Home | History | Annotate | Download | only in ec
      1 /* Copyright (c) 2015, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 // A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
     16 //
     17 // Inspired by Daniel J. Bernstein's public domain nistp224 implementation
     18 // and Adam Langley's public domain 64-bit C implementation of curve25519.
     19 
     20 #include <openssl/base.h>
     21 
     22 #include <openssl/bn.h>
     23 #include <openssl/ec.h>
     24 #include <openssl/err.h>
     25 #include <openssl/mem.h>
     26 
     27 #include <string.h>
     28 
     29 #include "internal.h"
     30 #include "../delocate.h"
     31 #include "../../internal.h"
     32 
     33 
     34 #if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
     35 
     36 // Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
     37 // using 64-bit coefficients called 'limbs', and sometimes (for multiplication
     38 // results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
     39 // 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-p224_limb
     40 // representation is an 'p224_felem'; a 7-p224_widelimb representation is a
     41 // 'p224_widefelem'. Even within felems, bits of adjacent limbs overlap, and we
     42 // don't always reduce the representations: we ensure that inputs to each
     43 // p224_felem multiplication satisfy a_i < 2^60, so outputs satisfy b_i <
     44 // 4*2^60*2^60, and fit into a 128-bit word without overflow. The coefficients
     45 // are then again partially reduced to obtain an p224_felem satisfying a_i <
     46 // 2^57. We only reduce to the unique minimal representation at the end of the
     47 // computation.
     48 
     49 typedef uint64_t p224_limb;
     50 typedef uint128_t p224_widelimb;
     51 
     52 typedef p224_limb p224_felem[4];
     53 typedef p224_widelimb p224_widefelem[7];
     54 
     55 // Field element represented as a byte arrary. 28*8 = 224 bits is also the
     56 // group order size for the elliptic curve, and we also use this type for
     57 // scalars for point multiplication.
     58 typedef uint8_t p224_felem_bytearray[28];
     59 
     60 // Precomputed multiples of the standard generator
     61 // Points are given in coordinates (X, Y, Z) where Z normally is 1
     62 // (0 for the point at infinity).
     63 // For each field element, slice a_0 is word 0, etc.
     64 //
     65 // The table has 2 * 16 elements, starting with the following:
     66 // index | bits    | point
     67 // ------+---------+------------------------------
     68 //     0 | 0 0 0 0 | 0G
     69 //     1 | 0 0 0 1 | 1G
     70 //     2 | 0 0 1 0 | 2^56G
     71 //     3 | 0 0 1 1 | (2^56 + 1)G
     72 //     4 | 0 1 0 0 | 2^112G
     73 //     5 | 0 1 0 1 | (2^112 + 1)G
     74 //     6 | 0 1 1 0 | (2^112 + 2^56)G
     75 //     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
     76 //     8 | 1 0 0 0 | 2^168G
     77 //     9 | 1 0 0 1 | (2^168 + 1)G
     78 //    10 | 1 0 1 0 | (2^168 + 2^56)G
     79 //    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
     80 //    12 | 1 1 0 0 | (2^168 + 2^112)G
     81 //    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
     82 //    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
     83 //    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
     84 // followed by a copy of this with each element multiplied by 2^28.
     85 //
     86 // The reason for this is so that we can clock bits into four different
     87 // locations when doing simple scalar multiplies against the base point,
     88 // and then another four locations using the second 16 elements.
     89 static const p224_felem g_p224_pre_comp[2][16][3] = {
     90     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
     91      {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
     92       {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
     93       {1, 0, 0, 0}},
     94      {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
     95       {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
     96       {1, 0, 0, 0}},
     97      {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
     98       {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
     99       {1, 0, 0, 0}},
    100      {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
    101       {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
    102       {1, 0, 0, 0}},
    103      {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
    104       {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
    105       {1, 0, 0, 0}},
    106      {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
    107       {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
    108       {1, 0, 0, 0}},
    109      {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
    110       {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
    111       {1, 0, 0, 0}},
    112      {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
    113       {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
    114       {1, 0, 0, 0}},
    115      {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
    116       {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
    117       {1, 0, 0, 0}},
    118      {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
    119       {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
    120       {1, 0, 0, 0}},
    121      {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
    122       {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
    123       {1, 0, 0, 0}},
    124      {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
    125       {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
    126       {1, 0, 0, 0}},
    127      {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
    128       {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
    129       {1, 0, 0, 0}},
    130      {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
    131       {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
    132       {1, 0, 0, 0}},
    133      {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
    134       {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
    135       {1, 0, 0, 0}}},
    136     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
    137      {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
    138       {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
    139       {1, 0, 0, 0}},
    140      {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
    141       {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
    142       {1, 0, 0, 0}},
    143      {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
    144       {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
    145       {1, 0, 0, 0}},
    146      {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
    147       {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
    148       {1, 0, 0, 0}},
    149      {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
    150       {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
    151       {1, 0, 0, 0}},
    152      {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
    153       {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
    154       {1, 0, 0, 0}},
    155      {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
    156       {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
    157       {1, 0, 0, 0}},
    158      {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
    159       {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
    160       {1, 0, 0, 0}},
    161      {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
    162       {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
    163       {1, 0, 0, 0}},
    164      {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
    165       {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
    166       {1, 0, 0, 0}},
    167      {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
    168       {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
    169       {1, 0, 0, 0}},
    170      {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
    171       {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
    172       {1, 0, 0, 0}},
    173      {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
    174       {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
    175       {1, 0, 0, 0}},
    176      {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
    177       {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
    178       {1, 0, 0, 0}},
    179      {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
    180       {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
    181       {1, 0, 0, 0}}}};
    182 
    183 static uint64_t p224_load_u64(const uint8_t in[8]) {
    184   uint64_t ret;
    185   OPENSSL_memcpy(&ret, in, sizeof(ret));
    186   return ret;
    187 }
    188 
    189 // Helper functions to convert field elements to/from internal representation
    190 static void p224_bin28_to_felem(p224_felem out, const uint8_t in[28]) {
    191   out[0] = p224_load_u64(in) & 0x00ffffffffffffff;
    192   out[1] = p224_load_u64(in + 7) & 0x00ffffffffffffff;
    193   out[2] = p224_load_u64(in + 14) & 0x00ffffffffffffff;
    194   out[3] = p224_load_u64(in + 20) >> 8;
    195 }
    196 
    197 static void p224_felem_to_bin28(uint8_t out[28], const p224_felem in) {
    198   for (size_t i = 0; i < 7; ++i) {
    199     out[i] = in[0] >> (8 * i);
    200     out[i + 7] = in[1] >> (8 * i);
    201     out[i + 14] = in[2] >> (8 * i);
    202     out[i + 21] = in[3] >> (8 * i);
    203   }
    204 }
    205 
    206 static void p224_generic_to_felem(p224_felem out, const EC_FELEM *in) {
    207   p224_bin28_to_felem(out, in->bytes);
    208 }
    209 
    210 // Requires 0 <= in < 2*p (always call p224_felem_reduce first)
    211 static void p224_felem_to_generic(EC_FELEM *out, const p224_felem in) {
    212   // Reduce to unique minimal representation.
    213   static const int64_t two56 = ((p224_limb)1) << 56;
    214   // 0 <= in < 2*p, p = 2^224 - 2^96 + 1
    215   // if in > p , reduce in = in - 2^224 + 2^96 - 1
    216   int64_t tmp[4], a;
    217   tmp[0] = in[0];
    218   tmp[1] = in[1];
    219   tmp[2] = in[2];
    220   tmp[3] = in[3];
    221   // Case 1: a = 1 iff in >= 2^224
    222   a = (in[3] >> 56);
    223   tmp[0] -= a;
    224   tmp[1] += a << 40;
    225   tmp[3] &= 0x00ffffffffffffff;
    226   // Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
    227   // the lower part is non-zero
    228   a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
    229       (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
    230   a &= 0x00ffffffffffffff;
    231   // turn a into an all-one mask (if a = 0) or an all-zero mask
    232   a = (a - 1) >> 63;
    233   // subtract 2^224 - 2^96 + 1 if a is all-one
    234   tmp[3] &= a ^ 0xffffffffffffffff;
    235   tmp[2] &= a ^ 0xffffffffffffffff;
    236   tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
    237   tmp[0] -= 1 & a;
    238 
    239   // eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
    240   // be non-zero, so we only need one step
    241   a = tmp[0] >> 63;
    242   tmp[0] += two56 & a;
    243   tmp[1] -= 1 & a;
    244 
    245   // carry 1 -> 2 -> 3
    246   tmp[2] += tmp[1] >> 56;
    247   tmp[1] &= 0x00ffffffffffffff;
    248 
    249   tmp[3] += tmp[2] >> 56;
    250   tmp[2] &= 0x00ffffffffffffff;
    251 
    252   // Now 0 <= tmp < p
    253   p224_felem tmp2;
    254   tmp2[0] = tmp[0];
    255   tmp2[1] = tmp[1];
    256   tmp2[2] = tmp[2];
    257   tmp2[3] = tmp[3];
    258 
    259   p224_felem_to_bin28(out->bytes, tmp2);
    260   // 224 is not a multiple of 64, so zero the remaining bytes.
    261   OPENSSL_memset(out->bytes + 28, 0, 32 - 28);
    262 }
    263 
    264 
    265 // Field operations, using the internal representation of field elements.
    266 // NB! These operations are specific to our point multiplication and cannot be
    267 // expected to be correct in general - e.g., multiplication with a large scalar
    268 // will cause an overflow.
    269 
    270 static void p224_felem_assign(p224_felem out, const p224_felem in) {
    271   out[0] = in[0];
    272   out[1] = in[1];
    273   out[2] = in[2];
    274   out[3] = in[3];
    275 }
    276 
    277 // Sum two field elements: out += in
    278 static void p224_felem_sum(p224_felem out, const p224_felem in) {
    279   out[0] += in[0];
    280   out[1] += in[1];
    281   out[2] += in[2];
    282   out[3] += in[3];
    283 }
    284 
    285 // Subtract field elements: out -= in
    286 // Assumes in[i] < 2^57
    287 static void p224_felem_diff(p224_felem out, const p224_felem in) {
    288   static const p224_limb two58p2 =
    289       (((p224_limb)1) << 58) + (((p224_limb)1) << 2);
    290   static const p224_limb two58m2 =
    291       (((p224_limb)1) << 58) - (((p224_limb)1) << 2);
    292   static const p224_limb two58m42m2 =
    293       (((p224_limb)1) << 58) - (((p224_limb)1) << 42) - (((p224_limb)1) << 2);
    294 
    295   // Add 0 mod 2^224-2^96+1 to ensure out > in
    296   out[0] += two58p2;
    297   out[1] += two58m42m2;
    298   out[2] += two58m2;
    299   out[3] += two58m2;
    300 
    301   out[0] -= in[0];
    302   out[1] -= in[1];
    303   out[2] -= in[2];
    304   out[3] -= in[3];
    305 }
    306 
    307 // Subtract in unreduced 128-bit mode: out -= in
    308 // Assumes in[i] < 2^119
    309 static void p224_widefelem_diff(p224_widefelem out, const p224_widefelem in) {
    310   static const p224_widelimb two120 = ((p224_widelimb)1) << 120;
    311   static const p224_widelimb two120m64 =
    312       (((p224_widelimb)1) << 120) - (((p224_widelimb)1) << 64);
    313   static const p224_widelimb two120m104m64 = (((p224_widelimb)1) << 120) -
    314                                              (((p224_widelimb)1) << 104) -
    315                                              (((p224_widelimb)1) << 64);
    316 
    317   // Add 0 mod 2^224-2^96+1 to ensure out > in
    318   out[0] += two120;
    319   out[1] += two120m64;
    320   out[2] += two120m64;
    321   out[3] += two120;
    322   out[4] += two120m104m64;
    323   out[5] += two120m64;
    324   out[6] += two120m64;
    325 
    326   out[0] -= in[0];
    327   out[1] -= in[1];
    328   out[2] -= in[2];
    329   out[3] -= in[3];
    330   out[4] -= in[4];
    331   out[5] -= in[5];
    332   out[6] -= in[6];
    333 }
    334 
    335 // Subtract in mixed mode: out128 -= in64
    336 // in[i] < 2^63
    337 static void p224_felem_diff_128_64(p224_widefelem out, const p224_felem in) {
    338   static const p224_widelimb two64p8 =
    339       (((p224_widelimb)1) << 64) + (((p224_widelimb)1) << 8);
    340   static const p224_widelimb two64m8 =
    341       (((p224_widelimb)1) << 64) - (((p224_widelimb)1) << 8);
    342   static const p224_widelimb two64m48m8 = (((p224_widelimb)1) << 64) -
    343                                           (((p224_widelimb)1) << 48) -
    344                                           (((p224_widelimb)1) << 8);
    345 
    346   // Add 0 mod 2^224-2^96+1 to ensure out > in
    347   out[0] += two64p8;
    348   out[1] += two64m48m8;
    349   out[2] += two64m8;
    350   out[3] += two64m8;
    351 
    352   out[0] -= in[0];
    353   out[1] -= in[1];
    354   out[2] -= in[2];
    355   out[3] -= in[3];
    356 }
    357 
    358 // Multiply a field element by a scalar: out = out * scalar
    359 // The scalars we actually use are small, so results fit without overflow
    360 static void p224_felem_scalar(p224_felem out, const p224_limb scalar) {
    361   out[0] *= scalar;
    362   out[1] *= scalar;
    363   out[2] *= scalar;
    364   out[3] *= scalar;
    365 }
    366 
    367 // Multiply an unreduced field element by a scalar: out = out * scalar
    368 // The scalars we actually use are small, so results fit without overflow
    369 static void p224_widefelem_scalar(p224_widefelem out,
    370                                   const p224_widelimb scalar) {
    371   out[0] *= scalar;
    372   out[1] *= scalar;
    373   out[2] *= scalar;
    374   out[3] *= scalar;
    375   out[4] *= scalar;
    376   out[5] *= scalar;
    377   out[6] *= scalar;
    378 }
    379 
    380 // Square a field element: out = in^2
    381 static void p224_felem_square(p224_widefelem out, const p224_felem in) {
    382   p224_limb tmp0, tmp1, tmp2;
    383   tmp0 = 2 * in[0];
    384   tmp1 = 2 * in[1];
    385   tmp2 = 2 * in[2];
    386   out[0] = ((p224_widelimb)in[0]) * in[0];
    387   out[1] = ((p224_widelimb)in[0]) * tmp1;
    388   out[2] = ((p224_widelimb)in[0]) * tmp2 + ((p224_widelimb)in[1]) * in[1];
    389   out[3] = ((p224_widelimb)in[3]) * tmp0 + ((p224_widelimb)in[1]) * tmp2;
    390   out[4] = ((p224_widelimb)in[3]) * tmp1 + ((p224_widelimb)in[2]) * in[2];
    391   out[5] = ((p224_widelimb)in[3]) * tmp2;
    392   out[6] = ((p224_widelimb)in[3]) * in[3];
    393 }
    394 
    395 // Multiply two field elements: out = in1 * in2
    396 static void p224_felem_mul(p224_widefelem out, const p224_felem in1,
    397                            const p224_felem in2) {
    398   out[0] = ((p224_widelimb)in1[0]) * in2[0];
    399   out[1] = ((p224_widelimb)in1[0]) * in2[1] + ((p224_widelimb)in1[1]) * in2[0];
    400   out[2] = ((p224_widelimb)in1[0]) * in2[2] + ((p224_widelimb)in1[1]) * in2[1] +
    401            ((p224_widelimb)in1[2]) * in2[0];
    402   out[3] = ((p224_widelimb)in1[0]) * in2[3] + ((p224_widelimb)in1[1]) * in2[2] +
    403            ((p224_widelimb)in1[2]) * in2[1] + ((p224_widelimb)in1[3]) * in2[0];
    404   out[4] = ((p224_widelimb)in1[1]) * in2[3] + ((p224_widelimb)in1[2]) * in2[2] +
    405            ((p224_widelimb)in1[3]) * in2[1];
    406   out[5] = ((p224_widelimb)in1[2]) * in2[3] + ((p224_widelimb)in1[3]) * in2[2];
    407   out[6] = ((p224_widelimb)in1[3]) * in2[3];
    408 }
    409 
    410 // Reduce seven 128-bit coefficients to four 64-bit coefficients.
    411 // Requires in[i] < 2^126,
    412 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
    413 static void p224_felem_reduce(p224_felem out, const p224_widefelem in) {
    414   static const p224_widelimb two127p15 =
    415       (((p224_widelimb)1) << 127) + (((p224_widelimb)1) << 15);
    416   static const p224_widelimb two127m71 =
    417       (((p224_widelimb)1) << 127) - (((p224_widelimb)1) << 71);
    418   static const p224_widelimb two127m71m55 = (((p224_widelimb)1) << 127) -
    419                                             (((p224_widelimb)1) << 71) -
    420                                             (((p224_widelimb)1) << 55);
    421   p224_widelimb output[5];
    422 
    423   // Add 0 mod 2^224-2^96+1 to ensure all differences are positive
    424   output[0] = in[0] + two127p15;
    425   output[1] = in[1] + two127m71m55;
    426   output[2] = in[2] + two127m71;
    427   output[3] = in[3];
    428   output[4] = in[4];
    429 
    430   // Eliminate in[4], in[5], in[6]
    431   output[4] += in[6] >> 16;
    432   output[3] += (in[6] & 0xffff) << 40;
    433   output[2] -= in[6];
    434 
    435   output[3] += in[5] >> 16;
    436   output[2] += (in[5] & 0xffff) << 40;
    437   output[1] -= in[5];
    438 
    439   output[2] += output[4] >> 16;
    440   output[1] += (output[4] & 0xffff) << 40;
    441   output[0] -= output[4];
    442 
    443   // Carry 2 -> 3 -> 4
    444   output[3] += output[2] >> 56;
    445   output[2] &= 0x00ffffffffffffff;
    446 
    447   output[4] = output[3] >> 56;
    448   output[3] &= 0x00ffffffffffffff;
    449 
    450   // Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72
    451 
    452   // Eliminate output[4]
    453   output[2] += output[4] >> 16;
    454   // output[2] < 2^56 + 2^56 = 2^57
    455   output[1] += (output[4] & 0xffff) << 40;
    456   output[0] -= output[4];
    457 
    458   // Carry 0 -> 1 -> 2 -> 3
    459   output[1] += output[0] >> 56;
    460   out[0] = output[0] & 0x00ffffffffffffff;
    461 
    462   output[2] += output[1] >> 56;
    463   // output[2] < 2^57 + 2^72
    464   out[1] = output[1] & 0x00ffffffffffffff;
    465   output[3] += output[2] >> 56;
    466   // output[3] <= 2^56 + 2^16
    467   out[2] = output[2] & 0x00ffffffffffffff;
    468 
    469   // out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
    470   // out[3] <= 2^56 + 2^16 (due to final carry),
    471   // so out < 2*p
    472   out[3] = output[3];
    473 }
    474 
    475 // Get negative value: out = -in
    476 // Requires in[i] < 2^63,
    477 // ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16
    478 static void p224_felem_neg(p224_felem out, const p224_felem in) {
    479   p224_widefelem tmp = {0};
    480   p224_felem_diff_128_64(tmp, in);
    481   p224_felem_reduce(out, tmp);
    482 }
    483 
    484 // Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
    485 // elements are reduced to in < 2^225, so we only need to check three cases: 0,
    486 // 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2
    487 static p224_limb p224_felem_is_zero(const p224_felem in) {
    488   p224_limb zero = in[0] | in[1] | in[2] | in[3];
    489   zero = (((int64_t)(zero)-1) >> 63) & 1;
    490 
    491   p224_limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
    492                      (in[2] ^ 0x00ffffffffffffff) |
    493                      (in[3] ^ 0x00ffffffffffffff);
    494   two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
    495   p224_limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
    496                      (in[2] ^ 0x00ffffffffffffff) |
    497                      (in[3] ^ 0x01ffffffffffffff);
    498   two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
    499   return (zero | two224m96p1 | two225m97p2);
    500 }
    501 
    502 // Invert a field element
    503 // Computation chain copied from djb's code
    504 static void p224_felem_inv(p224_felem out, const p224_felem in) {
    505   p224_felem ftmp, ftmp2, ftmp3, ftmp4;
    506   p224_widefelem tmp;
    507 
    508   p224_felem_square(tmp, in);
    509   p224_felem_reduce(ftmp, tmp);  // 2
    510   p224_felem_mul(tmp, in, ftmp);
    511   p224_felem_reduce(ftmp, tmp);  // 2^2 - 1
    512   p224_felem_square(tmp, ftmp);
    513   p224_felem_reduce(ftmp, tmp);  // 2^3 - 2
    514   p224_felem_mul(tmp, in, ftmp);
    515   p224_felem_reduce(ftmp, tmp);  // 2^3 - 1
    516   p224_felem_square(tmp, ftmp);
    517   p224_felem_reduce(ftmp2, tmp);  // 2^4 - 2
    518   p224_felem_square(tmp, ftmp2);
    519   p224_felem_reduce(ftmp2, tmp);  // 2^5 - 4
    520   p224_felem_square(tmp, ftmp2);
    521   p224_felem_reduce(ftmp2, tmp);  // 2^6 - 8
    522   p224_felem_mul(tmp, ftmp2, ftmp);
    523   p224_felem_reduce(ftmp, tmp);  // 2^6 - 1
    524   p224_felem_square(tmp, ftmp);
    525   p224_felem_reduce(ftmp2, tmp);  // 2^7 - 2
    526   for (size_t i = 0; i < 5; ++i) {  // 2^12 - 2^6
    527     p224_felem_square(tmp, ftmp2);
    528     p224_felem_reduce(ftmp2, tmp);
    529   }
    530   p224_felem_mul(tmp, ftmp2, ftmp);
    531   p224_felem_reduce(ftmp2, tmp);  // 2^12 - 1
    532   p224_felem_square(tmp, ftmp2);
    533   p224_felem_reduce(ftmp3, tmp);  // 2^13 - 2
    534   for (size_t i = 0; i < 11; ++i) {  // 2^24 - 2^12
    535     p224_felem_square(tmp, ftmp3);
    536     p224_felem_reduce(ftmp3, tmp);
    537   }
    538   p224_felem_mul(tmp, ftmp3, ftmp2);
    539   p224_felem_reduce(ftmp2, tmp);  // 2^24 - 1
    540   p224_felem_square(tmp, ftmp2);
    541   p224_felem_reduce(ftmp3, tmp);  // 2^25 - 2
    542   for (size_t i = 0; i < 23; ++i) {  // 2^48 - 2^24
    543     p224_felem_square(tmp, ftmp3);
    544     p224_felem_reduce(ftmp3, tmp);
    545   }
    546   p224_felem_mul(tmp, ftmp3, ftmp2);
    547   p224_felem_reduce(ftmp3, tmp);  // 2^48 - 1
    548   p224_felem_square(tmp, ftmp3);
    549   p224_felem_reduce(ftmp4, tmp);  // 2^49 - 2
    550   for (size_t i = 0; i < 47; ++i) {  // 2^96 - 2^48
    551     p224_felem_square(tmp, ftmp4);
    552     p224_felem_reduce(ftmp4, tmp);
    553   }
    554   p224_felem_mul(tmp, ftmp3, ftmp4);
    555   p224_felem_reduce(ftmp3, tmp);  // 2^96 - 1
    556   p224_felem_square(tmp, ftmp3);
    557   p224_felem_reduce(ftmp4, tmp);  // 2^97 - 2
    558   for (size_t i = 0; i < 23; ++i) {  // 2^120 - 2^24
    559     p224_felem_square(tmp, ftmp4);
    560     p224_felem_reduce(ftmp4, tmp);
    561   }
    562   p224_felem_mul(tmp, ftmp2, ftmp4);
    563   p224_felem_reduce(ftmp2, tmp);  // 2^120 - 1
    564   for (size_t i = 0; i < 6; ++i) {  // 2^126 - 2^6
    565     p224_felem_square(tmp, ftmp2);
    566     p224_felem_reduce(ftmp2, tmp);
    567   }
    568   p224_felem_mul(tmp, ftmp2, ftmp);
    569   p224_felem_reduce(ftmp, tmp);  // 2^126 - 1
    570   p224_felem_square(tmp, ftmp);
    571   p224_felem_reduce(ftmp, tmp);  // 2^127 - 2
    572   p224_felem_mul(tmp, ftmp, in);
    573   p224_felem_reduce(ftmp, tmp);  // 2^127 - 1
    574   for (size_t i = 0; i < 97; ++i) {  // 2^224 - 2^97
    575     p224_felem_square(tmp, ftmp);
    576     p224_felem_reduce(ftmp, tmp);
    577   }
    578   p224_felem_mul(tmp, ftmp, ftmp3);
    579   p224_felem_reduce(out, tmp);  // 2^224 - 2^96 - 1
    580 }
    581 
    582 // Copy in constant time:
    583 // if icopy == 1, copy in to out,
    584 // if icopy == 0, copy out to itself.
    585 static void p224_copy_conditional(p224_felem out, const p224_felem in,
    586                                   p224_limb icopy) {
    587   // icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one
    588   const p224_limb copy = -icopy;
    589   for (size_t i = 0; i < 4; ++i) {
    590     const p224_limb tmp = copy & (in[i] ^ out[i]);
    591     out[i] ^= tmp;
    592   }
    593 }
    594 
    595 // ELLIPTIC CURVE POINT OPERATIONS
    596 //
    597 // Points are represented in Jacobian projective coordinates:
    598 // (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
    599 // or to the point at infinity if Z == 0.
    600 
    601 // Double an elliptic curve point:
    602 // (X', Y', Z') = 2 * (X, Y, Z), where
    603 // X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
    604 // Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
    605 // Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
    606 // Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
    607 // while x_out == y_in is not (maybe this works, but it's not tested).
    608 static void p224_point_double(p224_felem x_out, p224_felem y_out,
    609                               p224_felem z_out, const p224_felem x_in,
    610                               const p224_felem y_in, const p224_felem z_in) {
    611   p224_widefelem tmp, tmp2;
    612   p224_felem delta, gamma, beta, alpha, ftmp, ftmp2;
    613 
    614   p224_felem_assign(ftmp, x_in);
    615   p224_felem_assign(ftmp2, x_in);
    616 
    617   // delta = z^2
    618   p224_felem_square(tmp, z_in);
    619   p224_felem_reduce(delta, tmp);
    620 
    621   // gamma = y^2
    622   p224_felem_square(tmp, y_in);
    623   p224_felem_reduce(gamma, tmp);
    624 
    625   // beta = x*gamma
    626   p224_felem_mul(tmp, x_in, gamma);
    627   p224_felem_reduce(beta, tmp);
    628 
    629   // alpha = 3*(x-delta)*(x+delta)
    630   p224_felem_diff(ftmp, delta);
    631   // ftmp[i] < 2^57 + 2^58 + 2 < 2^59
    632   p224_felem_sum(ftmp2, delta);
    633   // ftmp2[i] < 2^57 + 2^57 = 2^58
    634   p224_felem_scalar(ftmp2, 3);
    635   // ftmp2[i] < 3 * 2^58 < 2^60
    636   p224_felem_mul(tmp, ftmp, ftmp2);
    637   // tmp[i] < 2^60 * 2^59 * 4 = 2^121
    638   p224_felem_reduce(alpha, tmp);
    639 
    640   // x' = alpha^2 - 8*beta
    641   p224_felem_square(tmp, alpha);
    642   // tmp[i] < 4 * 2^57 * 2^57 = 2^116
    643   p224_felem_assign(ftmp, beta);
    644   p224_felem_scalar(ftmp, 8);
    645   // ftmp[i] < 8 * 2^57 = 2^60
    646   p224_felem_diff_128_64(tmp, ftmp);
    647   // tmp[i] < 2^116 + 2^64 + 8 < 2^117
    648   p224_felem_reduce(x_out, tmp);
    649 
    650   // z' = (y + z)^2 - gamma - delta
    651   p224_felem_sum(delta, gamma);
    652   // delta[i] < 2^57 + 2^57 = 2^58
    653   p224_felem_assign(ftmp, y_in);
    654   p224_felem_sum(ftmp, z_in);
    655   // ftmp[i] < 2^57 + 2^57 = 2^58
    656   p224_felem_square(tmp, ftmp);
    657   // tmp[i] < 4 * 2^58 * 2^58 = 2^118
    658   p224_felem_diff_128_64(tmp, delta);
    659   // tmp[i] < 2^118 + 2^64 + 8 < 2^119
    660   p224_felem_reduce(z_out, tmp);
    661 
    662   // y' = alpha*(4*beta - x') - 8*gamma^2
    663   p224_felem_scalar(beta, 4);
    664   // beta[i] < 4 * 2^57 = 2^59
    665   p224_felem_diff(beta, x_out);
    666   // beta[i] < 2^59 + 2^58 + 2 < 2^60
    667   p224_felem_mul(tmp, alpha, beta);
    668   // tmp[i] < 4 * 2^57 * 2^60 = 2^119
    669   p224_felem_square(tmp2, gamma);
    670   // tmp2[i] < 4 * 2^57 * 2^57 = 2^116
    671   p224_widefelem_scalar(tmp2, 8);
    672   // tmp2[i] < 8 * 2^116 = 2^119
    673   p224_widefelem_diff(tmp, tmp2);
    674   // tmp[i] < 2^119 + 2^120 < 2^121
    675   p224_felem_reduce(y_out, tmp);
    676 }
    677 
    678 // Add two elliptic curve points:
    679 // (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
    680 // X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
    681 // 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
    682 // Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
    683 // X_1)^2 - X_3) -
    684 //        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
    685 // Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
    686 //
    687 // This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0.
    688 
    689 // This function is not entirely constant-time: it includes a branch for
    690 // checking whether the two input points are equal, (while not equal to the
    691 // point at infinity). This case never happens during single point
    692 // multiplication, so there is no timing leak for ECDH or ECDSA signing.
    693 static void p224_point_add(p224_felem x3, p224_felem y3, p224_felem z3,
    694                            const p224_felem x1, const p224_felem y1,
    695                            const p224_felem z1, const int mixed,
    696                            const p224_felem x2, const p224_felem y2,
    697                            const p224_felem z2) {
    698   p224_felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
    699   p224_widefelem tmp, tmp2;
    700   p224_limb z1_is_zero, z2_is_zero, x_equal, y_equal;
    701 
    702   if (!mixed) {
    703     // ftmp2 = z2^2
    704     p224_felem_square(tmp, z2);
    705     p224_felem_reduce(ftmp2, tmp);
    706 
    707     // ftmp4 = z2^3
    708     p224_felem_mul(tmp, ftmp2, z2);
    709     p224_felem_reduce(ftmp4, tmp);
    710 
    711     // ftmp4 = z2^3*y1
    712     p224_felem_mul(tmp2, ftmp4, y1);
    713     p224_felem_reduce(ftmp4, tmp2);
    714 
    715     // ftmp2 = z2^2*x1
    716     p224_felem_mul(tmp2, ftmp2, x1);
    717     p224_felem_reduce(ftmp2, tmp2);
    718   } else {
    719     // We'll assume z2 = 1 (special case z2 = 0 is handled later)
    720 
    721     // ftmp4 = z2^3*y1
    722     p224_felem_assign(ftmp4, y1);
    723 
    724     // ftmp2 = z2^2*x1
    725     p224_felem_assign(ftmp2, x1);
    726   }
    727 
    728   // ftmp = z1^2
    729   p224_felem_square(tmp, z1);
    730   p224_felem_reduce(ftmp, tmp);
    731 
    732   // ftmp3 = z1^3
    733   p224_felem_mul(tmp, ftmp, z1);
    734   p224_felem_reduce(ftmp3, tmp);
    735 
    736   // tmp = z1^3*y2
    737   p224_felem_mul(tmp, ftmp3, y2);
    738   // tmp[i] < 4 * 2^57 * 2^57 = 2^116
    739 
    740   // ftmp3 = z1^3*y2 - z2^3*y1
    741   p224_felem_diff_128_64(tmp, ftmp4);
    742   // tmp[i] < 2^116 + 2^64 + 8 < 2^117
    743   p224_felem_reduce(ftmp3, tmp);
    744 
    745   // tmp = z1^2*x2
    746   p224_felem_mul(tmp, ftmp, x2);
    747   // tmp[i] < 4 * 2^57 * 2^57 = 2^116
    748 
    749   // ftmp = z1^2*x2 - z2^2*x1
    750   p224_felem_diff_128_64(tmp, ftmp2);
    751   // tmp[i] < 2^116 + 2^64 + 8 < 2^117
    752   p224_felem_reduce(ftmp, tmp);
    753 
    754   // the formulae are incorrect if the points are equal
    755   // so we check for this and do doubling if this happens
    756   x_equal = p224_felem_is_zero(ftmp);
    757   y_equal = p224_felem_is_zero(ftmp3);
    758   z1_is_zero = p224_felem_is_zero(z1);
    759   z2_is_zero = p224_felem_is_zero(z2);
    760   // In affine coordinates, (X_1, Y_1) == (X_2, Y_2)
    761   if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
    762     p224_point_double(x3, y3, z3, x1, y1, z1);
    763     return;
    764   }
    765 
    766   // ftmp5 = z1*z2
    767   if (!mixed) {
    768     p224_felem_mul(tmp, z1, z2);
    769     p224_felem_reduce(ftmp5, tmp);
    770   } else {
    771     // special case z2 = 0 is handled later
    772     p224_felem_assign(ftmp5, z1);
    773   }
    774 
    775   // z_out = (z1^2*x2 - z2^2*x1)*(z1*z2)
    776   p224_felem_mul(tmp, ftmp, ftmp5);
    777   p224_felem_reduce(z_out, tmp);
    778 
    779   // ftmp = (z1^2*x2 - z2^2*x1)^2
    780   p224_felem_assign(ftmp5, ftmp);
    781   p224_felem_square(tmp, ftmp);
    782   p224_felem_reduce(ftmp, tmp);
    783 
    784   // ftmp5 = (z1^2*x2 - z2^2*x1)^3
    785   p224_felem_mul(tmp, ftmp, ftmp5);
    786   p224_felem_reduce(ftmp5, tmp);
    787 
    788   // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2
    789   p224_felem_mul(tmp, ftmp2, ftmp);
    790   p224_felem_reduce(ftmp2, tmp);
    791 
    792   // tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3
    793   p224_felem_mul(tmp, ftmp4, ftmp5);
    794   // tmp[i] < 4 * 2^57 * 2^57 = 2^116
    795 
    796   // tmp2 = (z1^3*y2 - z2^3*y1)^2
    797   p224_felem_square(tmp2, ftmp3);
    798   // tmp2[i] < 4 * 2^57 * 2^57 < 2^116
    799 
    800   // tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3
    801   p224_felem_diff_128_64(tmp2, ftmp5);
    802   // tmp2[i] < 2^116 + 2^64 + 8 < 2^117
    803 
    804   // ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2
    805   p224_felem_assign(ftmp5, ftmp2);
    806   p224_felem_scalar(ftmp5, 2);
    807   // ftmp5[i] < 2 * 2^57 = 2^58
    808 
    809   /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
    810      2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
    811   p224_felem_diff_128_64(tmp2, ftmp5);
    812   // tmp2[i] < 2^117 + 2^64 + 8 < 2^118
    813   p224_felem_reduce(x_out, tmp2);
    814 
    815   // ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out
    816   p224_felem_diff(ftmp2, x_out);
    817   // ftmp2[i] < 2^57 + 2^58 + 2 < 2^59
    818 
    819   // tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out)
    820   p224_felem_mul(tmp2, ftmp3, ftmp2);
    821   // tmp2[i] < 4 * 2^57 * 2^59 = 2^118
    822 
    823   /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
    824      z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
    825   p224_widefelem_diff(tmp2, tmp);
    826   // tmp2[i] < 2^118 + 2^120 < 2^121
    827   p224_felem_reduce(y_out, tmp2);
    828 
    829   // the result (x_out, y_out, z_out) is incorrect if one of the inputs is
    830   // the point at infinity, so we need to check for this separately
    831 
    832   // if point 1 is at infinity, copy point 2 to output, and vice versa
    833   p224_copy_conditional(x_out, x2, z1_is_zero);
    834   p224_copy_conditional(x_out, x1, z2_is_zero);
    835   p224_copy_conditional(y_out, y2, z1_is_zero);
    836   p224_copy_conditional(y_out, y1, z2_is_zero);
    837   p224_copy_conditional(z_out, z2, z1_is_zero);
    838   p224_copy_conditional(z_out, z1, z2_is_zero);
    839   p224_felem_assign(x3, x_out);
    840   p224_felem_assign(y3, y_out);
    841   p224_felem_assign(z3, z_out);
    842 }
    843 
    844 // p224_select_point selects the |idx|th point from a precomputation table and
    845 // copies it to out.
    846 static void p224_select_point(const uint64_t idx, size_t size,
    847                               const p224_felem pre_comp[/*size*/][3],
    848                               p224_felem out[3]) {
    849   p224_limb *outlimbs = &out[0][0];
    850   OPENSSL_memset(outlimbs, 0, 3 * sizeof(p224_felem));
    851 
    852   for (size_t i = 0; i < size; i++) {
    853     const p224_limb *inlimbs = &pre_comp[i][0][0];
    854     uint64_t mask = i ^ idx;
    855     mask |= mask >> 4;
    856     mask |= mask >> 2;
    857     mask |= mask >> 1;
    858     mask &= 1;
    859     mask--;
    860     for (size_t j = 0; j < 4 * 3; j++) {
    861       outlimbs[j] |= inlimbs[j] & mask;
    862     }
    863   }
    864 }
    865 
    866 // p224_get_bit returns the |i|th bit in |in|
    867 static char p224_get_bit(const p224_felem_bytearray in, size_t i) {
    868   if (i >= 224) {
    869     return 0;
    870   }
    871   return (in[i >> 3] >> (i & 7)) & 1;
    872 }
    873 
    874 // Interleaved point multiplication using precomputed point multiples:
    875 // The small point multiples 0*P, 1*P, ..., 16*P are in p_pre_comp, the scalars
    876 // in p_scalar, if non-NULL. If g_scalar is non-NULL, we also add this multiple
    877 // of the generator, using certain (large) precomputed multiples in
    878 // g_p224_pre_comp. Output point (X, Y, Z) is stored in x_out, y_out, z_out
    879 static void p224_batch_mul(p224_felem x_out, p224_felem y_out, p224_felem z_out,
    880                            const uint8_t *p_scalar, const uint8_t *g_scalar,
    881                            const p224_felem p_pre_comp[17][3]) {
    882   p224_felem nq[3], tmp[4];
    883   uint64_t bits;
    884   uint8_t sign, digit;
    885 
    886   // set nq to the point at infinity
    887   OPENSSL_memset(nq, 0, 3 * sizeof(p224_felem));
    888 
    889   // Loop over both scalars msb-to-lsb, interleaving additions of multiples of
    890   // the generator (two in each of the last 28 rounds) and additions of p (every
    891   // 5th round).
    892   int skip = 1;  // save two point operations in the first round
    893   size_t i = p_scalar != NULL ? 220 : 27;
    894   for (;;) {
    895     // double
    896     if (!skip) {
    897       p224_point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
    898     }
    899 
    900     // add multiples of the generator
    901     if (g_scalar != NULL && i <= 27) {
    902       // first, look 28 bits upwards
    903       bits = p224_get_bit(g_scalar, i + 196) << 3;
    904       bits |= p224_get_bit(g_scalar, i + 140) << 2;
    905       bits |= p224_get_bit(g_scalar, i + 84) << 1;
    906       bits |= p224_get_bit(g_scalar, i + 28);
    907       // select the point to add, in constant time
    908       p224_select_point(bits, 16, g_p224_pre_comp[1], tmp);
    909 
    910       if (!skip) {
    911         p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
    912                        tmp[0], tmp[1], tmp[2]);
    913       } else {
    914         OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
    915         skip = 0;
    916       }
    917 
    918       // second, look at the current position
    919       bits = p224_get_bit(g_scalar, i + 168) << 3;
    920       bits |= p224_get_bit(g_scalar, i + 112) << 2;
    921       bits |= p224_get_bit(g_scalar, i + 56) << 1;
    922       bits |= p224_get_bit(g_scalar, i);
    923       // select the point to add, in constant time
    924       p224_select_point(bits, 16, g_p224_pre_comp[0], tmp);
    925       p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
    926                      tmp[0], tmp[1], tmp[2]);
    927     }
    928 
    929     // do other additions every 5 doublings
    930     if (p_scalar != NULL && i % 5 == 0) {
    931       bits = p224_get_bit(p_scalar, i + 4) << 5;
    932       bits |= p224_get_bit(p_scalar, i + 3) << 4;
    933       bits |= p224_get_bit(p_scalar, i + 2) << 3;
    934       bits |= p224_get_bit(p_scalar, i + 1) << 2;
    935       bits |= p224_get_bit(p_scalar, i) << 1;
    936       bits |= p224_get_bit(p_scalar, i - 1);
    937       ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
    938 
    939       // select the point to add or subtract
    940       p224_select_point(digit, 17, p_pre_comp, tmp);
    941       p224_felem_neg(tmp[3], tmp[1]);  // (X, -Y, Z) is the negative point
    942       p224_copy_conditional(tmp[1], tmp[3], sign);
    943 
    944       if (!skip) {
    945         p224_point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 0 /* mixed */,
    946                        tmp[0], tmp[1], tmp[2]);
    947       } else {
    948         OPENSSL_memcpy(nq, tmp, 3 * sizeof(p224_felem));
    949         skip = 0;
    950       }
    951     }
    952 
    953     if (i == 0) {
    954       break;
    955     }
    956     --i;
    957   }
    958   p224_felem_assign(x_out, nq[0]);
    959   p224_felem_assign(y_out, nq[1]);
    960   p224_felem_assign(z_out, nq[2]);
    961 }
    962 
    963 // Takes the Jacobian coordinates (X, Y, Z) of a point and returns
    964 // (X', Y') = (X/Z^2, Y/Z^3)
    965 static int ec_GFp_nistp224_point_get_affine_coordinates(
    966     const EC_GROUP *group, const EC_RAW_POINT *point, EC_FELEM *x,
    967     EC_FELEM *y) {
    968   if (ec_GFp_simple_is_at_infinity(group, point)) {
    969     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
    970     return 0;
    971   }
    972 
    973   p224_felem z1, z2;
    974   p224_widefelem tmp;
    975   p224_generic_to_felem(z1, &point->Z);
    976   p224_felem_inv(z2, z1);
    977   p224_felem_square(tmp, z2);
    978   p224_felem_reduce(z1, tmp);
    979 
    980   if (x != NULL) {
    981     p224_felem x_in, x_out;
    982     p224_generic_to_felem(x_in, &point->X);
    983     p224_felem_mul(tmp, x_in, z1);
    984     p224_felem_reduce(x_out, tmp);
    985     p224_felem_to_generic(x, x_out);
    986   }
    987 
    988   if (y != NULL) {
    989     p224_felem y_in, y_out;
    990     p224_generic_to_felem(y_in, &point->Y);
    991     p224_felem_mul(tmp, z1, z2);
    992     p224_felem_reduce(z1, tmp);
    993     p224_felem_mul(tmp, y_in, z1);
    994     p224_felem_reduce(y_out, tmp);
    995     p224_felem_to_generic(y, y_out);
    996   }
    997 
    998   return 1;
    999 }
   1000 
   1001 static void ec_GFp_nistp224_add(const EC_GROUP *group, EC_RAW_POINT *r,
   1002                                 const EC_RAW_POINT *a, const EC_RAW_POINT *b) {
   1003   p224_felem x1, y1, z1, x2, y2, z2;
   1004   p224_generic_to_felem(x1, &a->X);
   1005   p224_generic_to_felem(y1, &a->Y);
   1006   p224_generic_to_felem(z1, &a->Z);
   1007   p224_generic_to_felem(x2, &b->X);
   1008   p224_generic_to_felem(y2, &b->Y);
   1009   p224_generic_to_felem(z2, &b->Z);
   1010   p224_point_add(x1, y1, z1, x1, y1, z1, 0 /* both Jacobian */, x2, y2, z2);
   1011   // The outputs are already reduced, but still need to be contracted.
   1012   p224_felem_to_generic(&r->X, x1);
   1013   p224_felem_to_generic(&r->Y, y1);
   1014   p224_felem_to_generic(&r->Z, z1);
   1015 }
   1016 
   1017 static void ec_GFp_nistp224_dbl(const EC_GROUP *group, EC_RAW_POINT *r,
   1018                                 const EC_RAW_POINT *a) {
   1019   p224_felem x, y, z;
   1020   p224_generic_to_felem(x, &a->X);
   1021   p224_generic_to_felem(y, &a->Y);
   1022   p224_generic_to_felem(z, &a->Z);
   1023   p224_point_double(x, y, z, x, y, z);
   1024   // The outputs are already reduced, but still need to be contracted.
   1025   p224_felem_to_generic(&r->X, x);
   1026   p224_felem_to_generic(&r->Y, y);
   1027   p224_felem_to_generic(&r->Z, z);
   1028 }
   1029 
   1030 static void ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_RAW_POINT *r,
   1031                                        const EC_SCALAR *g_scalar,
   1032                                        const EC_RAW_POINT *p,
   1033                                        const EC_SCALAR *p_scalar) {
   1034   p224_felem p_pre_comp[17][3];
   1035   p224_felem x_out, y_out, z_out;
   1036 
   1037   if (p != NULL && p_scalar != NULL) {
   1038     // We treat NULL scalars as 0, and NULL points as points at infinity, i.e.,
   1039     // they contribute nothing to the linear combination.
   1040     OPENSSL_memset(&p_pre_comp, 0, sizeof(p_pre_comp));
   1041     // precompute multiples
   1042     p224_generic_to_felem(x_out, &p->X);
   1043     p224_generic_to_felem(y_out, &p->Y);
   1044     p224_generic_to_felem(z_out, &p->Z);
   1045 
   1046     p224_felem_assign(p_pre_comp[1][0], x_out);
   1047     p224_felem_assign(p_pre_comp[1][1], y_out);
   1048     p224_felem_assign(p_pre_comp[1][2], z_out);
   1049 
   1050     for (size_t j = 2; j <= 16; ++j) {
   1051       if (j & 1) {
   1052         p224_point_add(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
   1053                        p_pre_comp[1][0], p_pre_comp[1][1], p_pre_comp[1][2], 0,
   1054                        p_pre_comp[j - 1][0], p_pre_comp[j - 1][1],
   1055                        p_pre_comp[j - 1][2]);
   1056       } else {
   1057         p224_point_double(p_pre_comp[j][0], p_pre_comp[j][1], p_pre_comp[j][2],
   1058                           p_pre_comp[j / 2][0], p_pre_comp[j / 2][1],
   1059                           p_pre_comp[j / 2][2]);
   1060       }
   1061     }
   1062   }
   1063 
   1064   p224_batch_mul(x_out, y_out, z_out,
   1065                  (p != NULL && p_scalar != NULL) ? p_scalar->bytes : NULL,
   1066                  g_scalar != NULL ? g_scalar->bytes : NULL,
   1067                  (const p224_felem(*)[3])p_pre_comp);
   1068 
   1069   // reduce the output to its unique minimal representation
   1070   p224_felem_to_generic(&r->X, x_out);
   1071   p224_felem_to_generic(&r->Y, y_out);
   1072   p224_felem_to_generic(&r->Z, z_out);
   1073 }
   1074 
   1075 static void ec_GFp_nistp224_felem_mul(const EC_GROUP *group, EC_FELEM *r,
   1076                                       const EC_FELEM *a, const EC_FELEM *b) {
   1077   p224_felem felem1, felem2;
   1078   p224_widefelem wide;
   1079   p224_generic_to_felem(felem1, a);
   1080   p224_generic_to_felem(felem2, b);
   1081   p224_felem_mul(wide, felem1, felem2);
   1082   p224_felem_reduce(felem1, wide);
   1083   p224_felem_to_generic(r, felem1);
   1084 }
   1085 
   1086 static void ec_GFp_nistp224_felem_sqr(const EC_GROUP *group, EC_FELEM *r,
   1087                                       const EC_FELEM *a) {
   1088   p224_felem felem;
   1089   p224_generic_to_felem(felem, a);
   1090   p224_widefelem wide;
   1091   p224_felem_square(wide, felem);
   1092   p224_felem_reduce(felem, wide);
   1093   p224_felem_to_generic(r, felem);
   1094 }
   1095 
   1096 static int ec_GFp_nistp224_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out,
   1097                                            const BIGNUM *in) {
   1098   return bn_copy_words(out->words, group->field.width, in);
   1099 }
   1100 
   1101 static int ec_GFp_nistp224_felem_to_bignum(const EC_GROUP *group, BIGNUM *out,
   1102                                            const EC_FELEM *in) {
   1103   return bn_set_words(out, in->words, group->field.width);
   1104 }
   1105 
   1106 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistp224_method) {
   1107   out->group_init = ec_GFp_simple_group_init;
   1108   out->group_finish = ec_GFp_simple_group_finish;
   1109   out->group_set_curve = ec_GFp_simple_group_set_curve;
   1110   out->point_get_affine_coordinates =
   1111       ec_GFp_nistp224_point_get_affine_coordinates;
   1112   out->add = ec_GFp_nistp224_add;
   1113   out->dbl = ec_GFp_nistp224_dbl;
   1114   out->mul = ec_GFp_nistp224_points_mul;
   1115   out->mul_public = ec_GFp_nistp224_points_mul;
   1116   out->felem_mul = ec_GFp_nistp224_felem_mul;
   1117   out->felem_sqr = ec_GFp_nistp224_felem_sqr;
   1118   out->bignum_to_felem = ec_GFp_nistp224_bignum_to_felem;
   1119   out->felem_to_bignum = ec_GFp_nistp224_felem_to_bignum;
   1120   out->scalar_inv_montgomery = ec_simple_scalar_inv_montgomery;
   1121   out->scalar_inv_montgomery_vartime = ec_GFp_simple_mont_inv_mod_ord_vartime;
   1122   out->cmp_x_coordinate = ec_GFp_simple_cmp_x_coordinate;
   1123 }
   1124 
   1125 #endif  // BORINGSSL_HAS_UINT128 && !SMALL
   1126