Home | History | Annotate | Download | only in ec
      1 /* Originally written by Bodo Moeller for the OpenSSL project.
      2  * ====================================================================
      3  * Copyright (c) 1998-2005 The OpenSSL Project.  All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *
      9  * 1. Redistributions of source code must retain the above copyright
     10  *    notice, this list of conditions and the following disclaimer.
     11  *
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in
     14  *    the documentation and/or other materials provided with the
     15  *    distribution.
     16  *
     17  * 3. All advertising materials mentioning features or use of this
     18  *    software must display the following acknowledgment:
     19  *    "This product includes software developed by the OpenSSL Project
     20  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
     21  *
     22  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
     23  *    endorse or promote products derived from this software without
     24  *    prior written permission. For written permission, please contact
     25  *    openssl-core (at) openssl.org.
     26  *
     27  * 5. Products derived from this software may not be called "OpenSSL"
     28  *    nor may "OpenSSL" appear in their names without prior written
     29  *    permission of the OpenSSL Project.
     30  *
     31  * 6. Redistributions of any form whatsoever must retain the following
     32  *    acknowledgment:
     33  *    "This product includes software developed by the OpenSSL Project
     34  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
     35  *
     36  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
     37  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     38  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     39  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
     40  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     41  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     42  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     43  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     44  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     45  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     46  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
     47  * OF THE POSSIBILITY OF SUCH DAMAGE.
     48  * ====================================================================
     49  *
     50  * This product includes cryptographic software written by Eric Young
     51  * (eay (at) cryptsoft.com).  This product includes software written by Tim
     52  * Hudson (tjh (at) cryptsoft.com).
     53  *
     54  */
     55 /* ====================================================================
     56  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
     57  *
     58  * Portions of the attached software ("Contribution") are developed by
     59  * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
     60  *
     61  * The Contribution is licensed pursuant to the OpenSSL open source
     62  * license provided above.
     63  *
     64  * The elliptic curve binary polynomial software is originally written by
     65  * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
     66  * Laboratories. */
     67 
     68 #include <openssl/ec.h>
     69 
     70 #include <assert.h>
     71 #include <string.h>
     72 
     73 #include <openssl/bn.h>
     74 #include <openssl/err.h>
     75 #include <openssl/thread.h>
     76 
     77 #include "internal.h"
     78 #include "../bn/internal.h"
     79 #include "../../internal.h"
     80 
     81 
     82 // This file implements the wNAF-based interleaving multi-exponentiation method
     83 // at:
     84 //   http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
     85 //   http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
     86 
     87 void ec_compute_wNAF(const EC_GROUP *group, int8_t *out,
     88                      const EC_SCALAR *scalar, size_t bits, int w) {
     89   // 'int8_t' can represent integers with absolute values less than 2^7.
     90   assert(0 < w && w <= 7);
     91   assert(bits != 0);
     92   int bit = 1 << w;         // 2^w, at most 128
     93   int next_bit = bit << 1;  // 2^(w+1), at most 256
     94   int mask = next_bit - 1;  // at most 255
     95 
     96   int window_val = scalar->words[0] & mask;
     97   for (size_t j = 0; j < bits + 1; j++) {
     98     assert(0 <= window_val && window_val <= next_bit);
     99     int digit = 0;
    100     if (window_val & 1) {
    101       assert(0 < window_val && window_val < next_bit);
    102       if (window_val & bit) {
    103         digit = window_val - next_bit;
    104         // We know -next_bit < digit < 0 and window_val - digit = next_bit.
    105 
    106         // modified wNAF
    107         if (j + w + 1 >= bits) {
    108           // special case for generating modified wNAFs:
    109           // no new bits will be added into window_val,
    110           // so using a positive digit here will decrease
    111           // the total length of the representation
    112 
    113           digit = window_val & (mask >> 1);
    114           // We know 0 < digit < bit and window_val - digit = bit.
    115         }
    116       } else {
    117         digit = window_val;
    118         // We know 0 < digit < bit and window_val - digit = 0.
    119       }
    120 
    121       window_val -= digit;
    122 
    123       // Now window_val is 0 or 2^(w+1) in standard wNAF generation.
    124       // For modified window NAFs, it may also be 2^w.
    125       //
    126       // See the comments above for the derivation of each of these bounds.
    127       assert(window_val == 0 || window_val == next_bit || window_val == bit);
    128       assert(-bit < digit && digit < bit);
    129 
    130       // window_val was odd, so digit is also odd.
    131       assert(digit & 1);
    132     }
    133 
    134     out[j] = digit;
    135 
    136     // Incorporate the next bit. Previously, |window_val| <= |next_bit|, so if
    137     // we shift and add at most one copy of |bit|, this will continue to hold
    138     // afterwards.
    139     window_val >>= 1;
    140     window_val +=
    141         bit * bn_is_bit_set_words(scalar->words, group->order.width, j + w + 1);
    142     assert(window_val <= next_bit);
    143   }
    144 
    145   // bits + 1 entries should be sufficient to consume all bits.
    146   assert(window_val == 0);
    147 }
    148 
    149 // compute_precomp sets |out[i]| to (2*i+1)*p, for i from 0 to |len|.
    150 static void compute_precomp(const EC_GROUP *group, EC_RAW_POINT *out,
    151                             const EC_RAW_POINT *p, size_t len) {
    152   ec_GFp_simple_point_copy(&out[0], p);
    153   EC_RAW_POINT two_p;
    154   ec_GFp_mont_dbl(group, &two_p, p);
    155   for (size_t i = 1; i < len; i++) {
    156     ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p);
    157   }
    158 }
    159 
    160 static void lookup_precomp(const EC_GROUP *group, EC_RAW_POINT *out,
    161                            const EC_RAW_POINT *precomp, int digit) {
    162   if (digit < 0) {
    163     digit = -digit;
    164     ec_GFp_simple_point_copy(out, &precomp[digit >> 1]);
    165     ec_GFp_simple_invert(group, out);
    166   } else {
    167     ec_GFp_simple_point_copy(out, &precomp[digit >> 1]);
    168   }
    169 }
    170 
    171 // EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|.
    172 #define EC_WNAF_WINDOW_BITS 4
    173 
    174 // EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|.
    175 #define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1))
    176 
    177 void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r,
    178                             const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
    179                             const EC_SCALAR *p_scalar) {
    180   size_t bits = BN_num_bits(&group->order);
    181   size_t wNAF_len = bits + 1;
    182 
    183   int8_t g_wNAF[EC_MAX_BYTES * 8 + 1];
    184   EC_RAW_POINT g_precomp[EC_WNAF_TABLE_SIZE];
    185   assert(wNAF_len <= OPENSSL_ARRAY_SIZE(g_wNAF));
    186   const EC_RAW_POINT *g = &group->generator->raw;
    187   ec_compute_wNAF(group, g_wNAF, g_scalar, bits, EC_WNAF_WINDOW_BITS);
    188   compute_precomp(group, g_precomp, g, EC_WNAF_TABLE_SIZE);
    189 
    190   int8_t p_wNAF[EC_MAX_BYTES * 8 + 1];
    191   EC_RAW_POINT p_precomp[EC_WNAF_TABLE_SIZE];
    192   assert(wNAF_len <= OPENSSL_ARRAY_SIZE(p_wNAF));
    193   ec_compute_wNAF(group, p_wNAF, p_scalar, bits, EC_WNAF_WINDOW_BITS);
    194   compute_precomp(group, p_precomp, p, EC_WNAF_TABLE_SIZE);
    195 
    196   EC_RAW_POINT tmp;
    197   int r_is_at_infinity = 1;
    198   for (size_t k = wNAF_len - 1; k < wNAF_len; k--) {
    199     if (!r_is_at_infinity) {
    200       ec_GFp_mont_dbl(group, r, r);
    201     }
    202 
    203     if (g_wNAF[k] != 0) {
    204       lookup_precomp(group, &tmp, g_precomp, g_wNAF[k]);
    205       if (r_is_at_infinity) {
    206         ec_GFp_simple_point_copy(r, &tmp);
    207         r_is_at_infinity = 0;
    208       } else {
    209         ec_GFp_mont_add(group, r, r, &tmp);
    210       }
    211     }
    212 
    213     if (p_wNAF[k] != 0) {
    214       lookup_precomp(group, &tmp, p_precomp, p_wNAF[k]);
    215       if (r_is_at_infinity) {
    216         ec_GFp_simple_point_copy(r, &tmp);
    217         r_is_at_infinity = 0;
    218       } else {
    219         ec_GFp_mont_add(group, r, r, &tmp);
    220       }
    221     }
    222   }
    223 
    224   if (r_is_at_infinity) {
    225     ec_GFp_simple_point_set_to_infinity(group, r);
    226   }
    227 }
    228