1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com) 2 * All rights reserved. 3 * 4 * This package is an SSL implementation written 5 * by Eric Young (eay (at) cryptsoft.com). 6 * The implementation was written so as to conform with Netscapes SSL. 7 * 8 * This library is free for commercial and non-commercial use as long as 9 * the following conditions are aheared to. The following conditions 10 * apply to all code found in this distribution, be it the RC4, RSA, 11 * lhash, DES, etc., code; not just the SSL code. The SSL documentation 12 * included with this distribution is covered by the same copyright terms 13 * except that the holder is Tim Hudson (tjh (at) cryptsoft.com). 14 * 15 * Copyright remains Eric Young's, and as such any Copyright notices in 16 * the code are not to be removed. 17 * If this package is used in a product, Eric Young should be given attribution 18 * as the author of the parts of the library used. 19 * This can be in the form of a textual message at program startup or 20 * in documentation (online or textual) provided with the package. 21 * 22 * Redistribution and use in source and binary forms, with or without 23 * modification, are permitted provided that the following conditions 24 * are met: 25 * 1. Redistributions of source code must retain the copyright 26 * notice, this list of conditions and the following disclaimer. 27 * 2. Redistributions in binary form must reproduce the above copyright 28 * notice, this list of conditions and the following disclaimer in the 29 * documentation and/or other materials provided with the distribution. 30 * 3. All advertising materials mentioning features or use of this software 31 * must display the following acknowledgement: 32 * "This product includes cryptographic software written by 33 * Eric Young (eay (at) cryptsoft.com)" 34 * The word 'cryptographic' can be left out if the rouines from the library 35 * being used are not cryptographic related :-). 36 * 4. If you include any Windows specific code (or a derivative thereof) from 37 * the apps directory (application code) you must include an acknowledgement: 38 * "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)" 39 * 40 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND 41 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 42 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 43 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 44 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 45 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 46 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 47 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 48 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 49 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 50 * SUCH DAMAGE. 51 * 52 * The licence and distribution terms for any publically available version or 53 * derivative of this code cannot be changed. i.e. this code cannot simply be 54 * copied and put under another distribution licence 55 * [including the GNU Public Licence.] 56 */ 57 /* ==================================================================== 58 * Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved. 59 * 60 * Redistribution and use in source and binary forms, with or without 61 * modification, are permitted provided that the following conditions 62 * are met: 63 * 64 * 1. Redistributions of source code must retain the above copyright 65 * notice, this list of conditions and the following disclaimer. 66 * 67 * 2. Redistributions in binary form must reproduce the above copyright 68 * notice, this list of conditions and the following disclaimer in 69 * the documentation and/or other materials provided with the 70 * distribution. 71 * 72 * 3. All advertising materials mentioning features or use of this 73 * software must display the following acknowledgment: 74 * "This product includes software developed by the OpenSSL Project 75 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" 76 * 77 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to 78 * endorse or promote products derived from this software without 79 * prior written permission. For written permission, please contact 80 * openssl-core (at) openssl.org. 81 * 82 * 5. Products derived from this software may not be called "OpenSSL" 83 * nor may "OpenSSL" appear in their names without prior written 84 * permission of the OpenSSL Project. 85 * 86 * 6. Redistributions of any form whatsoever must retain the following 87 * acknowledgment: 88 * "This product includes software developed by the OpenSSL Project 89 * for use in the OpenSSL Toolkit (http://www.openssl.org/)" 90 * 91 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY 92 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 93 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 94 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR 95 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 96 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 97 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 98 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 99 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 100 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 101 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 102 * OF THE POSSIBILITY OF SUCH DAMAGE. 103 * ==================================================================== 104 * 105 * This product includes cryptographic software written by Eric Young 106 * (eay (at) cryptsoft.com). This product includes software written by Tim 107 * Hudson (tjh (at) cryptsoft.com). 108 * 109 */ 110 /* ==================================================================== 111 * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. 112 * 113 * Portions of the attached software ("Contribution") are developed by 114 * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. 115 * 116 * The Contribution is licensed pursuant to the OpenSSL open source 117 * license provided above. 118 * 119 * ECC cipher suite support in OpenSSL originally written by 120 * Vipul Gupta and Sumit Gupta of Sun Microsystems Laboratories. 121 * 122 */ 123 /* ==================================================================== 124 * Copyright 2005 Nokia. All rights reserved. 125 * 126 * The portions of the attached software ("Contribution") is developed by 127 * Nokia Corporation and is licensed pursuant to the OpenSSL open source 128 * license. 129 * 130 * The Contribution, originally written by Mika Kousa and Pasi Eronen of 131 * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites 132 * support (see RFC 4279) to OpenSSL. 133 * 134 * No patent licenses or other rights except those expressly stated in 135 * the OpenSSL open source license shall be deemed granted or received 136 * expressly, by implication, estoppel, or otherwise. 137 * 138 * No assurances are provided by Nokia that the Contribution does not 139 * infringe the patent or other intellectual property rights of any third 140 * party or that the license provides you with all the necessary rights 141 * to make use of the Contribution. 142 * 143 * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN 144 * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA 145 * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY 146 * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR 147 * OTHERWISE. */ 148 149 #include <openssl/ssl.h> 150 151 #include <assert.h> 152 #include <string.h> 153 154 #include <openssl/bn.h> 155 #include <openssl/buf.h> 156 #include <openssl/bytestring.h> 157 #include <openssl/cipher.h> 158 #include <openssl/ec.h> 159 #include <openssl/ecdsa.h> 160 #include <openssl/err.h> 161 #include <openssl/evp.h> 162 #include <openssl/hmac.h> 163 #include <openssl/md5.h> 164 #include <openssl/mem.h> 165 #include <openssl/nid.h> 166 #include <openssl/rand.h> 167 #include <openssl/x509.h> 168 169 #include "internal.h" 170 #include "../crypto/internal.h" 171 172 173 BSSL_NAMESPACE_BEGIN 174 175 bool ssl_client_cipher_list_contains_cipher( 176 const SSL_CLIENT_HELLO *client_hello, uint16_t id) { 177 CBS cipher_suites; 178 CBS_init(&cipher_suites, client_hello->cipher_suites, 179 client_hello->cipher_suites_len); 180 181 while (CBS_len(&cipher_suites) > 0) { 182 uint16_t got_id; 183 if (!CBS_get_u16(&cipher_suites, &got_id)) { 184 return false; 185 } 186 187 if (got_id == id) { 188 return true; 189 } 190 } 191 192 return false; 193 } 194 195 static bool negotiate_version(SSL_HANDSHAKE *hs, uint8_t *out_alert, 196 const SSL_CLIENT_HELLO *client_hello) { 197 SSL *const ssl = hs->ssl; 198 assert(!ssl->s3->have_version); 199 CBS supported_versions, versions; 200 if (ssl_client_hello_get_extension(client_hello, &supported_versions, 201 TLSEXT_TYPE_supported_versions)) { 202 if (!CBS_get_u8_length_prefixed(&supported_versions, &versions) || 203 CBS_len(&supported_versions) != 0 || 204 CBS_len(&versions) == 0) { 205 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 206 *out_alert = SSL_AD_DECODE_ERROR; 207 return false; 208 } 209 } else { 210 // Convert the ClientHello version to an equivalent supported_versions 211 // extension. 212 static const uint8_t kTLSVersions[] = { 213 0x03, 0x03, // TLS 1.2 214 0x03, 0x02, // TLS 1.1 215 0x03, 0x01, // TLS 1 216 }; 217 218 static const uint8_t kDTLSVersions[] = { 219 0xfe, 0xfd, // DTLS 1.2 220 0xfe, 0xff, // DTLS 1.0 221 }; 222 223 size_t versions_len = 0; 224 if (SSL_is_dtls(ssl)) { 225 if (client_hello->version <= DTLS1_2_VERSION) { 226 versions_len = 4; 227 } else if (client_hello->version <= DTLS1_VERSION) { 228 versions_len = 2; 229 } 230 CBS_init(&versions, kDTLSVersions + sizeof(kDTLSVersions) - versions_len, 231 versions_len); 232 } else { 233 if (client_hello->version >= TLS1_2_VERSION) { 234 versions_len = 6; 235 } else if (client_hello->version >= TLS1_1_VERSION) { 236 versions_len = 4; 237 } else if (client_hello->version >= TLS1_VERSION) { 238 versions_len = 2; 239 } 240 CBS_init(&versions, kTLSVersions + sizeof(kTLSVersions) - versions_len, 241 versions_len); 242 } 243 } 244 245 if (!ssl_negotiate_version(hs, out_alert, &ssl->version, &versions)) { 246 return false; 247 } 248 249 // At this point, the connection's version is known and |ssl->version| is 250 // fixed. Begin enforcing the record-layer version. 251 ssl->s3->have_version = true; 252 ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version); 253 254 // Handle FALLBACK_SCSV. 255 if (ssl_client_cipher_list_contains_cipher(client_hello, 256 SSL3_CK_FALLBACK_SCSV & 0xffff) && 257 ssl_protocol_version(ssl) < hs->max_version) { 258 OPENSSL_PUT_ERROR(SSL, SSL_R_INAPPROPRIATE_FALLBACK); 259 *out_alert = SSL3_AD_INAPPROPRIATE_FALLBACK; 260 return false; 261 } 262 263 return true; 264 } 265 266 static UniquePtr<STACK_OF(SSL_CIPHER)> ssl_parse_client_cipher_list( 267 const SSL_CLIENT_HELLO *client_hello) { 268 CBS cipher_suites; 269 CBS_init(&cipher_suites, client_hello->cipher_suites, 270 client_hello->cipher_suites_len); 271 272 UniquePtr<STACK_OF(SSL_CIPHER)> sk(sk_SSL_CIPHER_new_null()); 273 if (!sk) { 274 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 275 return nullptr; 276 } 277 278 while (CBS_len(&cipher_suites) > 0) { 279 uint16_t cipher_suite; 280 281 if (!CBS_get_u16(&cipher_suites, &cipher_suite)) { 282 OPENSSL_PUT_ERROR(SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); 283 return nullptr; 284 } 285 286 const SSL_CIPHER *c = SSL_get_cipher_by_value(cipher_suite); 287 if (c != NULL && !sk_SSL_CIPHER_push(sk.get(), c)) { 288 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 289 return nullptr; 290 } 291 } 292 293 return sk; 294 } 295 296 // ssl_get_compatible_server_ciphers determines the key exchange and 297 // authentication cipher suite masks compatible with the server configuration 298 // and current ClientHello parameters of |hs|. It sets |*out_mask_k| to the key 299 // exchange mask and |*out_mask_a| to the authentication mask. 300 static void ssl_get_compatible_server_ciphers(SSL_HANDSHAKE *hs, 301 uint32_t *out_mask_k, 302 uint32_t *out_mask_a) { 303 uint32_t mask_k = 0; 304 uint32_t mask_a = 0; 305 306 if (ssl_has_certificate(hs)) { 307 mask_a |= ssl_cipher_auth_mask_for_key(hs->local_pubkey.get()); 308 if (EVP_PKEY_id(hs->local_pubkey.get()) == EVP_PKEY_RSA) { 309 mask_k |= SSL_kRSA; 310 } 311 } 312 313 // Check for a shared group to consider ECDHE ciphers. 314 uint16_t unused; 315 if (tls1_get_shared_group(hs, &unused)) { 316 mask_k |= SSL_kECDHE; 317 } 318 319 // PSK requires a server callback. 320 if (hs->config->psk_server_callback != NULL) { 321 mask_k |= SSL_kPSK; 322 mask_a |= SSL_aPSK; 323 } 324 325 *out_mask_k = mask_k; 326 *out_mask_a = mask_a; 327 } 328 329 static const SSL_CIPHER *ssl3_choose_cipher( 330 SSL_HANDSHAKE *hs, const SSL_CLIENT_HELLO *client_hello, 331 const SSLCipherPreferenceList *server_pref) { 332 SSL *const ssl = hs->ssl; 333 const STACK_OF(SSL_CIPHER) *prio, *allow; 334 // in_group_flags will either be NULL, or will point to an array of bytes 335 // which indicate equal-preference groups in the |prio| stack. See the 336 // comment about |in_group_flags| in the |SSLCipherPreferenceList| 337 // struct. 338 const bool *in_group_flags; 339 // group_min contains the minimal index so far found in a group, or -1 if no 340 // such value exists yet. 341 int group_min = -1; 342 343 UniquePtr<STACK_OF(SSL_CIPHER)> client_pref = 344 ssl_parse_client_cipher_list(client_hello); 345 if (!client_pref) { 346 return nullptr; 347 } 348 349 if (ssl->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { 350 prio = server_pref->ciphers.get(); 351 in_group_flags = server_pref->in_group_flags; 352 allow = client_pref.get(); 353 } else { 354 prio = client_pref.get(); 355 in_group_flags = NULL; 356 allow = server_pref->ciphers.get(); 357 } 358 359 uint32_t mask_k, mask_a; 360 ssl_get_compatible_server_ciphers(hs, &mask_k, &mask_a); 361 362 for (size_t i = 0; i < sk_SSL_CIPHER_num(prio); i++) { 363 const SSL_CIPHER *c = sk_SSL_CIPHER_value(prio, i); 364 365 size_t cipher_index; 366 if (// Check if the cipher is supported for the current version. 367 SSL_CIPHER_get_min_version(c) <= ssl_protocol_version(ssl) && 368 ssl_protocol_version(ssl) <= SSL_CIPHER_get_max_version(c) && 369 // Check the cipher is supported for the server configuration. 370 (c->algorithm_mkey & mask_k) && 371 (c->algorithm_auth & mask_a) && 372 // Check the cipher is in the |allow| list. 373 sk_SSL_CIPHER_find(allow, &cipher_index, c)) { 374 if (in_group_flags != NULL && in_group_flags[i]) { 375 // This element of |prio| is in a group. Update the minimum index found 376 // so far and continue looking. 377 if (group_min == -1 || (size_t)group_min > cipher_index) { 378 group_min = cipher_index; 379 } 380 } else { 381 if (group_min != -1 && (size_t)group_min < cipher_index) { 382 cipher_index = group_min; 383 } 384 return sk_SSL_CIPHER_value(allow, cipher_index); 385 } 386 } 387 388 if (in_group_flags != NULL && !in_group_flags[i] && group_min != -1) { 389 // We are about to leave a group, but we found a match in it, so that's 390 // our answer. 391 return sk_SSL_CIPHER_value(allow, group_min); 392 } 393 } 394 395 return nullptr; 396 } 397 398 static enum ssl_hs_wait_t do_start_accept(SSL_HANDSHAKE *hs) { 399 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_START, 1); 400 hs->state = state12_read_client_hello; 401 return ssl_hs_ok; 402 } 403 404 // is_probably_jdk11_with_tls13 returns whether |client_hello| was probably sent 405 // from a JDK 11 client with both TLS 1.3 and a prior version enabled. 406 static bool is_probably_jdk11_with_tls13(const SSL_CLIENT_HELLO *client_hello) { 407 // JDK 11 ClientHellos contain a number of unusual properties which should 408 // limit false positives. 409 410 // JDK 11 does not support ChaCha20-Poly1305. This is unusual: many modern 411 // clients implement ChaCha20-Poly1305. 412 if (ssl_client_cipher_list_contains_cipher( 413 client_hello, TLS1_CK_CHACHA20_POLY1305_SHA256 & 0xffff)) { 414 return false; 415 } 416 417 // JDK 11 always sends extensions in a particular order. 418 constexpr uint16_t kMaxFragmentLength = 0x0001; 419 constexpr uint16_t kStatusRequestV2 = 0x0011; 420 static CONSTEXPR_ARRAY struct { 421 uint16_t id; 422 bool required; 423 } kJavaExtensions[] = { 424 {TLSEXT_TYPE_server_name, false}, 425 {kMaxFragmentLength, false}, 426 {TLSEXT_TYPE_status_request, false}, 427 {TLSEXT_TYPE_supported_groups, true}, 428 {TLSEXT_TYPE_ec_point_formats, false}, 429 {TLSEXT_TYPE_signature_algorithms, true}, 430 // Java always sends signature_algorithms_cert. 431 {TLSEXT_TYPE_signature_algorithms_cert, true}, 432 {TLSEXT_TYPE_application_layer_protocol_negotiation, false}, 433 {kStatusRequestV2, false}, 434 {TLSEXT_TYPE_extended_master_secret, false}, 435 {TLSEXT_TYPE_supported_versions, true}, 436 {TLSEXT_TYPE_cookie, false}, 437 {TLSEXT_TYPE_psk_key_exchange_modes, true}, 438 {TLSEXT_TYPE_key_share, true}, 439 {TLSEXT_TYPE_renegotiate, false}, 440 {TLSEXT_TYPE_pre_shared_key, false}, 441 }; 442 Span<const uint8_t> sigalgs, sigalgs_cert; 443 bool has_status_request = false, has_status_request_v2 = false; 444 CBS extensions, supported_groups; 445 CBS_init(&extensions, client_hello->extensions, client_hello->extensions_len); 446 for (const auto &java_extension : kJavaExtensions) { 447 CBS copy = extensions; 448 uint16_t id; 449 if (CBS_get_u16(©, &id) && id == java_extension.id) { 450 // The next extension is the one we expected. 451 extensions = copy; 452 CBS body; 453 if (!CBS_get_u16_length_prefixed(&extensions, &body)) { 454 return false; 455 } 456 switch (id) { 457 case TLSEXT_TYPE_status_request: 458 has_status_request = true; 459 break; 460 case kStatusRequestV2: 461 has_status_request_v2 = true; 462 break; 463 case TLSEXT_TYPE_signature_algorithms: 464 sigalgs = body; 465 break; 466 case TLSEXT_TYPE_signature_algorithms_cert: 467 sigalgs_cert = body; 468 break; 469 case TLSEXT_TYPE_supported_groups: 470 supported_groups = body; 471 break; 472 } 473 } else if (java_extension.required) { 474 return false; 475 } 476 } 477 if (CBS_len(&extensions) != 0) { 478 return false; 479 } 480 481 // JDK 11 never advertises X25519. It is not offered by default, and 482 // -Djdk.tls.namedGroups=x25519 does not work. This is unusual: many modern 483 // clients implement X25519. 484 while (CBS_len(&supported_groups) > 0) { 485 uint16_t group; 486 if (!CBS_get_u16(&supported_groups, &group) || 487 group == SSL_CURVE_X25519) { 488 return false; 489 } 490 } 491 492 if (// JDK 11 always sends the same contents in signature_algorithms and 493 // signature_algorithms_cert. This is unusual: signature_algorithms_cert, 494 // if omitted, is treated as if it were signature_algorithms. 495 sigalgs != sigalgs_cert || 496 // When TLS 1.2 or below is enabled, JDK 11 sends status_request_v2 iff it 497 // sends status_request. This is unusual: status_request_v2 is not widely 498 // implemented. 499 has_status_request != has_status_request_v2) { 500 return false; 501 } 502 503 return true; 504 } 505 506 static enum ssl_hs_wait_t do_read_client_hello(SSL_HANDSHAKE *hs) { 507 SSL *const ssl = hs->ssl; 508 509 SSLMessage msg; 510 if (!ssl->method->get_message(ssl, &msg)) { 511 return ssl_hs_read_message; 512 } 513 514 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_HELLO)) { 515 return ssl_hs_error; 516 } 517 518 if (hs->config->handoff) { 519 return ssl_hs_handoff; 520 } 521 522 SSL_CLIENT_HELLO client_hello; 523 if (!ssl_client_hello_init(ssl, &client_hello, msg)) { 524 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 525 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 526 return ssl_hs_error; 527 } 528 529 // Run the early callback. 530 if (ssl->ctx->select_certificate_cb != NULL) { 531 switch (ssl->ctx->select_certificate_cb(&client_hello)) { 532 case ssl_select_cert_retry: 533 return ssl_hs_certificate_selection_pending; 534 535 case ssl_select_cert_error: 536 // Connection rejected. 537 OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); 538 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 539 return ssl_hs_error; 540 541 default: 542 /* fallthrough */; 543 } 544 } 545 546 // Freeze the version range after the early callback. 547 if (!ssl_get_version_range(hs, &hs->min_version, &hs->max_version)) { 548 return ssl_hs_error; 549 } 550 551 if (hs->config->jdk11_workaround && 552 is_probably_jdk11_with_tls13(&client_hello)) { 553 hs->apply_jdk11_workaround = true; 554 } 555 556 uint8_t alert = SSL_AD_DECODE_ERROR; 557 if (!negotiate_version(hs, &alert, &client_hello)) { 558 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 559 return ssl_hs_error; 560 } 561 562 hs->client_version = client_hello.version; 563 if (client_hello.random_len != SSL3_RANDOM_SIZE) { 564 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 565 return ssl_hs_error; 566 } 567 OPENSSL_memcpy(ssl->s3->client_random, client_hello.random, 568 client_hello.random_len); 569 570 // Only null compression is supported. TLS 1.3 further requires the peer 571 // advertise no other compression. 572 if (OPENSSL_memchr(client_hello.compression_methods, 0, 573 client_hello.compression_methods_len) == NULL || 574 (ssl_protocol_version(ssl) >= TLS1_3_VERSION && 575 client_hello.compression_methods_len != 1)) { 576 OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMPRESSION_LIST); 577 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 578 return ssl_hs_error; 579 } 580 581 // TLS extensions. 582 if (!ssl_parse_clienthello_tlsext(hs, &client_hello)) { 583 OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT); 584 return ssl_hs_error; 585 } 586 587 hs->state = state12_select_certificate; 588 return ssl_hs_ok; 589 } 590 591 static enum ssl_hs_wait_t do_select_certificate(SSL_HANDSHAKE *hs) { 592 SSL *const ssl = hs->ssl; 593 594 SSLMessage msg; 595 if (!ssl->method->get_message(ssl, &msg)) { 596 return ssl_hs_read_message; 597 } 598 599 // Call |cert_cb| to update server certificates if required. 600 if (hs->config->cert->cert_cb != NULL) { 601 int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg); 602 if (rv == 0) { 603 OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR); 604 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 605 return ssl_hs_error; 606 } 607 if (rv < 0) { 608 return ssl_hs_x509_lookup; 609 } 610 } 611 612 if (!ssl_on_certificate_selected(hs)) { 613 return ssl_hs_error; 614 } 615 616 if (hs->ocsp_stapling_requested && 617 ssl->ctx->legacy_ocsp_callback != nullptr) { 618 switch (ssl->ctx->legacy_ocsp_callback( 619 ssl, ssl->ctx->legacy_ocsp_callback_arg)) { 620 case SSL_TLSEXT_ERR_OK: 621 break; 622 case SSL_TLSEXT_ERR_NOACK: 623 hs->ocsp_stapling_requested = false; 624 break; 625 default: 626 OPENSSL_PUT_ERROR(SSL, SSL_R_OCSP_CB_ERROR); 627 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 628 return ssl_hs_error; 629 } 630 } 631 632 if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) { 633 // Jump to the TLS 1.3 state machine. 634 hs->state = state12_tls13; 635 return ssl_hs_ok; 636 } 637 638 SSL_CLIENT_HELLO client_hello; 639 if (!ssl_client_hello_init(ssl, &client_hello, msg)) { 640 return ssl_hs_error; 641 } 642 643 // Negotiate the cipher suite. This must be done after |cert_cb| so the 644 // certificate is finalized. 645 SSLCipherPreferenceList *prefs = hs->config->cipher_list 646 ? hs->config->cipher_list.get() 647 : ssl->ctx->cipher_list.get(); 648 hs->new_cipher = ssl3_choose_cipher(hs, &client_hello, prefs); 649 if (hs->new_cipher == NULL) { 650 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_SHARED_CIPHER); 651 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 652 return ssl_hs_error; 653 } 654 655 hs->state = state12_select_parameters; 656 return ssl_hs_ok; 657 } 658 659 static enum ssl_hs_wait_t do_tls13(SSL_HANDSHAKE *hs) { 660 enum ssl_hs_wait_t wait = tls13_server_handshake(hs); 661 if (wait == ssl_hs_ok) { 662 hs->state = state12_finish_server_handshake; 663 return ssl_hs_ok; 664 } 665 666 return wait; 667 } 668 669 static enum ssl_hs_wait_t do_select_parameters(SSL_HANDSHAKE *hs) { 670 SSL *const ssl = hs->ssl; 671 672 SSLMessage msg; 673 if (!ssl->method->get_message(ssl, &msg)) { 674 return ssl_hs_read_message; 675 } 676 677 SSL_CLIENT_HELLO client_hello; 678 if (!ssl_client_hello_init(ssl, &client_hello, msg)) { 679 return ssl_hs_error; 680 } 681 682 // Determine whether we are doing session resumption. 683 UniquePtr<SSL_SESSION> session; 684 bool tickets_supported = false, renew_ticket = false; 685 enum ssl_hs_wait_t wait = ssl_get_prev_session( 686 hs, &session, &tickets_supported, &renew_ticket, &client_hello); 687 if (wait != ssl_hs_ok) { 688 return wait; 689 } 690 691 if (session) { 692 if (session->extended_master_secret && !hs->extended_master_secret) { 693 // A ClientHello without EMS that attempts to resume a session with EMS 694 // is fatal to the connection. 695 OPENSSL_PUT_ERROR(SSL, SSL_R_RESUMED_EMS_SESSION_WITHOUT_EMS_EXTENSION); 696 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 697 return ssl_hs_error; 698 } 699 700 if (!ssl_session_is_resumable(hs, session.get()) || 701 // If the client offers the EMS extension, but the previous session 702 // didn't use it, then negotiate a new session. 703 hs->extended_master_secret != session->extended_master_secret) { 704 session.reset(); 705 } 706 } 707 708 if (session) { 709 // Use the old session. 710 hs->ticket_expected = renew_ticket; 711 ssl->session = std::move(session); 712 ssl->s3->session_reused = true; 713 } else { 714 hs->ticket_expected = tickets_supported; 715 ssl_set_session(ssl, NULL); 716 if (!ssl_get_new_session(hs, 1 /* server */)) { 717 return ssl_hs_error; 718 } 719 720 // Clear the session ID if we want the session to be single-use. 721 if (!(ssl->ctx->session_cache_mode & SSL_SESS_CACHE_SERVER)) { 722 hs->new_session->session_id_length = 0; 723 } 724 } 725 726 if (ssl->ctx->dos_protection_cb != NULL && 727 ssl->ctx->dos_protection_cb(&client_hello) == 0) { 728 // Connection rejected for DOS reasons. 729 OPENSSL_PUT_ERROR(SSL, SSL_R_CONNECTION_REJECTED); 730 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 731 return ssl_hs_error; 732 } 733 734 if (ssl->session == NULL) { 735 hs->new_session->cipher = hs->new_cipher; 736 737 // Determine whether to request a client certificate. 738 hs->cert_request = !!(hs->config->verify_mode & SSL_VERIFY_PEER); 739 // Only request a certificate if Channel ID isn't negotiated. 740 if ((hs->config->verify_mode & SSL_VERIFY_PEER_IF_NO_OBC) && 741 ssl->s3->channel_id_valid) { 742 hs->cert_request = false; 743 } 744 // CertificateRequest may only be sent in certificate-based ciphers. 745 if (!ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 746 hs->cert_request = false; 747 } 748 749 if (!hs->cert_request) { 750 // OpenSSL returns X509_V_OK when no certificates are requested. This is 751 // classed by them as a bug, but it's assumed by at least NGINX. 752 hs->new_session->verify_result = X509_V_OK; 753 } 754 } 755 756 // HTTP/2 negotiation depends on the cipher suite, so ALPN negotiation was 757 // deferred. Complete it now. 758 uint8_t alert = SSL_AD_DECODE_ERROR; 759 if (!ssl_negotiate_alpn(hs, &alert, &client_hello)) { 760 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 761 return ssl_hs_error; 762 } 763 764 // Now that all parameters are known, initialize the handshake hash and hash 765 // the ClientHello. 766 if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) || 767 !ssl_hash_message(hs, msg)) { 768 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 769 return ssl_hs_error; 770 } 771 772 // Handback includes the whole handshake transcript, so we cannot free the 773 // transcript buffer in the handback case. 774 if (!hs->cert_request && !hs->handback) { 775 hs->transcript.FreeBuffer(); 776 } 777 778 ssl->method->next_message(ssl); 779 780 hs->state = state12_send_server_hello; 781 return ssl_hs_ok; 782 } 783 784 static void copy_suffix(Span<uint8_t> out, Span<const uint8_t> in) { 785 out = out.subspan(out.size() - in.size()); 786 assert(out.size() == in.size()); 787 OPENSSL_memcpy(out.data(), in.data(), in.size()); 788 } 789 790 static enum ssl_hs_wait_t do_send_server_hello(SSL_HANDSHAKE *hs) { 791 SSL *const ssl = hs->ssl; 792 793 // We only accept ChannelIDs on connections with ECDHE in order to avoid a 794 // known attack while we fix ChannelID itself. 795 if (ssl->s3->channel_id_valid && 796 (hs->new_cipher->algorithm_mkey & SSL_kECDHE) == 0) { 797 ssl->s3->channel_id_valid = false; 798 } 799 800 // If this is a resumption and the original handshake didn't support 801 // ChannelID then we didn't record the original handshake hashes in the 802 // session and so cannot resume with ChannelIDs. 803 if (ssl->session != NULL && 804 ssl->session->original_handshake_hash_len == 0) { 805 ssl->s3->channel_id_valid = false; 806 } 807 808 struct OPENSSL_timeval now; 809 ssl_get_current_time(ssl, &now); 810 ssl->s3->server_random[0] = now.tv_sec >> 24; 811 ssl->s3->server_random[1] = now.tv_sec >> 16; 812 ssl->s3->server_random[2] = now.tv_sec >> 8; 813 ssl->s3->server_random[3] = now.tv_sec; 814 if (!RAND_bytes(ssl->s3->server_random + 4, SSL3_RANDOM_SIZE - 4)) { 815 return ssl_hs_error; 816 } 817 818 // Implement the TLS 1.3 anti-downgrade feature. 819 if (ssl_supports_version(hs, TLS1_3_VERSION)) { 820 if (ssl_protocol_version(ssl) == TLS1_2_VERSION) { 821 if (hs->apply_jdk11_workaround) { 822 // JDK 11 implements the TLS 1.3 downgrade signal, so we cannot send it 823 // here. However, the signal is only effective if all TLS 1.2 824 // ServerHellos produced by the server are marked. Thus we send a 825 // different non-standard signal for the time being, until JDK 11.0.2 is 826 // released and clients have updated. 827 copy_suffix(ssl->s3->server_random, kJDK11DowngradeRandom); 828 } else { 829 copy_suffix(ssl->s3->server_random, kTLS13DowngradeRandom); 830 } 831 } else { 832 copy_suffix(ssl->s3->server_random, kTLS12DowngradeRandom); 833 } 834 } 835 836 const SSL_SESSION *session = hs->new_session.get(); 837 if (ssl->session != nullptr) { 838 session = ssl->session.get(); 839 } 840 841 ScopedCBB cbb; 842 CBB body, session_id; 843 if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_SERVER_HELLO) || 844 !CBB_add_u16(&body, ssl->version) || 845 !CBB_add_bytes(&body, ssl->s3->server_random, SSL3_RANDOM_SIZE) || 846 !CBB_add_u8_length_prefixed(&body, &session_id) || 847 !CBB_add_bytes(&session_id, session->session_id, 848 session->session_id_length) || 849 !CBB_add_u16(&body, ssl_cipher_get_value(hs->new_cipher)) || 850 !CBB_add_u8(&body, 0 /* no compression */) || 851 !ssl_add_serverhello_tlsext(hs, &body) || 852 !ssl_add_message_cbb(ssl, cbb.get())) { 853 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 854 return ssl_hs_error; 855 } 856 857 if (ssl->session != NULL) { 858 hs->state = state12_send_server_finished; 859 } else { 860 hs->state = state12_send_server_certificate; 861 } 862 return ssl_hs_ok; 863 } 864 865 static enum ssl_hs_wait_t do_send_server_certificate(SSL_HANDSHAKE *hs) { 866 SSL *const ssl = hs->ssl; 867 ScopedCBB cbb; 868 869 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 870 if (!ssl_has_certificate(hs)) { 871 OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CERTIFICATE_SET); 872 return ssl_hs_error; 873 } 874 875 if (!ssl_output_cert_chain(hs)) { 876 return ssl_hs_error; 877 } 878 879 if (hs->certificate_status_expected) { 880 CBB body, ocsp_response; 881 if (!ssl->method->init_message(ssl, cbb.get(), &body, 882 SSL3_MT_CERTIFICATE_STATUS) || 883 !CBB_add_u8(&body, TLSEXT_STATUSTYPE_ocsp) || 884 !CBB_add_u24_length_prefixed(&body, &ocsp_response) || 885 !CBB_add_bytes( 886 &ocsp_response, 887 CRYPTO_BUFFER_data(hs->config->cert->ocsp_response.get()), 888 CRYPTO_BUFFER_len(hs->config->cert->ocsp_response.get())) || 889 !ssl_add_message_cbb(ssl, cbb.get())) { 890 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 891 return ssl_hs_error; 892 } 893 } 894 } 895 896 // Assemble ServerKeyExchange parameters if needed. 897 uint32_t alg_k = hs->new_cipher->algorithm_mkey; 898 uint32_t alg_a = hs->new_cipher->algorithm_auth; 899 if (ssl_cipher_requires_server_key_exchange(hs->new_cipher) || 900 ((alg_a & SSL_aPSK) && hs->config->psk_identity_hint)) { 901 // Pre-allocate enough room to comfortably fit an ECDHE public key. Prepend 902 // the client and server randoms for the signing transcript. 903 CBB child; 904 if (!CBB_init(cbb.get(), SSL3_RANDOM_SIZE * 2 + 128) || 905 !CBB_add_bytes(cbb.get(), ssl->s3->client_random, SSL3_RANDOM_SIZE) || 906 !CBB_add_bytes(cbb.get(), ssl->s3->server_random, SSL3_RANDOM_SIZE)) { 907 return ssl_hs_error; 908 } 909 910 // PSK ciphers begin with an identity hint. 911 if (alg_a & SSL_aPSK) { 912 size_t len = hs->config->psk_identity_hint == nullptr 913 ? 0 914 : strlen(hs->config->psk_identity_hint.get()); 915 if (!CBB_add_u16_length_prefixed(cbb.get(), &child) || 916 !CBB_add_bytes(&child, 917 (const uint8_t *)hs->config->psk_identity_hint.get(), 918 len)) { 919 return ssl_hs_error; 920 } 921 } 922 923 if (alg_k & SSL_kECDHE) { 924 // Determine the group to use. 925 uint16_t group_id; 926 if (!tls1_get_shared_group(hs, &group_id)) { 927 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 928 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 929 return ssl_hs_error; 930 } 931 hs->new_session->group_id = group_id; 932 933 // Set up ECDH, generate a key, and emit the public half. 934 hs->key_shares[0] = SSLKeyShare::Create(group_id); 935 if (!hs->key_shares[0] || 936 !CBB_add_u8(cbb.get(), NAMED_CURVE_TYPE) || 937 !CBB_add_u16(cbb.get(), group_id) || 938 !CBB_add_u8_length_prefixed(cbb.get(), &child) || 939 !hs->key_shares[0]->Offer(&child)) { 940 return ssl_hs_error; 941 } 942 } else { 943 assert(alg_k & SSL_kPSK); 944 } 945 946 if (!CBBFinishArray(cbb.get(), &hs->server_params)) { 947 return ssl_hs_error; 948 } 949 } 950 951 hs->state = state12_send_server_key_exchange; 952 return ssl_hs_ok; 953 } 954 955 static enum ssl_hs_wait_t do_send_server_key_exchange(SSL_HANDSHAKE *hs) { 956 SSL *const ssl = hs->ssl; 957 958 if (hs->server_params.size() == 0) { 959 hs->state = state12_send_server_hello_done; 960 return ssl_hs_ok; 961 } 962 963 ScopedCBB cbb; 964 CBB body, child; 965 if (!ssl->method->init_message(ssl, cbb.get(), &body, 966 SSL3_MT_SERVER_KEY_EXCHANGE) || 967 // |hs->server_params| contains a prefix for signing. 968 hs->server_params.size() < 2 * SSL3_RANDOM_SIZE || 969 !CBB_add_bytes(&body, hs->server_params.data() + 2 * SSL3_RANDOM_SIZE, 970 hs->server_params.size() - 2 * SSL3_RANDOM_SIZE)) { 971 return ssl_hs_error; 972 } 973 974 // Add a signature. 975 if (ssl_cipher_uses_certificate_auth(hs->new_cipher)) { 976 if (!ssl_has_private_key(hs)) { 977 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 978 return ssl_hs_error; 979 } 980 981 // Determine the signature algorithm. 982 uint16_t signature_algorithm; 983 if (!tls1_choose_signature_algorithm(hs, &signature_algorithm)) { 984 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 985 return ssl_hs_error; 986 } 987 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { 988 if (!CBB_add_u16(&body, signature_algorithm)) { 989 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 990 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 991 return ssl_hs_error; 992 } 993 } 994 995 // Add space for the signature. 996 const size_t max_sig_len = EVP_PKEY_size(hs->local_pubkey.get()); 997 uint8_t *ptr; 998 if (!CBB_add_u16_length_prefixed(&body, &child) || 999 !CBB_reserve(&child, &ptr, max_sig_len)) { 1000 return ssl_hs_error; 1001 } 1002 1003 size_t sig_len; 1004 switch (ssl_private_key_sign(hs, ptr, &sig_len, max_sig_len, 1005 signature_algorithm, hs->server_params)) { 1006 case ssl_private_key_success: 1007 if (!CBB_did_write(&child, sig_len)) { 1008 return ssl_hs_error; 1009 } 1010 break; 1011 case ssl_private_key_failure: 1012 return ssl_hs_error; 1013 case ssl_private_key_retry: 1014 return ssl_hs_private_key_operation; 1015 } 1016 } 1017 1018 if (!ssl_add_message_cbb(ssl, cbb.get())) { 1019 return ssl_hs_error; 1020 } 1021 1022 hs->server_params.Reset(); 1023 1024 hs->state = state12_send_server_hello_done; 1025 return ssl_hs_ok; 1026 } 1027 1028 static enum ssl_hs_wait_t do_send_server_hello_done(SSL_HANDSHAKE *hs) { 1029 SSL *const ssl = hs->ssl; 1030 1031 ScopedCBB cbb; 1032 CBB body; 1033 1034 if (hs->cert_request) { 1035 CBB cert_types, sigalgs_cbb; 1036 if (!ssl->method->init_message(ssl, cbb.get(), &body, 1037 SSL3_MT_CERTIFICATE_REQUEST) || 1038 !CBB_add_u8_length_prefixed(&body, &cert_types) || 1039 !CBB_add_u8(&cert_types, SSL3_CT_RSA_SIGN) || 1040 !CBB_add_u8(&cert_types, TLS_CT_ECDSA_SIGN) || 1041 // TLS 1.2 has no way to specify different signature algorithms for 1042 // certificates and the online signature, so emit the more restrictive 1043 // certificate list. 1044 (ssl_protocol_version(ssl) >= TLS1_2_VERSION && 1045 (!CBB_add_u16_length_prefixed(&body, &sigalgs_cbb) || 1046 !tls12_add_verify_sigalgs(ssl, &sigalgs_cbb, true /* certs */))) || 1047 !ssl_add_client_CA_list(hs, &body) || 1048 !ssl_add_message_cbb(ssl, cbb.get())) { 1049 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1050 return ssl_hs_error; 1051 } 1052 } 1053 1054 if (!ssl->method->init_message(ssl, cbb.get(), &body, 1055 SSL3_MT_SERVER_HELLO_DONE) || 1056 !ssl_add_message_cbb(ssl, cbb.get())) { 1057 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1058 return ssl_hs_error; 1059 } 1060 1061 hs->state = state12_read_client_certificate; 1062 return ssl_hs_flush; 1063 } 1064 1065 static enum ssl_hs_wait_t do_read_client_certificate(SSL_HANDSHAKE *hs) { 1066 SSL *const ssl = hs->ssl; 1067 1068 if (hs->handback && hs->new_cipher->algorithm_mkey == SSL_kECDHE) { 1069 return ssl_hs_handback; 1070 } 1071 if (!hs->cert_request) { 1072 hs->state = state12_verify_client_certificate; 1073 return ssl_hs_ok; 1074 } 1075 1076 SSLMessage msg; 1077 if (!ssl->method->get_message(ssl, &msg)) { 1078 return ssl_hs_read_message; 1079 } 1080 1081 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE)) { 1082 return ssl_hs_error; 1083 } 1084 1085 if (!ssl_hash_message(hs, msg)) { 1086 return ssl_hs_error; 1087 } 1088 1089 CBS certificate_msg = msg.body; 1090 uint8_t alert = SSL_AD_DECODE_ERROR; 1091 if (!ssl_parse_cert_chain(&alert, &hs->new_session->certs, &hs->peer_pubkey, 1092 hs->config->retain_only_sha256_of_client_certs 1093 ? hs->new_session->peer_sha256 1094 : nullptr, 1095 &certificate_msg, ssl->ctx->pool)) { 1096 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 1097 return ssl_hs_error; 1098 } 1099 1100 if (CBS_len(&certificate_msg) != 0 || 1101 !ssl->ctx->x509_method->session_cache_objects(hs->new_session.get())) { 1102 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1103 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1104 return ssl_hs_error; 1105 } 1106 1107 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) == 0) { 1108 // No client certificate so the handshake buffer may be discarded. 1109 hs->transcript.FreeBuffer(); 1110 1111 if (hs->config->verify_mode & SSL_VERIFY_FAIL_IF_NO_PEER_CERT) { 1112 // Fail for TLS only if we required a certificate 1113 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_DID_NOT_RETURN_A_CERTIFICATE); 1114 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 1115 return ssl_hs_error; 1116 } 1117 1118 // OpenSSL returns X509_V_OK when no certificates are received. This is 1119 // classed by them as a bug, but it's assumed by at least NGINX. 1120 hs->new_session->verify_result = X509_V_OK; 1121 } else if (hs->config->retain_only_sha256_of_client_certs) { 1122 // The hash will have been filled in. 1123 hs->new_session->peer_sha256_valid = 1; 1124 } 1125 1126 ssl->method->next_message(ssl); 1127 hs->state = state12_verify_client_certificate; 1128 return ssl_hs_ok; 1129 } 1130 1131 static enum ssl_hs_wait_t do_verify_client_certificate(SSL_HANDSHAKE *hs) { 1132 if (sk_CRYPTO_BUFFER_num(hs->new_session->certs.get()) > 0) { 1133 switch (ssl_verify_peer_cert(hs)) { 1134 case ssl_verify_ok: 1135 break; 1136 case ssl_verify_invalid: 1137 return ssl_hs_error; 1138 case ssl_verify_retry: 1139 return ssl_hs_certificate_verify; 1140 } 1141 } 1142 1143 hs->state = state12_read_client_key_exchange; 1144 return ssl_hs_ok; 1145 } 1146 1147 static enum ssl_hs_wait_t do_read_client_key_exchange(SSL_HANDSHAKE *hs) { 1148 SSL *const ssl = hs->ssl; 1149 SSLMessage msg; 1150 if (!ssl->method->get_message(ssl, &msg)) { 1151 return ssl_hs_read_message; 1152 } 1153 1154 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CLIENT_KEY_EXCHANGE)) { 1155 return ssl_hs_error; 1156 } 1157 1158 CBS client_key_exchange = msg.body; 1159 uint32_t alg_k = hs->new_cipher->algorithm_mkey; 1160 uint32_t alg_a = hs->new_cipher->algorithm_auth; 1161 1162 // If using a PSK key exchange, parse the PSK identity. 1163 if (alg_a & SSL_aPSK) { 1164 CBS psk_identity; 1165 1166 // If using PSK, the ClientKeyExchange contains a psk_identity. If PSK, 1167 // then this is the only field in the message. 1168 if (!CBS_get_u16_length_prefixed(&client_key_exchange, &psk_identity) || 1169 ((alg_k & SSL_kPSK) && CBS_len(&client_key_exchange) != 0)) { 1170 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1171 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1172 return ssl_hs_error; 1173 } 1174 1175 if (CBS_len(&psk_identity) > PSK_MAX_IDENTITY_LEN || 1176 CBS_contains_zero_byte(&psk_identity)) { 1177 OPENSSL_PUT_ERROR(SSL, SSL_R_DATA_LENGTH_TOO_LONG); 1178 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER); 1179 return ssl_hs_error; 1180 } 1181 char *raw = nullptr; 1182 if (!CBS_strdup(&psk_identity, &raw)) { 1183 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 1184 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 1185 return ssl_hs_error; 1186 } 1187 hs->new_session->psk_identity.reset(raw); 1188 } 1189 1190 // Depending on the key exchange method, compute |premaster_secret|. 1191 Array<uint8_t> premaster_secret; 1192 if (alg_k & SSL_kRSA) { 1193 CBS encrypted_premaster_secret; 1194 if (!CBS_get_u16_length_prefixed(&client_key_exchange, 1195 &encrypted_premaster_secret) || 1196 CBS_len(&client_key_exchange) != 0) { 1197 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1198 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1199 return ssl_hs_error; 1200 } 1201 1202 // Allocate a buffer large enough for an RSA decryption. 1203 Array<uint8_t> decrypt_buf; 1204 if (!decrypt_buf.Init(EVP_PKEY_size(hs->local_pubkey.get()))) { 1205 return ssl_hs_error; 1206 } 1207 1208 // Decrypt with no padding. PKCS#1 padding will be removed as part of the 1209 // timing-sensitive code below. 1210 size_t decrypt_len; 1211 switch (ssl_private_key_decrypt(hs, decrypt_buf.data(), &decrypt_len, 1212 decrypt_buf.size(), 1213 encrypted_premaster_secret)) { 1214 case ssl_private_key_success: 1215 break; 1216 case ssl_private_key_failure: 1217 return ssl_hs_error; 1218 case ssl_private_key_retry: 1219 return ssl_hs_private_key_operation; 1220 } 1221 1222 if (decrypt_len != decrypt_buf.size()) { 1223 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); 1224 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); 1225 return ssl_hs_error; 1226 } 1227 1228 CONSTTIME_SECRET(decrypt_buf.data(), decrypt_len); 1229 1230 // Prepare a random premaster, to be used on invalid padding. See RFC 5246, 1231 // section 7.4.7.1. 1232 if (!premaster_secret.Init(SSL_MAX_MASTER_KEY_LENGTH) || 1233 !RAND_bytes(premaster_secret.data(), premaster_secret.size())) { 1234 return ssl_hs_error; 1235 } 1236 1237 // The smallest padded premaster is 11 bytes of overhead. Small keys are 1238 // publicly invalid. 1239 if (decrypt_len < 11 + premaster_secret.size()) { 1240 OPENSSL_PUT_ERROR(SSL, SSL_R_DECRYPTION_FAILED); 1241 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); 1242 return ssl_hs_error; 1243 } 1244 1245 // Check the padding. See RFC 3447, section 7.2.2. 1246 size_t padding_len = decrypt_len - premaster_secret.size(); 1247 uint8_t good = constant_time_eq_int_8(decrypt_buf[0], 0) & 1248 constant_time_eq_int_8(decrypt_buf[1], 2); 1249 for (size_t i = 2; i < padding_len - 1; i++) { 1250 good &= ~constant_time_is_zero_8(decrypt_buf[i]); 1251 } 1252 good &= constant_time_is_zero_8(decrypt_buf[padding_len - 1]); 1253 1254 // The premaster secret must begin with |client_version|. This too must be 1255 // checked in constant time (http://eprint.iacr.org/2003/052/). 1256 good &= constant_time_eq_8(decrypt_buf[padding_len], 1257 (unsigned)(hs->client_version >> 8)); 1258 good &= constant_time_eq_8(decrypt_buf[padding_len + 1], 1259 (unsigned)(hs->client_version & 0xff)); 1260 1261 // Select, in constant time, either the decrypted premaster or the random 1262 // premaster based on |good|. 1263 for (size_t i = 0; i < premaster_secret.size(); i++) { 1264 premaster_secret[i] = constant_time_select_8( 1265 good, decrypt_buf[padding_len + i], premaster_secret[i]); 1266 } 1267 } else if (alg_k & SSL_kECDHE) { 1268 // Parse the ClientKeyExchange. 1269 CBS peer_key; 1270 if (!CBS_get_u8_length_prefixed(&client_key_exchange, &peer_key) || 1271 CBS_len(&client_key_exchange) != 0) { 1272 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1273 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1274 return ssl_hs_error; 1275 } 1276 1277 // Compute the premaster. 1278 uint8_t alert = SSL_AD_DECODE_ERROR; 1279 if (!hs->key_shares[0]->Finish(&premaster_secret, &alert, peer_key)) { 1280 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 1281 return ssl_hs_error; 1282 } 1283 1284 // The key exchange state may now be discarded. 1285 hs->key_shares[0].reset(); 1286 hs->key_shares[1].reset(); 1287 } else if (!(alg_k & SSL_kPSK)) { 1288 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1289 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_HANDSHAKE_FAILURE); 1290 return ssl_hs_error; 1291 } 1292 1293 // For a PSK cipher suite, the actual pre-master secret is combined with the 1294 // pre-shared key. 1295 if (alg_a & SSL_aPSK) { 1296 if (hs->config->psk_server_callback == NULL) { 1297 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1298 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 1299 return ssl_hs_error; 1300 } 1301 1302 // Look up the key for the identity. 1303 uint8_t psk[PSK_MAX_PSK_LEN]; 1304 unsigned psk_len = hs->config->psk_server_callback( 1305 ssl, hs->new_session->psk_identity.get(), psk, sizeof(psk)); 1306 if (psk_len > PSK_MAX_PSK_LEN) { 1307 OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR); 1308 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR); 1309 return ssl_hs_error; 1310 } else if (psk_len == 0) { 1311 // PSK related to the given identity not found. 1312 OPENSSL_PUT_ERROR(SSL, SSL_R_PSK_IDENTITY_NOT_FOUND); 1313 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNKNOWN_PSK_IDENTITY); 1314 return ssl_hs_error; 1315 } 1316 1317 if (alg_k & SSL_kPSK) { 1318 // In plain PSK, other_secret is a block of 0s with the same length as the 1319 // pre-shared key. 1320 if (!premaster_secret.Init(psk_len)) { 1321 return ssl_hs_error; 1322 } 1323 OPENSSL_memset(premaster_secret.data(), 0, premaster_secret.size()); 1324 } 1325 1326 ScopedCBB new_premaster; 1327 CBB child; 1328 if (!CBB_init(new_premaster.get(), 1329 2 + psk_len + 2 + premaster_secret.size()) || 1330 !CBB_add_u16_length_prefixed(new_premaster.get(), &child) || 1331 !CBB_add_bytes(&child, premaster_secret.data(), 1332 premaster_secret.size()) || 1333 !CBB_add_u16_length_prefixed(new_premaster.get(), &child) || 1334 !CBB_add_bytes(&child, psk, psk_len) || 1335 !CBBFinishArray(new_premaster.get(), &premaster_secret)) { 1336 OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE); 1337 return ssl_hs_error; 1338 } 1339 } 1340 1341 if (!ssl_hash_message(hs, msg)) { 1342 return ssl_hs_error; 1343 } 1344 1345 // Compute the master secret. 1346 hs->new_session->master_key_length = tls1_generate_master_secret( 1347 hs, hs->new_session->master_key, premaster_secret); 1348 if (hs->new_session->master_key_length == 0) { 1349 return ssl_hs_error; 1350 } 1351 hs->new_session->extended_master_secret = hs->extended_master_secret; 1352 CONSTTIME_DECLASSIFY(hs->new_session->master_key, 1353 hs->new_session->master_key_length); 1354 1355 ssl->method->next_message(ssl); 1356 hs->state = state12_read_client_certificate_verify; 1357 return ssl_hs_ok; 1358 } 1359 1360 static enum ssl_hs_wait_t do_read_client_certificate_verify(SSL_HANDSHAKE *hs) { 1361 SSL *const ssl = hs->ssl; 1362 1363 // Only RSA and ECDSA client certificates are supported, so a 1364 // CertificateVerify is required if and only if there's a client certificate. 1365 if (!hs->peer_pubkey) { 1366 hs->transcript.FreeBuffer(); 1367 hs->state = state12_read_change_cipher_spec; 1368 return ssl_hs_ok; 1369 } 1370 1371 SSLMessage msg; 1372 if (!ssl->method->get_message(ssl, &msg)) { 1373 return ssl_hs_read_message; 1374 } 1375 1376 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_VERIFY)) { 1377 return ssl_hs_error; 1378 } 1379 1380 CBS certificate_verify = msg.body, signature; 1381 1382 // Determine the signature algorithm. 1383 uint16_t signature_algorithm = 0; 1384 if (ssl_protocol_version(ssl) >= TLS1_2_VERSION) { 1385 if (!CBS_get_u16(&certificate_verify, &signature_algorithm)) { 1386 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1387 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1388 return ssl_hs_error; 1389 } 1390 uint8_t alert = SSL_AD_DECODE_ERROR; 1391 if (!tls12_check_peer_sigalg(ssl, &alert, signature_algorithm)) { 1392 ssl_send_alert(ssl, SSL3_AL_FATAL, alert); 1393 return ssl_hs_error; 1394 } 1395 hs->new_session->peer_signature_algorithm = signature_algorithm; 1396 } else if (!tls1_get_legacy_signature_algorithm(&signature_algorithm, 1397 hs->peer_pubkey.get())) { 1398 OPENSSL_PUT_ERROR(SSL, SSL_R_PEER_ERROR_UNSUPPORTED_CERTIFICATE_TYPE); 1399 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNSUPPORTED_CERTIFICATE); 1400 return ssl_hs_error; 1401 } 1402 1403 // Parse and verify the signature. 1404 if (!CBS_get_u16_length_prefixed(&certificate_verify, &signature) || 1405 CBS_len(&certificate_verify) != 0) { 1406 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1407 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1408 return ssl_hs_error; 1409 } 1410 1411 bool sig_ok = 1412 ssl_public_key_verify(ssl, signature, signature_algorithm, 1413 hs->peer_pubkey.get(), hs->transcript.buffer()); 1414 #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) 1415 sig_ok = true; 1416 ERR_clear_error(); 1417 #endif 1418 if (!sig_ok) { 1419 OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_SIGNATURE); 1420 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECRYPT_ERROR); 1421 return ssl_hs_error; 1422 } 1423 1424 // The handshake buffer is no longer necessary, and we may hash the current 1425 // message. 1426 hs->transcript.FreeBuffer(); 1427 if (!ssl_hash_message(hs, msg)) { 1428 return ssl_hs_error; 1429 } 1430 1431 ssl->method->next_message(ssl); 1432 hs->state = state12_read_change_cipher_spec; 1433 return ssl_hs_ok; 1434 } 1435 1436 static enum ssl_hs_wait_t do_read_change_cipher_spec(SSL_HANDSHAKE *hs) { 1437 if (hs->handback && hs->ssl->session != NULL) { 1438 return ssl_hs_handback; 1439 } 1440 hs->state = state12_process_change_cipher_spec; 1441 return ssl_hs_read_change_cipher_spec; 1442 } 1443 1444 static enum ssl_hs_wait_t do_process_change_cipher_spec(SSL_HANDSHAKE *hs) { 1445 if (!tls1_change_cipher_state(hs, evp_aead_open)) { 1446 return ssl_hs_error; 1447 } 1448 1449 hs->state = state12_read_next_proto; 1450 return ssl_hs_ok; 1451 } 1452 1453 static enum ssl_hs_wait_t do_read_next_proto(SSL_HANDSHAKE *hs) { 1454 SSL *const ssl = hs->ssl; 1455 1456 if (!hs->next_proto_neg_seen) { 1457 hs->state = state12_read_channel_id; 1458 return ssl_hs_ok; 1459 } 1460 1461 SSLMessage msg; 1462 if (!ssl->method->get_message(ssl, &msg)) { 1463 return ssl_hs_read_message; 1464 } 1465 1466 if (!ssl_check_message_type(ssl, msg, SSL3_MT_NEXT_PROTO) || 1467 !ssl_hash_message(hs, msg)) { 1468 return ssl_hs_error; 1469 } 1470 1471 CBS next_protocol = msg.body, selected_protocol, padding; 1472 if (!CBS_get_u8_length_prefixed(&next_protocol, &selected_protocol) || 1473 !CBS_get_u8_length_prefixed(&next_protocol, &padding) || 1474 CBS_len(&next_protocol) != 0) { 1475 OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR); 1476 ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR); 1477 return ssl_hs_error; 1478 } 1479 1480 if (!ssl->s3->next_proto_negotiated.CopyFrom(selected_protocol)) { 1481 return ssl_hs_error; 1482 } 1483 1484 ssl->method->next_message(ssl); 1485 hs->state = state12_read_channel_id; 1486 return ssl_hs_ok; 1487 } 1488 1489 static enum ssl_hs_wait_t do_read_channel_id(SSL_HANDSHAKE *hs) { 1490 SSL *const ssl = hs->ssl; 1491 1492 if (!ssl->s3->channel_id_valid) { 1493 hs->state = state12_read_client_finished; 1494 return ssl_hs_ok; 1495 } 1496 1497 SSLMessage msg; 1498 if (!ssl->method->get_message(ssl, &msg)) { 1499 return ssl_hs_read_message; 1500 } 1501 1502 if (!ssl_check_message_type(ssl, msg, SSL3_MT_CHANNEL_ID) || 1503 !tls1_verify_channel_id(hs, msg) || 1504 !ssl_hash_message(hs, msg)) { 1505 return ssl_hs_error; 1506 } 1507 1508 ssl->method->next_message(ssl); 1509 hs->state = state12_read_client_finished; 1510 return ssl_hs_ok; 1511 } 1512 1513 static enum ssl_hs_wait_t do_read_client_finished(SSL_HANDSHAKE *hs) { 1514 SSL *const ssl = hs->ssl; 1515 enum ssl_hs_wait_t wait = ssl_get_finished(hs); 1516 if (wait != ssl_hs_ok) { 1517 return wait; 1518 } 1519 1520 if (ssl->session != NULL) { 1521 hs->state = state12_finish_server_handshake; 1522 } else { 1523 hs->state = state12_send_server_finished; 1524 } 1525 1526 // If this is a full handshake with ChannelID then record the handshake 1527 // hashes in |hs->new_session| in case we need them to verify a 1528 // ChannelID signature on a resumption of this session in the future. 1529 if (ssl->session == NULL && ssl->s3->channel_id_valid && 1530 !tls1_record_handshake_hashes_for_channel_id(hs)) { 1531 return ssl_hs_error; 1532 } 1533 1534 return ssl_hs_ok; 1535 } 1536 1537 static enum ssl_hs_wait_t do_send_server_finished(SSL_HANDSHAKE *hs) { 1538 SSL *const ssl = hs->ssl; 1539 1540 if (hs->ticket_expected) { 1541 const SSL_SESSION *session; 1542 UniquePtr<SSL_SESSION> session_copy; 1543 if (ssl->session == NULL) { 1544 // Fix the timeout to measure from the ticket issuance time. 1545 ssl_session_rebase_time(ssl, hs->new_session.get()); 1546 session = hs->new_session.get(); 1547 } else { 1548 // We are renewing an existing session. Duplicate the session to adjust 1549 // the timeout. 1550 session_copy = 1551 SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_INCLUDE_NONAUTH); 1552 if (!session_copy) { 1553 return ssl_hs_error; 1554 } 1555 1556 ssl_session_rebase_time(ssl, session_copy.get()); 1557 session = session_copy.get(); 1558 } 1559 1560 ScopedCBB cbb; 1561 CBB body, ticket; 1562 if (!ssl->method->init_message(ssl, cbb.get(), &body, 1563 SSL3_MT_NEW_SESSION_TICKET) || 1564 !CBB_add_u32(&body, session->timeout) || 1565 !CBB_add_u16_length_prefixed(&body, &ticket) || 1566 !ssl_encrypt_ticket(hs, &ticket, session) || 1567 !ssl_add_message_cbb(ssl, cbb.get())) { 1568 return ssl_hs_error; 1569 } 1570 } 1571 1572 if (!ssl->method->add_change_cipher_spec(ssl) || 1573 !tls1_change_cipher_state(hs, evp_aead_seal) || 1574 !ssl_send_finished(hs)) { 1575 return ssl_hs_error; 1576 } 1577 1578 if (ssl->session != NULL) { 1579 hs->state = state12_read_change_cipher_spec; 1580 } else { 1581 hs->state = state12_finish_server_handshake; 1582 } 1583 return ssl_hs_flush; 1584 } 1585 1586 static enum ssl_hs_wait_t do_finish_server_handshake(SSL_HANDSHAKE *hs) { 1587 SSL *const ssl = hs->ssl; 1588 1589 if (hs->handback) { 1590 return ssl_hs_handback; 1591 } 1592 1593 ssl->method->on_handshake_complete(ssl); 1594 1595 // If we aren't retaining peer certificates then we can discard it now. 1596 if (hs->new_session != NULL && 1597 hs->config->retain_only_sha256_of_client_certs) { 1598 hs->new_session->certs.reset(); 1599 ssl->ctx->x509_method->session_clear(hs->new_session.get()); 1600 } 1601 1602 if (ssl->session != NULL) { 1603 ssl->s3->established_session = UpRef(ssl->session); 1604 } else { 1605 ssl->s3->established_session = std::move(hs->new_session); 1606 ssl->s3->established_session->not_resumable = false; 1607 } 1608 1609 hs->handshake_finalized = true; 1610 ssl->s3->initial_handshake_complete = true; 1611 ssl_update_cache(hs, SSL_SESS_CACHE_SERVER); 1612 1613 hs->state = state12_done; 1614 return ssl_hs_ok; 1615 } 1616 1617 enum ssl_hs_wait_t ssl_server_handshake(SSL_HANDSHAKE *hs) { 1618 while (hs->state != state12_done) { 1619 enum ssl_hs_wait_t ret = ssl_hs_error; 1620 enum tls12_server_hs_state_t state = 1621 static_cast<enum tls12_server_hs_state_t>(hs->state); 1622 switch (state) { 1623 case state12_start_accept: 1624 ret = do_start_accept(hs); 1625 break; 1626 case state12_read_client_hello: 1627 ret = do_read_client_hello(hs); 1628 break; 1629 case state12_select_certificate: 1630 ret = do_select_certificate(hs); 1631 break; 1632 case state12_tls13: 1633 ret = do_tls13(hs); 1634 break; 1635 case state12_select_parameters: 1636 ret = do_select_parameters(hs); 1637 break; 1638 case state12_send_server_hello: 1639 ret = do_send_server_hello(hs); 1640 break; 1641 case state12_send_server_certificate: 1642 ret = do_send_server_certificate(hs); 1643 break; 1644 case state12_send_server_key_exchange: 1645 ret = do_send_server_key_exchange(hs); 1646 break; 1647 case state12_send_server_hello_done: 1648 ret = do_send_server_hello_done(hs); 1649 break; 1650 case state12_read_client_certificate: 1651 ret = do_read_client_certificate(hs); 1652 break; 1653 case state12_verify_client_certificate: 1654 ret = do_verify_client_certificate(hs); 1655 break; 1656 case state12_read_client_key_exchange: 1657 ret = do_read_client_key_exchange(hs); 1658 break; 1659 case state12_read_client_certificate_verify: 1660 ret = do_read_client_certificate_verify(hs); 1661 break; 1662 case state12_read_change_cipher_spec: 1663 ret = do_read_change_cipher_spec(hs); 1664 break; 1665 case state12_process_change_cipher_spec: 1666 ret = do_process_change_cipher_spec(hs); 1667 break; 1668 case state12_read_next_proto: 1669 ret = do_read_next_proto(hs); 1670 break; 1671 case state12_read_channel_id: 1672 ret = do_read_channel_id(hs); 1673 break; 1674 case state12_read_client_finished: 1675 ret = do_read_client_finished(hs); 1676 break; 1677 case state12_send_server_finished: 1678 ret = do_send_server_finished(hs); 1679 break; 1680 case state12_finish_server_handshake: 1681 ret = do_finish_server_handshake(hs); 1682 break; 1683 case state12_done: 1684 ret = ssl_hs_ok; 1685 break; 1686 } 1687 1688 if (hs->state != state) { 1689 ssl_do_info_callback(hs->ssl, SSL_CB_ACCEPT_LOOP, 1); 1690 } 1691 1692 if (ret != ssl_hs_ok) { 1693 return ret; 1694 } 1695 } 1696 1697 ssl_do_info_callback(hs->ssl, SSL_CB_HANDSHAKE_DONE, 1); 1698 return ssl_hs_ok; 1699 } 1700 1701 const char *ssl_server_handshake_state(SSL_HANDSHAKE *hs) { 1702 enum tls12_server_hs_state_t state = 1703 static_cast<enum tls12_server_hs_state_t>(hs->state); 1704 switch (state) { 1705 case state12_start_accept: 1706 return "TLS server start_accept"; 1707 case state12_read_client_hello: 1708 return "TLS server read_client_hello"; 1709 case state12_select_certificate: 1710 return "TLS server select_certificate"; 1711 case state12_tls13: 1712 return tls13_server_handshake_state(hs); 1713 case state12_select_parameters: 1714 return "TLS server select_parameters"; 1715 case state12_send_server_hello: 1716 return "TLS server send_server_hello"; 1717 case state12_send_server_certificate: 1718 return "TLS server send_server_certificate"; 1719 case state12_send_server_key_exchange: 1720 return "TLS server send_server_key_exchange"; 1721 case state12_send_server_hello_done: 1722 return "TLS server send_server_hello_done"; 1723 case state12_read_client_certificate: 1724 return "TLS server read_client_certificate"; 1725 case state12_verify_client_certificate: 1726 return "TLS server verify_client_certificate"; 1727 case state12_read_client_key_exchange: 1728 return "TLS server read_client_key_exchange"; 1729 case state12_read_client_certificate_verify: 1730 return "TLS server read_client_certificate_verify"; 1731 case state12_read_change_cipher_spec: 1732 return "TLS server read_change_cipher_spec"; 1733 case state12_process_change_cipher_spec: 1734 return "TLS server process_change_cipher_spec"; 1735 case state12_read_next_proto: 1736 return "TLS server read_next_proto"; 1737 case state12_read_channel_id: 1738 return "TLS server read_channel_id"; 1739 case state12_read_client_finished: 1740 return "TLS server read_client_finished"; 1741 case state12_send_server_finished: 1742 return "TLS server send_server_finished"; 1743 case state12_finish_server_handshake: 1744 return "TLS server finish_server_handshake"; 1745 case state12_done: 1746 return "TLS server done"; 1747 } 1748 1749 return "TLS server unknown"; 1750 } 1751 1752 BSSL_NAMESPACE_END 1753