint8_t *out,
    321     uint8_t *out_tag, size_t *out_tag_len, size_t max_out_tag_len,
    322     const uint8_t *nonce, size_t nonce_len,
    323     const uint8_t *in, size_t in_len,
    324     const uint8_t *extra_in, size_t extra_in_len,
    325     const uint8_t *ad, size_t ad_len);
    326 
    327 // EVP_AEAD_CTX_open_gather decrypts and authenticates |in_len| bytes from |in|
    328 // and authenticates |ad_len| bytes from |ad| using |in_tag_len| bytes of
    329 // authentication tag from |in_tag|. If successful, it writes |in_len| bytes of
    330 // plaintext to |out|. It returns one on success and zero otherwise.
    331 //
    332 // This function may be called concurrently with itself or any other seal/open
    333 // function on the same |EVP_AEAD_CTX|.
    334 //
    335 // The length of |nonce|, |nonce_len|, must be equal to the result of
    336 // |EVP_AEAD_nonce_length| for this AEAD.
    337 //
    338 // |EVP_AEAD_CTX_open_gather| never results in a partial output. If any error
    339 // occurs, |out| will be filled with zero bytes.
    340 //
    341 // If |in| and |out| alias then |out| must be == |in|.
    342 OPENSSL_EXPORT int EVP_AEAD_CTX_open_gather(
    343     const EVP_AEAD_CTX *ctx, uint8_t *out, const uint8_t *nonce,
    344     size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *in_tag,
    345     size_t in_tag_len, const uint8_t *ad, size_t ad_len);
    346 
    347 // EVP_AEAD_CTX_aead returns the underlying AEAD for |ctx|, or NULL if one has
    348 // not been set.
    349 OPENSSL_EXPORT const EVP_AEAD *EVP_AEAD_CTX_aead(const EVP_AEAD_CTX *ctx);
    350 
    351 
    352 // TLS-specific AEAD algorithms.
    353 //
    354 // These AEAD primitives do not meet the definition of generic AEADs. They are
    355 // all specific to TLS and should not be used outside of that context. They must
    356 // be initialized with |EVP_AEAD_CTX_init_with_direction|, are stateful, and may
    357 // not be used concurrently. Any nonces are used as IVs, so they must be
    358 // unpredictable. They only accept an |ad| parameter of length 11 (the standard
    359 // TLS one with length omitted).
    360 
    361 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls(void);
    362 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha1_tls_implicit_iv(void);
    363 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_cbc_sha256_tls(void);
    364 
    365 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls(void);
    366 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha1_tls_implicit_iv(void);
    367 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha256_tls(void);
    368 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_cbc_sha384_tls(void);
    369 
    370 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls(void);
    371 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv(void);
    372 
    373 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_null_sha1_tls(void);
    374 
    375 // EVP_aead_aes_128_gcm_tls12 is AES-128 in Galois Counter Mode using the TLS
    376 // 1.2 nonce construction.
    377 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls12(void);
    378 
    379 // EVP_aead_aes_256_gcm_tls12 is AES-256 in Galois Counter Mode using the TLS
    380 // 1.2 nonce construction.
    381 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls12(void);
    382 
    383 // EVP_aead_aes_128_gcm_tls13 is AES-128 in Galois Counter Mode using the TLS
    384 // 1.3 nonce construction.
    385 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_128_gcm_tls13(void);
    386 
    387 // EVP_aead_aes_256_gcm_tls13 is AES-256 in Galois Counter Mode using the TLS
    388 // 1.3 nonce construction.
    389 OPENSSL_EXPORT const EVP_AEAD *EVP_aead_aes_256_gcm_tls13(void);
    390 
    391 
    392 // Obscure functions.
    393 
    394 // evp_aead_direction_t denotes the direction of an AEAD operation.
    395 enum evp_aead_direction_t {
    396   evp_aead_open,
    397   evp_aead_seal,
    398 };
    399 
    400 // EVP_AEAD_CTX_init_with_direction calls |EVP_AEAD_CTX_init| for normal
    401 // AEADs. For TLS-specific and SSL3-specific AEADs, it initializes |ctx| for a
    402 // given direction.
    403 OPENSSL_EXPORT int EVP_AEAD_CTX_init_with_direction(
    404     EVP_AEAD_CTX *ctx, const EVP_AEAD *aead, const uint8_t *key, size_t key_len,
    405     size_t tag_len, enum evp_aead_direction_t dir);
    406 
    407 // EVP_AEAD_CTX_get_iv sets |*out_len| to the length of the IV for |ctx| and
    408 // sets |*out_iv| to point to that many bytes of the current IV. This is only
    409 // meaningful for AEADs with implicit IVs (i.e. CBC mode in TLS 1.0).
    410 //
    411 // It returns one on success or zero on error.
    412 OPENSSL_EXPORT int EVP_AEAD_CTX_get_iv(const EVP_AEAD_CTX *ctx,
    413                                        const uint8_t **out_iv, size_t *out_len);
    414 
    415 // EVP_AEAD_CTX_tag_len computes the exact byte length of the tag written by
    416 // |EVP_AEAD_CTX_seal_scatter| and writes it to |*out_tag_len|. It returns one
    417 // on success or zero on error. |in_len| and |extra_in_len| must equal the
    418 // arguments of the same names passed to |EVP_AEAD_CTX_seal_scatter|.
    419 OPENSSL_EXPORT int EVP_AEAD_CTX_tag_len(const EVP_AEAD_CTX *ctx,
    420                                         size_t *out_tag_len,
    421                                         const size_t in_len,
    422                                         const size_t extra_in_len);
    423 
    424 
    425 #if defined(__cplusplus)
    426 }  // extern C
    427 
    428 #if !defined(BORINGSSL_NO_CXX)
    429 extern "C++" {
    430 
    431 BSSL_NAMESPACE_BEGIN
    432 
    433 using ScopedEVP_AEAD_CTX =
    434     internal::StackAllocated<EVP_AEAD_CTX, void, EVP_AEAD_CTX_zero,
    435                              EVP_AEAD_CTX_cleanup>;
    436 
    437 BORINGSSL_MAKE_DELETER(EVP_AEAD_CTX, EVP_AEAD_CTX_free)
    438 
    439 BSSL_NAMESPACE_END
    440 
    441 }  // extern C++
    442 #endif
    443 
    444 #endif
    445 
    446 #endif  // OPENSSL_HEADER_AEAD_H
    447