Home | History | Annotate | Download | only in asm
      1 #! /usr/bin/env perl
      2 # Copyright 1998-2016 The OpenSSL Project Authors. All Rights Reserved.
      3 #
      4 # Licensed under the OpenSSL license (the "License").  You may not use
      5 # this file except in compliance with the License.  You can obtain a copy
      6 # in the file LICENSE in the source distribution or at
      7 # https://www.openssl.org/source/license.html
      8 
      9 
     10 # ====================================================================
     11 # [Re]written by Andy Polyakov <appro (at] openssl.org> for the OpenSSL
     12 # project. The module is, however, dual licensed under OpenSSL and
     13 # CRYPTOGAMS licenses depending on where you obtain it. For further
     14 # details see http://www.openssl.org/~appro/cryptogams/.
     15 # ====================================================================
     16 
     17 # "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
     18 # functions were re-implemented to address P4 performance issue [see
     19 # commentary below], and in 2006 the rest was rewritten in order to
     20 # gain freedom to liberate licensing terms.
     21 
     22 # January, September 2004.
     23 #
     24 # It was noted that Intel IA-32 C compiler generates code which
     25 # performs ~30% *faster* on P4 CPU than original *hand-coded*
     26 # SHA1 assembler implementation. To address this problem (and
     27 # prove that humans are still better than machines:-), the
     28 # original code was overhauled, which resulted in following
     29 # performance changes:
     30 #
     31 #		compared with original	compared with Intel cc
     32 #		assembler impl.		generated code
     33 # Pentium	-16%			+48%
     34 # PIII/AMD	+8%			+16%
     35 # P4		+85%(!)			+45%
     36 #
     37 # As you can see Pentium came out as looser:-( Yet I reckoned that
     38 # improvement on P4 outweighs the loss and incorporate this
     39 # re-tuned code to 0.9.7 and later.
     40 # ----------------------------------------------------------------
     41 
     42 # August 2009.
     43 #
     44 # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
     45 # '(c&d) + (b&(c^d))', which allows to accumulate partial results
     46 # and lighten "pressure" on scratch registers. This resulted in
     47 # >12% performance improvement on contemporary AMD cores (with no
     48 # degradation on other CPUs:-). Also, the code was revised to maximize
     49 # "distance" between instructions producing input to 'lea' instruction
     50 # and the 'lea' instruction itself, which is essential for Intel Atom
     51 # core and resulted in ~15% improvement.
     52 
     53 # October 2010.
     54 #
     55 # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
     56 # is to offload message schedule denoted by Wt in NIST specification,
     57 # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
     58 # and in SSE2 context was first explored by Dean Gaudet in 2004, see
     59 # http://arctic.org/~dean/crypto/sha1.html. Since then several things
     60 # have changed that made it interesting again:
     61 #
     62 # a) XMM units became faster and wider;
     63 # b) instruction set became more versatile;
     64 # c) an important observation was made by Max Locktykhin, which made
     65 #    it possible to reduce amount of instructions required to perform
     66 #    the operation in question, for further details see
     67 #    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
     68 
     69 # April 2011.
     70 #
     71 # Add AVX code path, probably most controversial... The thing is that
     72 # switch to AVX alone improves performance by as little as 4% in
     73 # comparison to SSSE3 code path. But below result doesn't look like
     74 # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
     75 # pair of -ops, and it's the additional -ops, two per round, that
     76 # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
     77 # as single -op by Sandy Bridge and it's replacing 'ro[rl]' with
     78 # equivalent 'sh[rl]d' that is responsible for the impressive 5.1
     79 # cycles per processed byte. But 'sh[rl]d' is not something that used
     80 # to be fast, nor does it appear to be fast in upcoming Bulldozer
     81 # [according to its optimization manual]. Which is why AVX code path
     82 # is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
     83 # One can argue that it's unfair to AMD, but without 'sh[rl]d' it
     84 # makes no sense to keep the AVX code path. If somebody feels that
     85 # strongly, it's probably more appropriate to discuss possibility of
     86 # using vector rotate XOP on AMD...
     87 
     88 # March 2014.
     89 #
     90 # Add support for Intel SHA Extensions.
     91 
     92 ######################################################################
     93 # Current performance is summarized in following table. Numbers are
     94 # CPU clock cycles spent to process single byte (less is better).
     95 #
     96 #		x86		SSSE3		AVX
     97 # Pentium	15.7		-
     98 # PIII		11.5		-
     99 # P4		10.6		-
    100 # AMD K8	7.1		-
    101 # Core2		7.3		6.0/+22%	-
    102 # Westmere	7.3		5.5/+33%	-
    103 # Sandy Bridge	8.8		6.2/+40%	5.1(**)/+73%
    104 # Ivy Bridge	7.2		4.8/+51%	4.7(**)/+53%
    105 # Haswell	6.5		4.3/+51%	4.1(**)/+58%
    106 # Skylake	6.4		4.1/+55%	4.1(**)/+55%
    107 # Bulldozer	11.6		6.0/+92%
    108 # VIA Nano	10.6		7.5/+41%
    109 # Atom		12.5		9.3(*)/+35%
    110 # Silvermont	14.5		9.9(*)/+46%
    111 # Goldmont	8.8		6.7/+30%	1.7(***)/+415%
    112 #
    113 # (*)	Loop is 1056 instructions long and expected result is ~8.25.
    114 #	The discrepancy is because of front-end limitations, so
    115 #	called MS-ROM penalties, and on Silvermont even rotate's
    116 #	limited parallelism.
    117 #
    118 # (**)	As per above comment, the result is for AVX *plus* sh[rl]d.
    119 #
    120 # (***)	SHAEXT result
    121 
    122 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
    123 push(@INC,"${dir}","${dir}../../../perlasm");
    124 require "x86asm.pl";
    125 
    126 $output=pop;
    127 open STDOUT,">$output";
    128 
    129 &asm_init($ARGV[0],$ARGV[$#ARGV] eq "386");
    130 
    131 $xmm=$ymm=0;
    132 for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
    133 
    134 # In upstream, this is controlled by shelling out to the compiler to check
    135 # versions, but BoringSSL is intended to be used with pre-generated perlasm
    136 # output, so this isn't useful anyway.
    137 $ymm = 1;
    138 
    139 $ymm = 0 unless ($xmm);
    140 
    141 $shaext=$xmm;	### set to zero if compiling for 1.0.1
    142 
    143 # TODO(davidben): Consider enabling the Intel SHA Extensions code once it's
    144 # been tested.
    145 $shaext = 0;
    146 
    147 &external_label("OPENSSL_ia32cap_P") if ($xmm);
    148 
    149 
    150 $A="eax";
    151 $B="ebx";
    152 $C="ecx";
    153 $D="edx";
    154 $E="edi";
    155 $T="esi";
    156 $tmp1="ebp";
    157 
    158 @V=($A,$B,$C,$D,$E,$T);
    159 
    160 $alt=0;	# 1 denotes alternative IALU implementation, which performs
    161 	# 8% *worse* on P4, same on Westmere and Atom, 2% better on
    162 	# Sandy Bridge...
    163 
    164 sub BODY_00_15
    165 	{
    166 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    167 
    168 	&comment("00_15 $n");
    169 
    170 	&mov($f,$c);			# f to hold F_00_19(b,c,d)
    171 	 if ($n==0)  { &mov($tmp1,$a); }
    172 	 else        { &mov($a,$tmp1); }
    173 	&rotl($tmp1,5);			# tmp1=ROTATE(a,5)
    174 	 &xor($f,$d);
    175 	&add($tmp1,$e);			# tmp1+=e;
    176 	 &mov($e,&swtmp($n%16));	# e becomes volatile and is loaded
    177 	 				# with xi, also note that e becomes
    178 					# f in next round...
    179 	&and($f,$b);
    180 	&rotr($b,2);			# b=ROTATE(b,30)
    181 	 &xor($f,$d);			# f holds F_00_19(b,c,d)
    182 	&lea($tmp1,&DWP(0x5a827999,$tmp1,$e));	# tmp1+=K_00_19+xi
    183 
    184 	if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
    185 		      &add($f,$tmp1); }	# f+=tmp1
    186 	else        { &add($tmp1,$f); }	# f becomes a in next round
    187 	&mov($tmp1,$a)			if ($alt && $n==15);
    188 	}
    189 
    190 sub BODY_16_19
    191 	{
    192 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    193 
    194 	&comment("16_19 $n");
    195 
    196 if ($alt) {
    197 	&xor($c,$d);
    198 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    199 	&and($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d), b&=c^d
    200 	 &xor($f,&swtmp(($n+8)%16));
    201 	&xor($tmp1,$d);			# tmp1=F_00_19(b,c,d)
    202 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    203 	&rotl($f,1);			# f=ROTATE(f,1)
    204 	 &add($e,$tmp1);		# e+=F_00_19(b,c,d)
    205 	&xor($c,$d);			# restore $c
    206 	 &mov($tmp1,$a);		# b in next round
    207 	&rotr($b,$n==16?2:7);		# b=ROTATE(b,30)
    208 	 &mov(&swtmp($n%16),$f);	# xi=f
    209 	&rotl($a,5);			# ROTATE(a,5)
    210 	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
    211 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    212 	 &add($f,$a);			# f+=ROTATE(a,5)
    213 } else {
    214 	&mov($tmp1,$c);			# tmp1 to hold F_00_19(b,c,d)
    215 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    216 	&xor($tmp1,$d);
    217 	 &xor($f,&swtmp(($n+8)%16));
    218 	&and($tmp1,$b);
    219 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    220 	&rotl($f,1);			# f=ROTATE(f,1)
    221 	 &xor($tmp1,$d);		# tmp1=F_00_19(b,c,d)
    222 	&add($e,$tmp1);			# e+=F_00_19(b,c,d)
    223 	 &mov($tmp1,$a);
    224 	&rotr($b,2);			# b=ROTATE(b,30)
    225 	 &mov(&swtmp($n%16),$f);	# xi=f
    226 	&rotl($tmp1,5);			# ROTATE(a,5)
    227 	 &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
    228 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    229 	 &add($f,$tmp1);		# f+=ROTATE(a,5)
    230 }
    231 	}
    232 
    233 sub BODY_20_39
    234 	{
    235 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    236 	local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
    237 
    238 	&comment("20_39 $n");
    239 
    240 if ($alt) {
    241 	&xor($tmp1,$c);			# tmp1 to hold F_20_39(b,c,d), b^=c
    242 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    243 	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
    244 	 &xor($f,&swtmp(($n+8)%16));
    245 	&add($e,$tmp1);			# e+=F_20_39(b,c,d)
    246 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    247 	&rotl($f,1);			# f=ROTATE(f,1)
    248 	 &mov($tmp1,$a);		# b in next round
    249 	&rotr($b,7);			# b=ROTATE(b,30)
    250 	 &mov(&swtmp($n%16),$f)		if($n<77);# xi=f
    251 	&rotl($a,5);			# ROTATE(a,5)
    252 	 &xor($b,$c)			if($n==39);# warm up for BODY_40_59
    253 	&and($tmp1,$b)			if($n==39);
    254 	 &lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
    255 	&mov($e,&swtmp(($n+1)%16))	if($n<79);# pre-fetch f for next round
    256 	 &add($f,$a);			# f+=ROTATE(a,5)
    257 	&rotr($a,5)			if ($n==79);
    258 } else {
    259 	&mov($tmp1,$b);			# tmp1 to hold F_20_39(b,c,d)
    260 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    261 	&xor($tmp1,$c);
    262 	 &xor($f,&swtmp(($n+8)%16));
    263 	&xor($tmp1,$d);			# tmp1 holds F_20_39(b,c,d)
    264 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    265 	&rotl($f,1);			# f=ROTATE(f,1)
    266 	 &add($e,$tmp1);		# e+=F_20_39(b,c,d)
    267 	&rotr($b,2);			# b=ROTATE(b,30)
    268 	 &mov($tmp1,$a);
    269 	&rotl($tmp1,5);			# ROTATE(a,5)
    270 	 &mov(&swtmp($n%16),$f) if($n<77);# xi=f
    271 	&lea($f,&DWP($K,$f,$e));	# f+=e+K_XX_YY
    272 	 &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
    273 	&add($f,$tmp1);			# f+=ROTATE(a,5)
    274 }
    275 	}
    276 
    277 sub BODY_40_59
    278 	{
    279 	local($n,$a,$b,$c,$d,$e,$f)=@_;
    280 
    281 	&comment("40_59 $n");
    282 
    283 if ($alt) {
    284 	&add($e,$tmp1);			# e+=b&(c^d)
    285 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    286 	&mov($tmp1,$d);
    287 	 &xor($f,&swtmp(($n+8)%16));
    288 	&xor($c,$d);			# restore $c
    289 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    290 	&rotl($f,1);			# f=ROTATE(f,1)
    291 	 &and($tmp1,$c);
    292 	&rotr($b,7);			# b=ROTATE(b,30)
    293 	 &add($e,$tmp1);		# e+=c&d
    294 	&mov($tmp1,$a);			# b in next round
    295 	 &mov(&swtmp($n%16),$f);	# xi=f
    296 	&rotl($a,5);			# ROTATE(a,5)
    297 	 &xor($b,$c)			if ($n<59);
    298 	&and($tmp1,$b)			if ($n<59);# tmp1 to hold F_40_59(b,c,d)
    299 	 &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
    300 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    301 	 &add($f,$a);			# f+=ROTATE(a,5)
    302 } else {
    303 	&mov($tmp1,$c);			# tmp1 to hold F_40_59(b,c,d)
    304 	 &xor($f,&swtmp(($n+2)%16));	# f to hold Xupdate(xi,xa,xb,xc,xd)
    305 	&xor($tmp1,$d);
    306 	 &xor($f,&swtmp(($n+8)%16));
    307 	&and($tmp1,$b);
    308 	 &xor($f,&swtmp(($n+13)%16));	# f holds xa^xb^xc^xd
    309 	&rotl($f,1);			# f=ROTATE(f,1)
    310 	 &add($tmp1,$e);		# b&(c^d)+=e
    311 	&rotr($b,2);			# b=ROTATE(b,30)
    312 	 &mov($e,$a);			# e becomes volatile
    313 	&rotl($e,5);			# ROTATE(a,5)
    314 	 &mov(&swtmp($n%16),$f);	# xi=f
    315 	&lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
    316 	 &mov($tmp1,$c);
    317 	&add($f,$e);			# f+=ROTATE(a,5)
    318 	 &and($tmp1,$d);
    319 	&mov($e,&swtmp(($n+1)%16));	# pre-fetch f for next round
    320 	 &add($f,$tmp1);		# f+=c&d
    321 }
    322 	}
    323 
    324 &function_begin("sha1_block_data_order");
    325 if ($xmm) {
    326   &static_label("shaext_shortcut")	if ($shaext);
    327   &static_label("ssse3_shortcut");
    328   &static_label("avx_shortcut")		if ($ymm);
    329   &static_label("K_XX_XX");
    330 
    331 	&call	(&label("pic_point"));	# make it PIC!
    332   &set_label("pic_point");
    333 	&blindpop($tmp1);
    334 	&picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
    335 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    336 
    337 	&mov	($A,&DWP(0,$T));
    338 	&mov	($D,&DWP(4,$T));
    339 	&test	($D,1<<9);		# check SSSE3 bit
    340 	&jz	(&label("x86"));
    341 	&mov	($C,&DWP(8,$T));
    342 	&test	($A,1<<24);		# check FXSR bit
    343 	&jz	(&label("x86"));
    344 	if ($shaext) {
    345 		&test	($C,1<<29);		# check SHA bit
    346 		&jnz	(&label("shaext_shortcut"));
    347 	}
    348 	if ($ymm) {
    349 		&and	($D,1<<28);		# mask AVX bit
    350 		&and	($A,1<<30);		# mask "Intel CPU" bit
    351 		&or	($A,$D);
    352 		&cmp	($A,1<<28|1<<30);
    353 		&je	(&label("avx_shortcut"));
    354 	}
    355 	&jmp	(&label("ssse3_shortcut"));
    356   &set_label("x86",16);
    357 }
    358 	&mov($tmp1,&wparam(0));	# SHA_CTX *c
    359 	&mov($T,&wparam(1));	# const void *input
    360 	&mov($A,&wparam(2));	# size_t num
    361 	&stack_push(16+3);	# allocate X[16]
    362 	&shl($A,6);
    363 	&add($A,$T);
    364 	&mov(&wparam(2),$A);	# pointer beyond the end of input
    365 	&mov($E,&DWP(16,$tmp1));# pre-load E
    366 	&jmp(&label("loop"));
    367 
    368 &set_label("loop",16);
    369 
    370 	# copy input chunk to X, but reversing byte order!
    371 	for ($i=0; $i<16; $i+=4)
    372 		{
    373 		&mov($A,&DWP(4*($i+0),$T));
    374 		&mov($B,&DWP(4*($i+1),$T));
    375 		&mov($C,&DWP(4*($i+2),$T));
    376 		&mov($D,&DWP(4*($i+3),$T));
    377 		&bswap($A);
    378 		&bswap($B);
    379 		&bswap($C);
    380 		&bswap($D);
    381 		&mov(&swtmp($i+0),$A);
    382 		&mov(&swtmp($i+1),$B);
    383 		&mov(&swtmp($i+2),$C);
    384 		&mov(&swtmp($i+3),$D);
    385 		}
    386 	&mov(&wparam(1),$T);	# redundant in 1st spin
    387 
    388 	&mov($A,&DWP(0,$tmp1));	# load SHA_CTX
    389 	&mov($B,&DWP(4,$tmp1));
    390 	&mov($C,&DWP(8,$tmp1));
    391 	&mov($D,&DWP(12,$tmp1));
    392 	# E is pre-loaded
    393 
    394 	for($i=0;$i<16;$i++)	{ &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
    395 	for(;$i<20;$i++)	{ &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
    396 	for(;$i<40;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
    397 	for(;$i<60;$i++)	{ &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
    398 	for(;$i<80;$i++)	{ &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
    399 
    400 	(($V[5] eq $D) and ($V[0] eq $E)) or die;	# double-check
    401 
    402 	&mov($tmp1,&wparam(0));	# re-load SHA_CTX*
    403 	&mov($D,&wparam(1));	# D is last "T" and is discarded
    404 
    405 	&add($E,&DWP(0,$tmp1));	# E is last "A"...
    406 	&add($T,&DWP(4,$tmp1));
    407 	&add($A,&DWP(8,$tmp1));
    408 	&add($B,&DWP(12,$tmp1));
    409 	&add($C,&DWP(16,$tmp1));
    410 
    411 	&mov(&DWP(0,$tmp1),$E);	# update SHA_CTX
    412 	 &add($D,64);		# advance input pointer
    413 	&mov(&DWP(4,$tmp1),$T);
    414 	 &cmp($D,&wparam(2));	# have we reached the end yet?
    415 	&mov(&DWP(8,$tmp1),$A);
    416 	 &mov($E,$C);		# C is last "E" which needs to be "pre-loaded"
    417 	&mov(&DWP(12,$tmp1),$B);
    418 	 &mov($T,$D);		# input pointer
    419 	&mov(&DWP(16,$tmp1),$C);
    420 	&jb(&label("loop"));
    421 
    422 	&stack_pop(16+3);
    423 &function_end("sha1_block_data_order");
    424 
    425 if ($xmm) {
    426 if ($shaext) {
    427 ######################################################################
    428 # Intel SHA Extensions implementation of SHA1 update function.
    429 #
    430 my ($ctx,$inp,$num)=("edi","esi","ecx");
    431 my ($ABCD,$E,$E_,$BSWAP)=map("xmm$_",(0..3));
    432 my @MSG=map("xmm$_",(4..7));
    433 
    434 sub sha1rnds4 {
    435  my ($dst,$src,$imm)=@_;
    436     if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
    437     {	&data_byte(0x0f,0x3a,0xcc,0xc0|($1<<3)|$2,$imm);	}
    438 }
    439 sub sha1op38 {
    440  my ($opcodelet,$dst,$src)=@_;
    441     if ("$dst:$src" =~ /xmm([0-7]):xmm([0-7])/)
    442     {	&data_byte(0x0f,0x38,$opcodelet,0xc0|($1<<3)|$2);	}
    443 }
    444 sub sha1nexte	{ sha1op38(0xc8,@_); }
    445 sub sha1msg1	{ sha1op38(0xc9,@_); }
    446 sub sha1msg2	{ sha1op38(0xca,@_); }
    447 
    448 &function_begin("_sha1_block_data_order_shaext");
    449 	&call	(&label("pic_point"));	# make it PIC!
    450 	&set_label("pic_point");
    451 	&blindpop($tmp1);
    452 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    453 &set_label("shaext_shortcut");
    454 	&mov	($ctx,&wparam(0));
    455 	&mov	("ebx","esp");
    456 	&mov	($inp,&wparam(1));
    457 	&mov	($num,&wparam(2));
    458 	&sub	("esp",32);
    459 
    460 	&movdqu	($ABCD,&QWP(0,$ctx));
    461 	&movd	($E,&DWP(16,$ctx));
    462 	&and	("esp",-32);
    463 	&movdqa	($BSWAP,&QWP(0x50,$tmp1));	# byte-n-word swap
    464 
    465 	&movdqu	(@MSG[0],&QWP(0,$inp));
    466 	&pshufd	($ABCD,$ABCD,0b00011011);	# flip word order
    467 	&movdqu	(@MSG[1],&QWP(0x10,$inp));
    468 	&pshufd	($E,$E,0b00011011);		# flip word order
    469 	&movdqu	(@MSG[2],&QWP(0x20,$inp));
    470 	&pshufb	(@MSG[0],$BSWAP);
    471 	&movdqu	(@MSG[3],&QWP(0x30,$inp));
    472 	&pshufb	(@MSG[1],$BSWAP);
    473 	&pshufb	(@MSG[2],$BSWAP);
    474 	&pshufb	(@MSG[3],$BSWAP);
    475 	&jmp	(&label("loop_shaext"));
    476 
    477 &set_label("loop_shaext",16);
    478 	&dec		($num);
    479 	&lea		("eax",&DWP(0x40,$inp));
    480 	&movdqa		(&QWP(0,"esp"),$E);	# offload $E
    481 	&paddd		($E,@MSG[0]);
    482 	&cmovne		($inp,"eax");
    483 	&movdqa		(&QWP(16,"esp"),$ABCD);	# offload $ABCD
    484 
    485 for($i=0;$i<20-4;$i+=2) {
    486 	&sha1msg1	(@MSG[0],@MSG[1]);
    487 	&movdqa		($E_,$ABCD);
    488 	&sha1rnds4	($ABCD,$E,int($i/5));	# 0-3...
    489 	&sha1nexte	($E_,@MSG[1]);
    490 	&pxor		(@MSG[0],@MSG[2]);
    491 	&sha1msg1	(@MSG[1],@MSG[2]);
    492 	&sha1msg2	(@MSG[0],@MSG[3]);
    493 
    494 	&movdqa		($E,$ABCD);
    495 	&sha1rnds4	($ABCD,$E_,int(($i+1)/5));
    496 	&sha1nexte	($E,@MSG[2]);
    497 	&pxor		(@MSG[1],@MSG[3]);
    498 	&sha1msg2	(@MSG[1],@MSG[0]);
    499 
    500 	push(@MSG,shift(@MSG));	push(@MSG,shift(@MSG));
    501 }
    502 	&movdqu		(@MSG[0],&QWP(0,$inp));
    503 	&movdqa		($E_,$ABCD);
    504 	&sha1rnds4	($ABCD,$E,3);		# 64-67
    505 	&sha1nexte	($E_,@MSG[1]);
    506 	&movdqu		(@MSG[1],&QWP(0x10,$inp));
    507 	&pshufb		(@MSG[0],$BSWAP);
    508 
    509 	&movdqa		($E,$ABCD);
    510 	&sha1rnds4	($ABCD,$E_,3);		# 68-71
    511 	&sha1nexte	($E,@MSG[2]);
    512 	&movdqu		(@MSG[2],&QWP(0x20,$inp));
    513 	&pshufb		(@MSG[1],$BSWAP);
    514 
    515 	&movdqa		($E_,$ABCD);
    516 	&sha1rnds4	($ABCD,$E,3);		# 72-75
    517 	&sha1nexte	($E_,@MSG[3]);
    518 	&movdqu		(@MSG[3],&QWP(0x30,$inp));
    519 	&pshufb		(@MSG[2],$BSWAP);
    520 
    521 	&movdqa		($E,$ABCD);
    522 	&sha1rnds4	($ABCD,$E_,3);		# 76-79
    523 	&movdqa		($E_,&QWP(0,"esp"));
    524 	&pshufb		(@MSG[3],$BSWAP);
    525 	&sha1nexte	($E,$E_);
    526 	&paddd		($ABCD,&QWP(16,"esp"));
    527 
    528 	&jnz		(&label("loop_shaext"));
    529 
    530 	&pshufd	($ABCD,$ABCD,0b00011011);
    531 	&pshufd	($E,$E,0b00011011);
    532 	&movdqu	(&QWP(0,$ctx),$ABCD)
    533 	&movd	(&DWP(16,$ctx),$E);
    534 	&mov	("esp","ebx");
    535 &function_end("_sha1_block_data_order_shaext");
    536 }
    537 ######################################################################
    538 # The SSSE3 implementation.
    539 #
    540 # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
    541 # 32 elements of the message schedule or Xupdate outputs. First 4
    542 # quadruples are simply byte-swapped input, next 4 are calculated
    543 # according to method originally suggested by Dean Gaudet (modulo
    544 # being implemented in SSSE3). Once 8 quadruples or 32 elements are
    545 # collected, it switches to routine proposed by Max Locktyukhin.
    546 #
    547 # Calculations inevitably require temporary registers, and there are
    548 # no %xmm registers left to spare. For this reason part of the ring
    549 # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
    550 # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
    551 # X[-5], and X[4] - X[-4]...
    552 #
    553 # Another notable optimization is aggressive stack frame compression
    554 # aiming to minimize amount of 9-byte instructions...
    555 #
    556 # Yet another notable optimization is "jumping" $B variable. It means
    557 # that there is no register permanently allocated for $B value. This
    558 # allowed to eliminate one instruction from body_20_39...
    559 #
    560 my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
    561 my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
    562 my @V=($A,$B,$C,$D,$E);
    563 my $j=0;			# hash round
    564 my $rx=0;
    565 my @T=($T,$tmp1);
    566 my $inp;
    567 
    568 my $_rol=sub { &rol(@_) };
    569 my $_ror=sub { &ror(@_) };
    570 
    571 &function_begin("_sha1_block_data_order_ssse3");
    572 	&call	(&label("pic_point"));	# make it PIC!
    573 	&set_label("pic_point");
    574 	&blindpop($tmp1);
    575 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
    576 &set_label("ssse3_shortcut");
    577 
    578 	&movdqa	(@X[3],&QWP(0,$tmp1));		# K_00_19
    579 	&movdqa	(@X[4],&QWP(16,$tmp1));		# K_20_39
    580 	&movdqa	(@X[5],&QWP(32,$tmp1));		# K_40_59
    581 	&movdqa	(@X[6],&QWP(48,$tmp1));		# K_60_79
    582 	&movdqa	(@X[2],&QWP(64,$tmp1));		# pbswap mask
    583 
    584 	&mov	($E,&wparam(0));		# load argument block
    585 	&mov	($inp=@T[1],&wparam(1));
    586 	&mov	($D,&wparam(2));
    587 	&mov	(@T[0],"esp");
    588 
    589 	# stack frame layout
    590 	#
    591 	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
    592 	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
    593 	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
    594 	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
    595 	#
    596 	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
    597 	#	X[4]	X[5]	X[6]	X[7]
    598 	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
    599 	#
    600 	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
    601 	#	K_40_59	K_40_59	K_40_59	K_40_59
    602 	#	K_60_79	K_60_79	K_60_79	K_60_79
    603 	#	K_00_19	K_00_19	K_00_19	K_00_19
    604 	#	pbswap mask
    605 	#
    606 	# +192	ctx				# argument block
    607 	# +196	inp
    608 	# +200	end
    609 	# +204	esp
    610 	&sub	("esp",208);
    611 	&and	("esp",-64);
    612 
    613 	&movdqa	(&QWP(112+0,"esp"),@X[4]);	# copy constants
    614 	&movdqa	(&QWP(112+16,"esp"),@X[5]);
    615 	&movdqa	(&QWP(112+32,"esp"),@X[6]);
    616 	&shl	($D,6);				# len*64
    617 	&movdqa	(&QWP(112+48,"esp"),@X[3]);
    618 	&add	($D,$inp);			# end of input
    619 	&movdqa	(&QWP(112+64,"esp"),@X[2]);
    620 	&add	($inp,64);
    621 	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
    622 	&mov	(&DWP(192+4,"esp"),$inp);
    623 	&mov	(&DWP(192+8,"esp"),$D);
    624 	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
    625 
    626 	&mov	($A,&DWP(0,$E));		# load context
    627 	&mov	($B,&DWP(4,$E));
    628 	&mov	($C,&DWP(8,$E));
    629 	&mov	($D,&DWP(12,$E));
    630 	&mov	($E,&DWP(16,$E));
    631 	&mov	(@T[0],$B);			# magic seed
    632 
    633 	&movdqu	(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
    634 	&movdqu	(@X[-3&7],&QWP(-48,$inp));
    635 	&movdqu	(@X[-2&7],&QWP(-32,$inp));
    636 	&movdqu	(@X[-1&7],&QWP(-16,$inp));
    637 	&pshufb	(@X[-4&7],@X[2]);		# byte swap
    638 	&pshufb	(@X[-3&7],@X[2]);
    639 	&pshufb	(@X[-2&7],@X[2]);
    640 	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
    641 	&pshufb	(@X[-1&7],@X[2]);
    642 	&paddd	(@X[-4&7],@X[3]);		# add K_00_19
    643 	&paddd	(@X[-3&7],@X[3]);
    644 	&paddd	(@X[-2&7],@X[3]);
    645 	&movdqa	(&QWP(0,"esp"),@X[-4&7]);	# X[]+K xfer to IALU
    646 	&psubd	(@X[-4&7],@X[3]);		# restore X[]
    647 	&movdqa	(&QWP(0+16,"esp"),@X[-3&7]);
    648 	&psubd	(@X[-3&7],@X[3]);
    649 	&movdqa	(&QWP(0+32,"esp"),@X[-2&7]);
    650 	&mov	(@T[1],$C);
    651 	&psubd	(@X[-2&7],@X[3]);
    652 	&xor	(@T[1],$D);
    653 	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
    654 	&and	(@T[0],@T[1]);
    655 	&jmp	(&label("loop"));
    656 
    657 ######################################################################
    658 # SSE instruction sequence is first broken to groups of independent
    659 # instructions, independent in respect to their inputs and shifter
    660 # (not all architectures have more than one). Then IALU instructions
    661 # are "knitted in" between the SSE groups. Distance is maintained for
    662 # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
    663 # [which allegedly also implements SSSE3]...
    664 #
    665 # Temporary registers usage. X[2] is volatile at the entry and at the
    666 # end is restored from backtrace ring buffer. X[3] is expected to
    667 # contain current K_XX_XX constant and is used to calculate X[-1]+K
    668 # from previous round, it becomes volatile the moment the value is
    669 # saved to stack for transfer to IALU. X[4] becomes volatile whenever
    670 # X[-4] is accumulated and offloaded to backtrace ring buffer, at the
    671 # end it is loaded with next K_XX_XX [which becomes X[3] in next
    672 # round]...
    673 #
    674 sub Xupdate_ssse3_16_31()		# recall that $Xi starts with 4
    675 { use integer;
    676   my $body = shift;
    677   my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
    678   my ($a,$b,$c,$d,$e);
    679 
    680 	 eval(shift(@insns));		# ror
    681 	 eval(shift(@insns));
    682 	 eval(shift(@insns));
    683 	&punpcklqdq(@X[0],@X[-3&7]);	# compose "X[-14]" in "X[0]", was &palignr(@X[0],@X[-4&7],8);
    684 	&movdqa	(@X[2],@X[-1&7]);
    685 	 eval(shift(@insns));
    686 	 eval(shift(@insns));
    687 
    688 	  &paddd	(@X[3],@X[-1&7]);
    689 	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
    690 	 eval(shift(@insns));		# rol
    691 	 eval(shift(@insns));
    692 	&psrldq	(@X[2],4);		# "X[-3]", 3 dwords
    693 	 eval(shift(@insns));
    694 	 eval(shift(@insns));
    695 	&pxor	(@X[0],@X[-4&7]);	# "X[0]"^="X[-16]"
    696 	 eval(shift(@insns));
    697 	 eval(shift(@insns));		# ror
    698 
    699 	&pxor	(@X[2],@X[-2&7]);	# "X[-3]"^"X[-8]"
    700 	 eval(shift(@insns));
    701 	 eval(shift(@insns));
    702 	 eval(shift(@insns));
    703 
    704 	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
    705 	 eval(shift(@insns));
    706 	 eval(shift(@insns));		# rol
    707 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
    708 	 eval(shift(@insns));
    709 	 eval(shift(@insns));
    710 
    711 	&movdqa	(@X[4],@X[0]);
    712 	 eval(shift(@insns));
    713 	 eval(shift(@insns));
    714 	 eval(shift(@insns));		# ror
    715 	&movdqa (@X[2],@X[0]);
    716 	 eval(shift(@insns));
    717 
    718 	&pslldq	(@X[4],12);		# "X[0]"<<96, extract one dword
    719 	&paddd	(@X[0],@X[0]);
    720 	 eval(shift(@insns));
    721 	 eval(shift(@insns));
    722 
    723 	&psrld	(@X[2],31);
    724 	 eval(shift(@insns));
    725 	 eval(shift(@insns));		# rol
    726 	&movdqa	(@X[3],@X[4]);
    727 	 eval(shift(@insns));
    728 	 eval(shift(@insns));
    729 	 eval(shift(@insns));
    730 
    731 	&psrld	(@X[4],30);
    732 	 eval(shift(@insns));
    733 	 eval(shift(@insns));		# ror
    734 	&por	(@X[0],@X[2]);		# "X[0]"<<<=1
    735 	 eval(shift(@insns));
    736 	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
    737 	 eval(shift(@insns));
    738 	 eval(shift(@insns));
    739 
    740 	&pslld	(@X[3],2);
    741 	 eval(shift(@insns));
    742 	 eval(shift(@insns));		# rol
    743 	&pxor   (@X[0],@X[4]);
    744 	  &movdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
    745 	 eval(shift(@insns));
    746 	 eval(shift(@insns));
    747 
    748 	&pxor	(@X[0],@X[3]);		# "X[0]"^=("X[0]"<<96)<<<2
    749 	  &pshufd	(@X[1],@X[-3&7],0xee)	if ($Xi<7);	# was &movdqa	(@X[1],@X[-2&7])
    750 	  &pshufd	(@X[3],@X[-1&7],0xee)	if ($Xi==7);
    751 	 eval(shift(@insns));
    752 	 eval(shift(@insns));
    753 
    754 	 foreach (@insns) { eval; }	# remaining instructions [if any]
    755 
    756   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
    757 }
    758 
    759 sub Xupdate_ssse3_32_79()
    760 { use integer;
    761   my $body = shift;
    762   my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
    763   my ($a,$b,$c,$d,$e);
    764 
    765 	 eval(shift(@insns));		# body_20_39
    766 	&pxor	(@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
    767 	&punpcklqdq(@X[2],@X[-1&7]);	# compose "X[-6]", was &palignr(@X[2],@X[-2&7],8)
    768 	 eval(shift(@insns));
    769 	 eval(shift(@insns));
    770 	 eval(shift(@insns));		# rol
    771 
    772 	&pxor	(@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
    773 	  &movdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
    774 	 eval(shift(@insns));
    775 	 eval(shift(@insns));
    776 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
    777 	 if ($Xi%5) {
    778 	  &movdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
    779 	 } else {			# ... or load next one
    780 	  &movdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
    781 	 }
    782 	 eval(shift(@insns));		# ror
    783 	  &paddd	(@X[3],@X[-1&7]);
    784 	 eval(shift(@insns));
    785 
    786 	&pxor	(@X[0],@X[2]);		# "X[0]"^="X[-6]"
    787 	 eval(shift(@insns));		# body_20_39
    788 	 eval(shift(@insns));
    789 	 eval(shift(@insns));
    790 	 eval(shift(@insns));		# rol
    791 
    792 	&movdqa	(@X[2],@X[0]);
    793 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
    794 	 eval(shift(@insns));
    795 	 eval(shift(@insns));
    796 	 eval(shift(@insns));		# ror
    797 	 eval(shift(@insns));
    798 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
    799 
    800 	&pslld	(@X[0],2);
    801 	 eval(shift(@insns));		# body_20_39
    802 	 eval(shift(@insns));
    803 	&psrld	(@X[2],30);
    804 	 eval(shift(@insns));
    805 	 eval(shift(@insns));		# rol
    806 	 eval(shift(@insns));
    807 	 eval(shift(@insns));
    808 	 eval(shift(@insns));		# ror
    809 	 eval(shift(@insns));
    810 	 eval(shift(@insns))		if (@insns[1] =~ /_rol/);
    811 	 eval(shift(@insns))		if (@insns[0] =~ /_rol/);
    812 
    813 	&por	(@X[0],@X[2]);		# "X[0]"<<<=2
    814 	 eval(shift(@insns));		# body_20_39
    815 	 eval(shift(@insns));
    816 	  &movdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
    817 	 eval(shift(@insns));
    818 	 eval(shift(@insns));		# rol
    819 	 eval(shift(@insns));
    820 	 eval(shift(@insns));
    821 	 eval(shift(@insns));		# ror
    822 	  &pshufd	(@X[3],@X[-1],0xee)	if ($Xi<19);	# was &movdqa	(@X[3],@X[0])
    823 	 eval(shift(@insns));
    824 
    825 	 foreach (@insns) { eval; }	# remaining instructions
    826 
    827   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
    828 }
    829 
    830 sub Xuplast_ssse3_80()
    831 { use integer;
    832   my $body = shift;
    833   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    834   my ($a,$b,$c,$d,$e);
    835 
    836 	 eval(shift(@insns));
    837 	 eval(shift(@insns));
    838 	 eval(shift(@insns));
    839 	 eval(shift(@insns));
    840 	 eval(shift(@insns));
    841 	 eval(shift(@insns));
    842 	 eval(shift(@insns));
    843 	  &paddd	(@X[3],@X[-1&7]);
    844 	 eval(shift(@insns));
    845 	 eval(shift(@insns));
    846 	 eval(shift(@insns));
    847 	 eval(shift(@insns));
    848 
    849 	  &movdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
    850 
    851 	 foreach (@insns) { eval; }		# remaining instructions
    852 
    853 	&mov	($inp=@T[1],&DWP(192+4,"esp"));
    854 	&cmp	($inp,&DWP(192+8,"esp"));
    855 	&je	(&label("done"));
    856 
    857 	&movdqa	(@X[3],&QWP(112+48,"esp"));	# K_00_19
    858 	&movdqa	(@X[2],&QWP(112+64,"esp"));	# pbswap mask
    859 	&movdqu	(@X[-4&7],&QWP(0,$inp));	# load input
    860 	&movdqu	(@X[-3&7],&QWP(16,$inp));
    861 	&movdqu	(@X[-2&7],&QWP(32,$inp));
    862 	&movdqu	(@X[-1&7],&QWP(48,$inp));
    863 	&add	($inp,64);
    864 	&pshufb	(@X[-4&7],@X[2]);		# byte swap
    865 	&mov	(&DWP(192+4,"esp"),$inp);
    866 	&movdqa	(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
    867 
    868   $Xi=0;
    869 }
    870 
    871 sub Xloop_ssse3()
    872 { use integer;
    873   my $body = shift;
    874   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    875   my ($a,$b,$c,$d,$e);
    876 
    877 	 eval(shift(@insns));
    878 	 eval(shift(@insns));
    879 	 eval(shift(@insns));
    880 	 eval(shift(@insns));
    881 	 eval(shift(@insns));
    882 	 eval(shift(@insns));
    883 	 eval(shift(@insns));
    884 	&pshufb	(@X[($Xi-3)&7],@X[2]);
    885 	 eval(shift(@insns));
    886 	 eval(shift(@insns));
    887 	 eval(shift(@insns));
    888 	 eval(shift(@insns));
    889 	&paddd	(@X[($Xi-4)&7],@X[3]);
    890 	 eval(shift(@insns));
    891 	 eval(shift(@insns));
    892 	 eval(shift(@insns));
    893 	 eval(shift(@insns));
    894 	&movdqa	(&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);	# X[]+K xfer to IALU
    895 	 eval(shift(@insns));
    896 	 eval(shift(@insns));
    897 	 eval(shift(@insns));
    898 	 eval(shift(@insns));
    899 	&psubd	(@X[($Xi-4)&7],@X[3]);
    900 
    901 	foreach (@insns) { eval; }
    902   $Xi++;
    903 }
    904 
    905 sub Xtail_ssse3()
    906 { use integer;
    907   my $body = shift;
    908   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
    909   my ($a,$b,$c,$d,$e);
    910 
    911 	foreach (@insns) { eval; }
    912 }
    913 
    914 sub body_00_19 () {	# ((c^d)&b)^d
    915 	# on start @T[0]=(c^d)&b
    916 	return &body_20_39()	if ($rx==19);	$rx++;
    917 	(
    918 	'($a,$b,$c,$d,$e)=@V;'.
    919 	'&$_ror	($b,$j?7:2);',	# $b>>>2
    920 	'&xor	(@T[0],$d);',
    921 	'&mov	(@T[1],$a);',	# $b in next round
    922 
    923 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
    924 	'&xor	($b,$c);',	# $c^$d for next round
    925 
    926 	'&$_rol	($a,5);',
    927 	'&add	($e,@T[0]);',
    928 	'&and	(@T[1],$b);',	# ($b&($c^$d)) for next round
    929 
    930 	'&xor	($b,$c);',	# restore $b
    931 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    932 	);
    933 }
    934 
    935 sub body_20_39 () {	# b^d^c
    936 	# on entry @T[0]=b^d
    937 	return &body_40_59()	if ($rx==39);	$rx++;
    938 	(
    939 	'($a,$b,$c,$d,$e)=@V;'.
    940 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
    941 	'&xor	(@T[0],$d)	if($j==19);'.
    942 	'&xor	(@T[0],$c)	if($j> 19);',	# ($b^$d^$c)
    943 	'&mov	(@T[1],$a);',	# $b in next round
    944 
    945 	'&$_rol	($a,5);',
    946 	'&add	($e,@T[0]);',
    947 	'&xor	(@T[1],$c)	if ($j< 79);',	# $b^$d for next round
    948 
    949 	'&$_ror	($b,7);',	# $b>>>2
    950 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    951 	);
    952 }
    953 
    954 sub body_40_59 () {	# ((b^c)&(c^d))^c
    955 	# on entry @T[0]=(b^c), (c^=d)
    956 	$rx++;
    957 	(
    958 	'($a,$b,$c,$d,$e)=@V;'.
    959 	'&add	($e,&DWP(4*($j&15),"esp"));',	# X[]+K xfer
    960 	'&and	(@T[0],$c)	if ($j>=40);',	# (b^c)&(c^d)
    961 	'&xor	($c,$d)		if ($j>=40);',	# restore $c
    962 
    963 	'&$_ror	($b,7);',	# $b>>>2
    964 	'&mov	(@T[1],$a);',	# $b for next round
    965 	'&xor	(@T[0],$c);',
    966 
    967 	'&$_rol	($a,5);',
    968 	'&add	($e,@T[0]);',
    969 	'&xor	(@T[1],$c)	if ($j==59);'.
    970 	'&xor	(@T[1],$b)	if ($j< 59);',	# b^c for next round
    971 
    972 	'&xor	($b,$c)		if ($j< 59);',	# c^d for next round
    973 	'&add	($e,$a);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    974 	);
    975 }
    976 ######
    977 sub bodyx_00_19 () {	# ((c^d)&b)^d
    978 	# on start @T[0]=(b&c)^(~b&d), $e+=X[]+K
    979 	return &bodyx_20_39()	if ($rx==19);	$rx++;
    980 	(
    981 	'($a,$b,$c,$d,$e)=@V;'.
    982 
    983 	'&rorx	($b,$b,2)			if ($j==0);'.	# $b>>>2
    984 	'&rorx	($b,@T[1],7)			if ($j!=0);',	# $b>>>2
    985 	'&lea	($e,&DWP(0,$e,@T[0]));',
    986 	'&rorx	(@T[0],$a,5);',
    987 
    988 	'&andn	(@T[1],$a,$c);',
    989 	'&and	($a,$b)',
    990 	'&add	($d,&DWP(4*(($j+1)&15),"esp"));',	# X[]+K xfer
    991 
    992 	'&xor	(@T[1],$a)',
    993 	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
    994 	);
    995 }
    996 
    997 sub bodyx_20_39 () {	# b^d^c
    998 	# on start $b=b^c^d
    999 	return &bodyx_40_59()	if ($rx==39);	$rx++;
   1000 	(
   1001 	'($a,$b,$c,$d,$e)=@V;'.
   1002 
   1003 	'&add	($e,($j==19?@T[0]:$b))',
   1004 	'&rorx	($b,@T[1],7);',	# $b>>>2
   1005 	'&rorx	(@T[0],$a,5);',
   1006 
   1007 	'&xor	($a,$b)				if ($j<79);',
   1008 	'&add	($d,&DWP(4*(($j+1)&15),"esp"))	if ($j<79);',	# X[]+K xfer
   1009 	'&xor	($a,$c)				if ($j<79);',
   1010 	'&add	($e,@T[0]);'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
   1011 	);
   1012 }
   1013 
   1014 sub bodyx_40_59 () {	# ((b^c)&(c^d))^c
   1015 	# on start $b=((b^c)&(c^d))^c
   1016 	return &bodyx_20_39()	if ($rx==59);	$rx++;
   1017 	(
   1018 	'($a,$b,$c,$d,$e)=@V;'.
   1019 
   1020 	'&rorx	(@T[0],$a,5)',
   1021 	'&lea	($e,&DWP(0,$e,$b))',
   1022 	'&rorx	($b,@T[1],7)',	# $b>>>2
   1023 	'&add	($d,&DWP(4*(($j+1)&15),"esp"))',	# X[]+K xfer
   1024 
   1025 	'&mov	(@T[1],$c)',
   1026 	'&xor	($a,$b)',	# b^c for next round
   1027 	'&xor	(@T[1],$b)',	# c^d for next round
   1028 
   1029 	'&and	($a,@T[1])',
   1030 	'&add	($e,@T[0])',
   1031 	'&xor	($a,$b)'	.'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
   1032 	);
   1033 }
   1034 
   1035 &set_label("loop",16);
   1036 	&Xupdate_ssse3_16_31(\&body_00_19);
   1037 	&Xupdate_ssse3_16_31(\&body_00_19);
   1038 	&Xupdate_ssse3_16_31(\&body_00_19);
   1039 	&Xupdate_ssse3_16_31(\&body_00_19);
   1040 	&Xupdate_ssse3_32_79(\&body_00_19);
   1041 	&Xupdate_ssse3_32_79(\&body_20_39);
   1042 	&Xupdate_ssse3_32_79(\&body_20_39);
   1043 	&Xupdate_ssse3_32_79(\&body_20_39);
   1044 	&Xupdate_ssse3_32_79(\&body_20_39);
   1045 	&Xupdate_ssse3_32_79(\&body_20_39);
   1046 	&Xupdate_ssse3_32_79(\&body_40_59);
   1047 	&Xupdate_ssse3_32_79(\&body_40_59);
   1048 	&Xupdate_ssse3_32_79(\&body_40_59);
   1049 	&Xupdate_ssse3_32_79(\&body_40_59);
   1050 	&Xupdate_ssse3_32_79(\&body_40_59);
   1051 	&Xupdate_ssse3_32_79(\&body_20_39);
   1052 	&Xuplast_ssse3_80(\&body_20_39);	# can jump to "done"
   1053 
   1054 				$saved_j=$j; @saved_V=@V;
   1055 
   1056 	&Xloop_ssse3(\&body_20_39);
   1057 	&Xloop_ssse3(\&body_20_39);
   1058 	&Xloop_ssse3(\&body_20_39);
   1059 
   1060 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1061 	&add	($A,&DWP(0,@T[1]));
   1062 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1063 	&add	($C,&DWP(8,@T[1]));
   1064 	&mov	(&DWP(0,@T[1]),$A);
   1065 	&add	($D,&DWP(12,@T[1]));
   1066 	&mov	(&DWP(4,@T[1]),@T[0]);
   1067 	&add	($E,&DWP(16,@T[1]));
   1068 	&mov	(&DWP(8,@T[1]),$C);
   1069 	&mov	($B,$C);
   1070 	&mov	(&DWP(12,@T[1]),$D);
   1071 	&xor	($B,$D);
   1072 	&mov	(&DWP(16,@T[1]),$E);
   1073 	&mov	(@T[1],@T[0]);
   1074 	&pshufd	(@X[0],@X[-4&7],0xee);		# was &movdqa	(@X[0],@X[-3&7]);
   1075 	&and	(@T[0],$B);
   1076 	&mov	($B,$T[1]);
   1077 
   1078 	&jmp	(&label("loop"));
   1079 
   1080 &set_label("done",16);		$j=$saved_j; @V=@saved_V;
   1081 
   1082 	&Xtail_ssse3(\&body_20_39);
   1083 	&Xtail_ssse3(\&body_20_39);
   1084 	&Xtail_ssse3(\&body_20_39);
   1085 
   1086 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1087 	&add	($A,&DWP(0,@T[1]));
   1088 	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
   1089 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1090 	&add	($C,&DWP(8,@T[1]));
   1091 	&mov	(&DWP(0,@T[1]),$A);
   1092 	&add	($D,&DWP(12,@T[1]));
   1093 	&mov	(&DWP(4,@T[1]),@T[0]);
   1094 	&add	($E,&DWP(16,@T[1]));
   1095 	&mov	(&DWP(8,@T[1]),$C);
   1096 	&mov	(&DWP(12,@T[1]),$D);
   1097 	&mov	(&DWP(16,@T[1]),$E);
   1098 
   1099 &function_end("_sha1_block_data_order_ssse3");
   1100 
   1101 $rx=0;	# reset
   1102 
   1103 if ($ymm) {
   1104 my $Xi=4;			# 4xSIMD Xupdate round, start pre-seeded
   1105 my @X=map("xmm$_",(4..7,0..3));	# pre-seeded for $Xi=4
   1106 my @V=($A,$B,$C,$D,$E);
   1107 my $j=0;			# hash round
   1108 my @T=($T,$tmp1);
   1109 my $inp;
   1110 
   1111 my $_rol=sub { &shld(@_[0],@_) };
   1112 my $_ror=sub { &shrd(@_[0],@_) };
   1113 
   1114 &function_begin("_sha1_block_data_order_avx");
   1115 	&call	(&label("pic_point"));	# make it PIC!
   1116 	&set_label("pic_point");
   1117 	&blindpop($tmp1);
   1118 	&lea	($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
   1119 &set_label("avx_shortcut");
   1120 	&vzeroall();
   1121 
   1122 	&vmovdqa(@X[3],&QWP(0,$tmp1));		# K_00_19
   1123 	&vmovdqa(@X[4],&QWP(16,$tmp1));		# K_20_39
   1124 	&vmovdqa(@X[5],&QWP(32,$tmp1));		# K_40_59
   1125 	&vmovdqa(@X[6],&QWP(48,$tmp1));		# K_60_79
   1126 	&vmovdqa(@X[2],&QWP(64,$tmp1));		# pbswap mask
   1127 
   1128 	&mov	($E,&wparam(0));		# load argument block
   1129 	&mov	($inp=@T[1],&wparam(1));
   1130 	&mov	($D,&wparam(2));
   1131 	&mov	(@T[0],"esp");
   1132 
   1133 	# stack frame layout
   1134 	#
   1135 	# +0	X[0]+K	X[1]+K	X[2]+K	X[3]+K	# XMM->IALU xfer area
   1136 	#	X[4]+K	X[5]+K	X[6]+K	X[7]+K
   1137 	#	X[8]+K	X[9]+K	X[10]+K	X[11]+K
   1138 	#	X[12]+K	X[13]+K	X[14]+K	X[15]+K
   1139 	#
   1140 	# +64	X[0]	X[1]	X[2]	X[3]	# XMM->XMM backtrace area
   1141 	#	X[4]	X[5]	X[6]	X[7]
   1142 	#	X[8]	X[9]	X[10]	X[11]	# even borrowed for K_00_19
   1143 	#
   1144 	# +112	K_20_39	K_20_39	K_20_39	K_20_39	# constants
   1145 	#	K_40_59	K_40_59	K_40_59	K_40_59
   1146 	#	K_60_79	K_60_79	K_60_79	K_60_79
   1147 	#	K_00_19	K_00_19	K_00_19	K_00_19
   1148 	#	pbswap mask
   1149 	#
   1150 	# +192	ctx				# argument block
   1151 	# +196	inp
   1152 	# +200	end
   1153 	# +204	esp
   1154 	&sub	("esp",208);
   1155 	&and	("esp",-64);
   1156 
   1157 	&vmovdqa(&QWP(112+0,"esp"),@X[4]);	# copy constants
   1158 	&vmovdqa(&QWP(112+16,"esp"),@X[5]);
   1159 	&vmovdqa(&QWP(112+32,"esp"),@X[6]);
   1160 	&shl	($D,6);				# len*64
   1161 	&vmovdqa(&QWP(112+48,"esp"),@X[3]);
   1162 	&add	($D,$inp);			# end of input
   1163 	&vmovdqa(&QWP(112+64,"esp"),@X[2]);
   1164 	&add	($inp,64);
   1165 	&mov	(&DWP(192+0,"esp"),$E);		# save argument block
   1166 	&mov	(&DWP(192+4,"esp"),$inp);
   1167 	&mov	(&DWP(192+8,"esp"),$D);
   1168 	&mov	(&DWP(192+12,"esp"),@T[0]);	# save original %esp
   1169 
   1170 	&mov	($A,&DWP(0,$E));		# load context
   1171 	&mov	($B,&DWP(4,$E));
   1172 	&mov	($C,&DWP(8,$E));
   1173 	&mov	($D,&DWP(12,$E));
   1174 	&mov	($E,&DWP(16,$E));
   1175 	&mov	(@T[0],$B);			# magic seed
   1176 
   1177 	&vmovdqu(@X[-4&7],&QWP(-64,$inp));	# load input to %xmm[0-3]
   1178 	&vmovdqu(@X[-3&7],&QWP(-48,$inp));
   1179 	&vmovdqu(@X[-2&7],&QWP(-32,$inp));
   1180 	&vmovdqu(@X[-1&7],&QWP(-16,$inp));
   1181 	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);	# byte swap
   1182 	&vpshufb(@X[-3&7],@X[-3&7],@X[2]);
   1183 	&vpshufb(@X[-2&7],@X[-2&7],@X[2]);
   1184 	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
   1185 	&vpshufb(@X[-1&7],@X[-1&7],@X[2]);
   1186 	&vpaddd	(@X[0],@X[-4&7],@X[3]);		# add K_00_19
   1187 	&vpaddd	(@X[1],@X[-3&7],@X[3]);
   1188 	&vpaddd	(@X[2],@X[-2&7],@X[3]);
   1189 	&vmovdqa(&QWP(0,"esp"),@X[0]);		# X[]+K xfer to IALU
   1190 	&mov	(@T[1],$C);
   1191 	&vmovdqa(&QWP(0+16,"esp"),@X[1]);
   1192 	&xor	(@T[1],$D);
   1193 	&vmovdqa(&QWP(0+32,"esp"),@X[2]);
   1194 	&and	(@T[0],@T[1]);
   1195 	&jmp	(&label("loop"));
   1196 
   1197 sub Xupdate_avx_16_31()		# recall that $Xi starts with 4
   1198 { use integer;
   1199   my $body = shift;
   1200   my @insns = (&$body,&$body,&$body,&$body);	# 40 instructions
   1201   my ($a,$b,$c,$d,$e);
   1202 
   1203 	 eval(shift(@insns));
   1204 	 eval(shift(@insns));
   1205 	&vpalignr(@X[0],@X[-3&7],@X[-4&7],8);	# compose "X[-14]" in "X[0]"
   1206 	 eval(shift(@insns));
   1207 	 eval(shift(@insns));
   1208 
   1209 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
   1210 	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
   1211 	 eval(shift(@insns));
   1212 	 eval(shift(@insns));
   1213 	&vpsrldq(@X[2],@X[-1&7],4);		# "X[-3]", 3 dwords
   1214 	 eval(shift(@insns));
   1215 	 eval(shift(@insns));
   1216 	&vpxor	(@X[0],@X[0],@X[-4&7]);		# "X[0]"^="X[-16]"
   1217 	 eval(shift(@insns));
   1218 	 eval(shift(@insns));
   1219 
   1220 	&vpxor	(@X[2],@X[2],@X[-2&7]);		# "X[-3]"^"X[-8]"
   1221 	 eval(shift(@insns));
   1222 	 eval(shift(@insns));
   1223 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
   1224 	 eval(shift(@insns));
   1225 	 eval(shift(@insns));
   1226 
   1227 	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-3]"^"X[-8]"
   1228 	 eval(shift(@insns));
   1229 	 eval(shift(@insns));
   1230 	 eval(shift(@insns));
   1231 	 eval(shift(@insns));
   1232 
   1233 	&vpsrld	(@X[2],@X[0],31);
   1234 	 eval(shift(@insns));
   1235 	 eval(shift(@insns));
   1236 	 eval(shift(@insns));
   1237 	 eval(shift(@insns));
   1238 
   1239 	&vpslldq(@X[4],@X[0],12);		# "X[0]"<<96, extract one dword
   1240 	&vpaddd	(@X[0],@X[0],@X[0]);
   1241 	 eval(shift(@insns));
   1242 	 eval(shift(@insns));
   1243 	 eval(shift(@insns));
   1244 	 eval(shift(@insns));
   1245 
   1246 	&vpsrld	(@X[3],@X[4],30);
   1247 	&vpor	(@X[0],@X[0],@X[2]);		# "X[0]"<<<=1
   1248 	 eval(shift(@insns));
   1249 	 eval(shift(@insns));
   1250 	 eval(shift(@insns));
   1251 	 eval(shift(@insns));
   1252 
   1253 	&vpslld	(@X[4],@X[4],2);
   1254 	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);	# restore X[] from backtrace buffer
   1255 	 eval(shift(@insns));
   1256 	 eval(shift(@insns));
   1257 	&vpxor	(@X[0],@X[0],@X[3]);
   1258 	 eval(shift(@insns));
   1259 	 eval(shift(@insns));
   1260 	 eval(shift(@insns));
   1261 	 eval(shift(@insns));
   1262 
   1263 	&vpxor	(@X[0],@X[0],@X[4]);		# "X[0]"^=("X[0]"<<96)<<<2
   1264 	 eval(shift(@insns));
   1265 	 eval(shift(@insns));
   1266 	  &vmovdqa	(@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));	# K_XX_XX
   1267 	 eval(shift(@insns));
   1268 	 eval(shift(@insns));
   1269 
   1270 	 foreach (@insns) { eval; }	# remaining instructions [if any]
   1271 
   1272   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
   1273 }
   1274 
   1275 sub Xupdate_avx_32_79()
   1276 { use integer;
   1277   my $body = shift;
   1278   my @insns = (&$body,&$body,&$body,&$body);	# 32 to 44 instructions
   1279   my ($a,$b,$c,$d,$e);
   1280 
   1281 	&vpalignr(@X[2],@X[-1&7],@X[-2&7],8);	# compose "X[-6]"
   1282 	&vpxor	(@X[0],@X[0],@X[-4&7]);	# "X[0]"="X[-32]"^"X[-16]"
   1283 	 eval(shift(@insns));		# body_20_39
   1284 	 eval(shift(@insns));
   1285 	 eval(shift(@insns));
   1286 	 eval(shift(@insns));		# rol
   1287 
   1288 	&vpxor	(@X[0],@X[0],@X[-7&7]);	# "X[0]"^="X[-28]"
   1289 	  &vmovdqa	(&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);	# save X[] to backtrace buffer
   1290 	 eval(shift(@insns));
   1291 	 eval(shift(@insns));
   1292 	 if ($Xi%5) {
   1293 	  &vmovdqa	(@X[4],@X[3]);	# "perpetuate" K_XX_XX...
   1294 	 } else {			# ... or load next one
   1295 	  &vmovdqa	(@X[4],&QWP(112-16+16*($Xi/5),"esp"));
   1296 	 }
   1297 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
   1298 	 eval(shift(@insns));		# ror
   1299 	 eval(shift(@insns));
   1300 
   1301 	&vpxor	(@X[0],@X[0],@X[2]);		# "X[0]"^="X[-6]"
   1302 	 eval(shift(@insns));		# body_20_39
   1303 	 eval(shift(@insns));
   1304 	 eval(shift(@insns));
   1305 	 eval(shift(@insns));		# rol
   1306 
   1307 	&vpsrld	(@X[2],@X[0],30);
   1308 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer to IALU
   1309 	 eval(shift(@insns));
   1310 	 eval(shift(@insns));
   1311 	 eval(shift(@insns));		# ror
   1312 	 eval(shift(@insns));
   1313 
   1314 	&vpslld	(@X[0],@X[0],2);
   1315 	 eval(shift(@insns));		# body_20_39
   1316 	 eval(shift(@insns));
   1317 	 eval(shift(@insns));
   1318 	 eval(shift(@insns));		# rol
   1319 	 eval(shift(@insns));
   1320 	 eval(shift(@insns));
   1321 	 eval(shift(@insns));		# ror
   1322 	 eval(shift(@insns));
   1323 
   1324 	&vpor	(@X[0],@X[0],@X[2]);	# "X[0]"<<<=2
   1325 	 eval(shift(@insns));		# body_20_39
   1326 	 eval(shift(@insns));
   1327 	  &vmovdqa	(@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);	# restore X[] from backtrace buffer
   1328 	 eval(shift(@insns));
   1329 	 eval(shift(@insns));		# rol
   1330 	 eval(shift(@insns));
   1331 	 eval(shift(@insns));
   1332 	 eval(shift(@insns));		# ror
   1333 	 eval(shift(@insns));
   1334 
   1335 	 foreach (@insns) { eval; }	# remaining instructions
   1336 
   1337   $Xi++;	push(@X,shift(@X));	# "rotate" X[]
   1338 }
   1339 
   1340 sub Xuplast_avx_80()
   1341 { use integer;
   1342   my $body = shift;
   1343   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1344   my ($a,$b,$c,$d,$e);
   1345 
   1346 	 eval(shift(@insns));
   1347 	  &vpaddd	(@X[3],@X[3],@X[-1&7]);
   1348 	 eval(shift(@insns));
   1349 	 eval(shift(@insns));
   1350 	 eval(shift(@insns));
   1351 	 eval(shift(@insns));
   1352 
   1353 	  &vmovdqa	(&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);	# X[]+K xfer IALU
   1354 
   1355 	 foreach (@insns) { eval; }		# remaining instructions
   1356 
   1357 	&mov	($inp=@T[1],&DWP(192+4,"esp"));
   1358 	&cmp	($inp,&DWP(192+8,"esp"));
   1359 	&je	(&label("done"));
   1360 
   1361 	&vmovdqa(@X[3],&QWP(112+48,"esp"));	# K_00_19
   1362 	&vmovdqa(@X[2],&QWP(112+64,"esp"));	# pbswap mask
   1363 	&vmovdqu(@X[-4&7],&QWP(0,$inp));	# load input
   1364 	&vmovdqu(@X[-3&7],&QWP(16,$inp));
   1365 	&vmovdqu(@X[-2&7],&QWP(32,$inp));
   1366 	&vmovdqu(@X[-1&7],&QWP(48,$inp));
   1367 	&add	($inp,64);
   1368 	&vpshufb(@X[-4&7],@X[-4&7],@X[2]);		# byte swap
   1369 	&mov	(&DWP(192+4,"esp"),$inp);
   1370 	&vmovdqa(&QWP(112-16,"esp"),@X[3]);	# borrow last backtrace slot
   1371 
   1372   $Xi=0;
   1373 }
   1374 
   1375 sub Xloop_avx()
   1376 { use integer;
   1377   my $body = shift;
   1378   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1379   my ($a,$b,$c,$d,$e);
   1380 
   1381 	 eval(shift(@insns));
   1382 	 eval(shift(@insns));
   1383 	&vpshufb	(@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
   1384 	 eval(shift(@insns));
   1385 	 eval(shift(@insns));
   1386 	&vpaddd	(@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
   1387 	 eval(shift(@insns));
   1388 	 eval(shift(@insns));
   1389 	 eval(shift(@insns));
   1390 	 eval(shift(@insns));
   1391 	&vmovdqa	(&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);	# X[]+K xfer to IALU
   1392 	 eval(shift(@insns));
   1393 	 eval(shift(@insns));
   1394 
   1395 	foreach (@insns) { eval; }
   1396   $Xi++;
   1397 }
   1398 
   1399 sub Xtail_avx()
   1400 { use integer;
   1401   my $body = shift;
   1402   my @insns = (&$body,&$body,&$body,&$body);	# 32 instructions
   1403   my ($a,$b,$c,$d,$e);
   1404 
   1405 	foreach (@insns) { eval; }
   1406 }
   1407 
   1408 &set_label("loop",16);
   1409 	&Xupdate_avx_16_31(\&body_00_19);
   1410 	&Xupdate_avx_16_31(\&body_00_19);
   1411 	&Xupdate_avx_16_31(\&body_00_19);
   1412 	&Xupdate_avx_16_31(\&body_00_19);
   1413 	&Xupdate_avx_32_79(\&body_00_19);
   1414 	&Xupdate_avx_32_79(\&body_20_39);
   1415 	&Xupdate_avx_32_79(\&body_20_39);
   1416 	&Xupdate_avx_32_79(\&body_20_39);
   1417 	&Xupdate_avx_32_79(\&body_20_39);
   1418 	&Xupdate_avx_32_79(\&body_20_39);
   1419 	&Xupdate_avx_32_79(\&body_40_59);
   1420 	&Xupdate_avx_32_79(\&body_40_59);
   1421 	&Xupdate_avx_32_79(\&body_40_59);
   1422 	&Xupdate_avx_32_79(\&body_40_59);
   1423 	&Xupdate_avx_32_79(\&body_40_59);
   1424 	&Xupdate_avx_32_79(\&body_20_39);
   1425 	&Xuplast_avx_80(\&body_20_39);	# can jump to "done"
   1426 
   1427 				$saved_j=$j; @saved_V=@V;
   1428 
   1429 	&Xloop_avx(\&body_20_39);
   1430 	&Xloop_avx(\&body_20_39);
   1431 	&Xloop_avx(\&body_20_39);
   1432 
   1433 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1434 	&add	($A,&DWP(0,@T[1]));
   1435 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1436 	&add	($C,&DWP(8,@T[1]));
   1437 	&mov	(&DWP(0,@T[1]),$A);
   1438 	&add	($D,&DWP(12,@T[1]));
   1439 	&mov	(&DWP(4,@T[1]),@T[0]);
   1440 	&add	($E,&DWP(16,@T[1]));
   1441 	&mov	($B,$C);
   1442 	&mov	(&DWP(8,@T[1]),$C);
   1443 	&xor	($B,$D);
   1444 	&mov	(&DWP(12,@T[1]),$D);
   1445 	&mov	(&DWP(16,@T[1]),$E);
   1446 	&mov	(@T[1],@T[0]);
   1447 	&and	(@T[0],$B);
   1448 	&mov	($B,@T[1]);
   1449 
   1450 	&jmp	(&label("loop"));
   1451 
   1452 &set_label("done",16);		$j=$saved_j; @V=@saved_V;
   1453 
   1454 	&Xtail_avx(\&body_20_39);
   1455 	&Xtail_avx(\&body_20_39);
   1456 	&Xtail_avx(\&body_20_39);
   1457 
   1458 	&vzeroall();
   1459 
   1460 	&mov	(@T[1],&DWP(192,"esp"));	# update context
   1461 	&add	($A,&DWP(0,@T[1]));
   1462 	&mov	("esp",&DWP(192+12,"esp"));	# restore %esp
   1463 	&add	(@T[0],&DWP(4,@T[1]));		# $b
   1464 	&add	($C,&DWP(8,@T[1]));
   1465 	&mov	(&DWP(0,@T[1]),$A);
   1466 	&add	($D,&DWP(12,@T[1]));
   1467 	&mov	(&DWP(4,@T[1]),@T[0]);
   1468 	&add	($E,&DWP(16,@T[1]));
   1469 	&mov	(&DWP(8,@T[1]),$C);
   1470 	&mov	(&DWP(12,@T[1]),$D);
   1471 	&mov	(&DWP(16,@T[1]),$E);
   1472 &function_end("_sha1_block_data_order_avx");
   1473 }
   1474 &set_label("K_XX_XX",64);
   1475 &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);	# K_00_19
   1476 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);	# K_20_39
   1477 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);	# K_40_59
   1478 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);	# K_60_79
   1479 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);	# pbswap mask
   1480 &data_byte(0xf,0xe,0xd,0xc,0xb,0xa,0x9,0x8,0x7,0x6,0x5,0x4,0x3,0x2,0x1,0x0);
   1481 }
   1482 &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
   1483 
   1484 &asm_finish();
   1485 
   1486 close STDOUT;
   1487