Home | History | Annotate | Download | only in evp
      1 /*
      2  * Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
      3  *
      4  * Licensed under the OpenSSL license (the "License").  You may not use
      5  * this file except in compliance with the License.  You can obtain a copy
      6  * in the file LICENSE in the source distribution or at
      7  * https://www.openssl.org/source/license.html
      8  */
      9 
     10 #include <openssl/evp.h>
     11 
     12 #include <assert.h>
     13 
     14 #include <openssl/err.h>
     15 #include <openssl/mem.h>
     16 #include <openssl/type_check.h>
     17 
     18 #include "../internal.h"
     19 
     20 
     21 // This file implements scrypt, described in RFC 7914.
     22 //
     23 // Note scrypt refers to both "blocks" and a "block size" parameter, r. These
     24 // are two different notions of blocks. A Salsa20 block is 64 bytes long,
     25 // represented in this implementation by 16 |uint32_t|s. |r| determines the
     26 // number of 64-byte Salsa20 blocks in a scryptBlockMix block, which is 2 * |r|
     27 // Salsa20 blocks. This implementation refers to them as Salsa20 blocks and
     28 // scrypt blocks, respectively.
     29 
     30 // A block_t is a Salsa20 block.
     31 typedef struct { uint32_t words[16]; } block_t;
     32 
     33 OPENSSL_STATIC_ASSERT(sizeof(block_t) == 64, "block_t has padding");
     34 
     35 #define R(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
     36 
     37 // salsa208_word_specification implements the Salsa20/8 core function, also
     38 // described in RFC 7914, section 3. It modifies the block at |inout|
     39 // in-place.
     40 static void salsa208_word_specification(block_t *inout) {
     41   block_t x;
     42   OPENSSL_memcpy(&x, inout, sizeof(x));
     43 
     44   for (int i = 8; i > 0; i -= 2) {
     45     x.words[4] ^= R(x.words[0] + x.words[12], 7);
     46     x.words[8] ^= R(x.words[4] + x.words[0], 9);
     47     x.words[12] ^= R(x.words[8] + x.words[4], 13);
     48     x.words[0] ^= R(x.words[12] + x.words[8], 18);
     49     x.words[9] ^= R(x.words[5] + x.words[1], 7);
     50     x.words[13] ^= R(x.words[9] + x.words[5], 9);
     51     x.words[1] ^= R(x.words[13] + x.words[9], 13);
     52     x.words[5] ^= R(x.words[1] + x.words[13], 18);
     53     x.words[14] ^= R(x.words[10] + x.words[6], 7);
     54     x.words[2] ^= R(x.words[14] + x.words[10], 9);
     55     x.words[6] ^= R(x.words[2] + x.words[14], 13);
     56     x.words[10] ^= R(x.words[6] + x.words[2], 18);
     57     x.words[3] ^= R(x.words[15] + x.words[11], 7);
     58     x.words[7] ^= R(x.words[3] + x.words[15], 9);
     59     x.words[11] ^= R(x.words[7] + x.words[3], 13);
     60     x.words[15] ^= R(x.words[11] + x.words[7], 18);
     61     x.words[1] ^= R(x.words[0] + x.words[3], 7);
     62     x.words[2] ^= R(x.words[1] + x.words[0], 9);
     63     x.words[3] ^= R(x.words[2] + x.words[1], 13);
     64     x.words[0] ^= R(x.words[3] + x.words[2], 18);
     65     x.words[6] ^= R(x.words[5] + x.words[4], 7);
     66     x.words[7] ^= R(x.words[6] + x.words[5], 9);
     67     x.words[4] ^= R(x.words[7] + x.words[6], 13);
     68     x.words[5] ^= R(x.words[4] + x.words[7], 18);
     69     x.words[11] ^= R(x.words[10] + x.words[9], 7);
     70     x.words[8] ^= R(x.words[11] + x.words[10], 9);
     71     x.words[9] ^= R(x.words[8] + x.words[11], 13);
     72     x.words[10] ^= R(x.words[9] + x.words[8], 18);
     73     x.words[12] ^= R(x.words[15] + x.words[14], 7);
     74     x.words[13] ^= R(x.words[12] + x.words[15], 9);
     75     x.words[14] ^= R(x.words[13] + x.words[12], 13);
     76     x.words[15] ^= R(x.words[14] + x.words[13], 18);
     77   }
     78 
     79   for (int i = 0; i < 16; ++i) {
     80     inout->words[i] += x.words[i];
     81   }
     82 }
     83 
     84 // xor_block sets |*out| to be |*a| XOR |*b|.
     85 static void xor_block(block_t *out, const block_t *a, const block_t *b) {
     86   for (size_t i = 0; i < 16; i++) {
     87     out->words[i] = a->words[i] ^ b->words[i];
     88   }
     89 }
     90 
     91 // scryptBlockMix implements the function described in RFC 7914, section 4. B'
     92 // is written to |out|. |out| and |B| may not alias and must be each one scrypt
     93 // block (2 * |r| Salsa20 blocks) long.
     94 static void scryptBlockMix(block_t *out, const block_t *B, uint64_t r) {
     95   assert(out != B);
     96 
     97   block_t X;
     98   OPENSSL_memcpy(&X, &B[r * 2 - 1], sizeof(X));
     99   for (uint64_t i = 0; i < r * 2; i++) {
    100     xor_block(&X, &X, &B[i]);
    101     salsa208_word_specification(&X);
    102 
    103     // This implements the permutation in step 3.
    104     OPENSSL_memcpy(&out[i / 2 + (i & 1) * r], &X, sizeof(X));
    105   }
    106 }
    107 
    108 // scryptROMix implements the function described in RFC 7914, section 5.  |B| is
    109 // an scrypt block (2 * |r| Salsa20 blocks) and is modified in-place. |T| and
    110 // |V| are scratch space allocated by the caller. |T| must have space for one
    111 // scrypt block (2 * |r| Salsa20 blocks). |V| must have space for |N| scrypt
    112 // blocks (2 * |r| * |N| Salsa20 blocks).
    113 static void scryptROMix(block_t *B, uint64_t r, uint64_t N, block_t *T,
    114                         block_t *V) {
    115   // Steps 1 and 2.
    116   OPENSSL_memcpy(V, B, 2 * r * sizeof(block_t));
    117   for (uint64_t i = 1; i < N; i++) {
    118     scryptBlockMix(&V[2 * r * i /* scrypt block i */],
    119                    &V[2 * r * (i - 1) /* scrypt block i-1 */], r);
    120   }
    121   scryptBlockMix(B, &V[2 * r * (N - 1) /* scrypt block N-1 */], r);
    122 
    123   // Step 3.
    124   for (uint64_t i = 0; i < N; i++) {
    125     // Note this assumes |N| <= 2^32 and is a power of 2.
    126     uint32_t j = B[2 * r - 1].words[0] & (N - 1);
    127     for (size_t k = 0; k < 2 * r; k++) {
    128       xor_block(&T[k], &B[k], &V[2 * r * j + k]);
    129     }
    130     scryptBlockMix(B, T, r);
    131   }
    132 }
    133 
    134 // SCRYPT_PR_MAX is the maximum value of p * r. This is equivalent to the
    135 // bounds on p in section 6:
    136 //
    137 //   p <= ((2^32-1) * hLen) / MFLen iff
    138 //   p <= ((2^32-1) * 32) / (128 * r) iff
    139 //   p * r <= (2^30-1)
    140 #define SCRYPT_PR_MAX ((1 << 30) - 1)
    141 
    142 // SCRYPT_MAX_MEM is the default maximum memory that may be allocated by
    143 // |EVP_PBE_scrypt|.
    144 #define SCRYPT_MAX_MEM (1024 * 1024 * 32)
    145 
    146 int EVP_PBE_scrypt(const char *password, size_t password_len,
    147                    const uint8_t *salt, size_t salt_len, uint64_t N, uint64_t r,
    148                    uint64_t p, size_t max_mem, uint8_t *out_key,
    149                    size_t key_len) {
    150   if (r == 0 || p == 0 || p > SCRYPT_PR_MAX / r ||
    151       // |N| must be a power of two.
    152       N < 2 || (N & (N - 1)) ||
    153       // We only support |N| <= 2^32 in |scryptROMix|.
    154       N > UINT64_C(1) << 32 ||
    155       // Check that |N| < 2^(128r / 8).
    156       (16 * r <= 63 && N >= UINT64_C(1) << (16 * r))) {
    157     OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PARAMETERS);
    158     return 0;
    159   }
    160 
    161   // Determine the amount of memory needed. B, T, and V are |p|, 1, and |N|
    162   // scrypt blocks, respectively. Each scrypt block is 2*|r| |block_t|s.
    163   if (max_mem == 0) {
    164     max_mem = SCRYPT_MAX_MEM;
    165   }
    166 
    167   size_t max_scrypt_blocks = max_mem / (2 * r * sizeof(block_t));
    168   if (max_scrypt_blocks < p + 1 ||
    169       max_scrypt_blocks - p - 1 < N) {
    170     OPENSSL_PUT_ERROR(EVP, EVP_R_MEMORY_LIMIT_EXCEEDED);
    171     return 0;
    172   }
    173 
    174   // Allocate and divide up the scratch space. |max_mem| fits in a size_t, which
    175   // is no bigger than uint64_t, so none of these operations may overflow.
    176   OPENSSL_STATIC_ASSERT(UINT64_MAX >= ((size_t)-1), "size_t exceeds uint64_t");
    177   size_t B_blocks = p * 2 * r;
    178   size_t B_bytes = B_blocks * sizeof(block_t);
    179   size_t T_blocks = 2 * r;
    180   size_t V_blocks = N * 2 * r;
    181   block_t *B = OPENSSL_malloc((B_blocks + T_blocks + V_blocks) * sizeof(block_t));
    182   if (B == NULL) {
    183     OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
    184     return 0;
    185   }
    186 
    187   int ret = 0;
    188   block_t *T = B + B_blocks;
    189   block_t *V = T + T_blocks;
    190 
    191   // NOTE: PKCS5_PBKDF2_HMAC can only fail due to allocation failure
    192   // or |iterations| of 0 (we pass 1 here). This is consistent with
    193   // the documented failure conditions of EVP_PBE_scrypt.
    194   if (!PKCS5_PBKDF2_HMAC(password, password_len, salt, salt_len, 1,
    195                          EVP_sha256(), B_bytes, (uint8_t *)B)) {
    196     goto err;
    197   }
    198 
    199   for (uint64_t i = 0; i < p; i++) {
    200     scryptROMix(B + 2 * r * i, r, N, T, V);
    201   }
    202 
    203   if (!PKCS5_PBKDF2_HMAC(password, password_len, (const uint8_t *)B, B_bytes, 1,
    204                          EVP_sha256(), key_len, out_key)) {
    205     goto err;
    206   }
    207 
    208   ret = 1;
    209 
    210 err:
    211   OPENSSL_free(B);
    212   return ret;
    213 }
    214