Home | History | Annotate | Download | only in engines
      1 /* GENERATED SOURCE. DO NOT MODIFY. */
      2 package com.android.org.bouncycastle.crypto.engines;
      3 
      4 import com.android.org.bouncycastle.crypto.BlockCipher;
      5 import com.android.org.bouncycastle.crypto.CipherParameters;
      6 import com.android.org.bouncycastle.crypto.DataLengthException;
      7 import com.android.org.bouncycastle.crypto.OutputLengthException;
      8 import com.android.org.bouncycastle.crypto.params.KeyParameter;
      9 import com.android.org.bouncycastle.crypto.params.RC2Parameters;
     10 
     11 /**
     12  * an implementation of RC2 as described in RFC 2268
     13  *      "A Description of the RC2(r) Encryption Algorithm" R. Rivest.
     14  * @hide This class is not part of the Android public SDK API
     15  */
     16 public class RC2Engine
     17     implements BlockCipher
     18 {
     19     //
     20     // the values we use for key expansion (based on the digits of PI)
     21     //
     22     private static byte[] piTable =
     23     {
     24         (byte)0xd9, (byte)0x78, (byte)0xf9, (byte)0xc4, (byte)0x19, (byte)0xdd, (byte)0xb5, (byte)0xed,
     25         (byte)0x28, (byte)0xe9, (byte)0xfd, (byte)0x79, (byte)0x4a, (byte)0xa0, (byte)0xd8, (byte)0x9d,
     26         (byte)0xc6, (byte)0x7e, (byte)0x37, (byte)0x83, (byte)0x2b, (byte)0x76, (byte)0x53, (byte)0x8e,
     27         (byte)0x62, (byte)0x4c, (byte)0x64, (byte)0x88, (byte)0x44, (byte)0x8b, (byte)0xfb, (byte)0xa2,
     28         (byte)0x17, (byte)0x9a, (byte)0x59, (byte)0xf5, (byte)0x87, (byte)0xb3, (byte)0x4f, (byte)0x13,
     29         (byte)0x61, (byte)0x45, (byte)0x6d, (byte)0x8d, (byte)0x9, (byte)0x81, (byte)0x7d, (byte)0x32,
     30         (byte)0xbd, (byte)0x8f, (byte)0x40, (byte)0xeb, (byte)0x86, (byte)0xb7, (byte)0x7b, (byte)0xb,
     31         (byte)0xf0, (byte)0x95, (byte)0x21, (byte)0x22, (byte)0x5c, (byte)0x6b, (byte)0x4e, (byte)0x82,
     32         (byte)0x54, (byte)0xd6, (byte)0x65, (byte)0x93, (byte)0xce, (byte)0x60, (byte)0xb2, (byte)0x1c,
     33         (byte)0x73, (byte)0x56, (byte)0xc0, (byte)0x14, (byte)0xa7, (byte)0x8c, (byte)0xf1, (byte)0xdc,
     34         (byte)0x12, (byte)0x75, (byte)0xca, (byte)0x1f, (byte)0x3b, (byte)0xbe, (byte)0xe4, (byte)0xd1,
     35         (byte)0x42, (byte)0x3d, (byte)0xd4, (byte)0x30, (byte)0xa3, (byte)0x3c, (byte)0xb6, (byte)0x26,
     36         (byte)0x6f, (byte)0xbf, (byte)0xe, (byte)0xda, (byte)0x46, (byte)0x69, (byte)0x7, (byte)0x57,
     37         (byte)0x27, (byte)0xf2, (byte)0x1d, (byte)0x9b, (byte)0xbc, (byte)0x94, (byte)0x43, (byte)0x3,
     38         (byte)0xf8, (byte)0x11, (byte)0xc7, (byte)0xf6, (byte)0x90, (byte)0xef, (byte)0x3e, (byte)0xe7,
     39         (byte)0x6, (byte)0xc3, (byte)0xd5, (byte)0x2f, (byte)0xc8, (byte)0x66, (byte)0x1e, (byte)0xd7,
     40         (byte)0x8, (byte)0xe8, (byte)0xea, (byte)0xde, (byte)0x80, (byte)0x52, (byte)0xee, (byte)0xf7,
     41         (byte)0x84, (byte)0xaa, (byte)0x72, (byte)0xac, (byte)0x35, (byte)0x4d, (byte)0x6a, (byte)0x2a,
     42         (byte)0x96, (byte)0x1a, (byte)0xd2, (byte)0x71, (byte)0x5a, (byte)0x15, (byte)0x49, (byte)0x74,
     43         (byte)0x4b, (byte)0x9f, (byte)0xd0, (byte)0x5e, (byte)0x4, (byte)0x18, (byte)0xa4, (byte)0xec,
     44         (byte)0xc2, (byte)0xe0, (byte)0x41, (byte)0x6e, (byte)0xf, (byte)0x51, (byte)0xcb, (byte)0xcc,
     45         (byte)0x24, (byte)0x91, (byte)0xaf, (byte)0x50, (byte)0xa1, (byte)0xf4, (byte)0x70, (byte)0x39,
     46         (byte)0x99, (byte)0x7c, (byte)0x3a, (byte)0x85, (byte)0x23, (byte)0xb8, (byte)0xb4, (byte)0x7a,
     47         (byte)0xfc, (byte)0x2, (byte)0x36, (byte)0x5b, (byte)0x25, (byte)0x55, (byte)0x97, (byte)0x31,
     48         (byte)0x2d, (byte)0x5d, (byte)0xfa, (byte)0x98, (byte)0xe3, (byte)0x8a, (byte)0x92, (byte)0xae,
     49         (byte)0x5, (byte)0xdf, (byte)0x29, (byte)0x10, (byte)0x67, (byte)0x6c, (byte)0xba, (byte)0xc9,
     50         (byte)0xd3, (byte)0x0, (byte)0xe6, (byte)0xcf, (byte)0xe1, (byte)0x9e, (byte)0xa8, (byte)0x2c,
     51         (byte)0x63, (byte)0x16, (byte)0x1, (byte)0x3f, (byte)0x58, (byte)0xe2, (byte)0x89, (byte)0xa9,
     52         (byte)0xd, (byte)0x38, (byte)0x34, (byte)0x1b, (byte)0xab, (byte)0x33, (byte)0xff, (byte)0xb0,
     53         (byte)0xbb, (byte)0x48, (byte)0xc, (byte)0x5f, (byte)0xb9, (byte)0xb1, (byte)0xcd, (byte)0x2e,
     54         (byte)0xc5, (byte)0xf3, (byte)0xdb, (byte)0x47, (byte)0xe5, (byte)0xa5, (byte)0x9c, (byte)0x77,
     55         (byte)0xa, (byte)0xa6, (byte)0x20, (byte)0x68, (byte)0xfe, (byte)0x7f, (byte)0xc1, (byte)0xad
     56     };
     57 
     58     private static final int BLOCK_SIZE = 8;
     59 
     60     private int[]   workingKey;
     61     private boolean encrypting;
     62 
     63     private int[] generateWorkingKey(
     64         byte[]      key,
     65         int         bits)
     66     {
     67         int     x;
     68         int[]   xKey = new int[128];
     69 
     70         for (int i = 0; i != key.length; i++)
     71         {
     72             xKey[i] = key[i] & 0xff;
     73         }
     74 
     75         // Phase 1: Expand input key to 128 bytes
     76         int len = key.length;
     77 
     78         if (len < 128)
     79         {
     80             int     index = 0;
     81 
     82             x = xKey[len - 1];
     83 
     84             do
     85             {
     86                 x = piTable[(x + xKey[index++]) & 255] & 0xff;
     87                 xKey[len++] = x;
     88             }
     89             while (len < 128);
     90         }
     91 
     92         // Phase 2 - reduce effective key size to "bits"
     93         len = (bits + 7) >> 3;
     94         x = piTable[xKey[128 - len] & (255 >> (7 & -bits))] & 0xff;
     95         xKey[128 - len] = x;
     96 
     97         for (int i = 128 - len - 1; i >= 0; i--)
     98         {
     99                 x = piTable[x ^ xKey[i + len]] & 0xff;
    100                 xKey[i] = x;
    101         }
    102 
    103         // Phase 3 - copy to newKey in little-endian order
    104         int[] newKey = new int[64];
    105 
    106         for (int i = 0; i != newKey.length; i++)
    107         {
    108             newKey[i] = (xKey[2 * i] + (xKey[2 * i + 1] << 8));
    109         }
    110 
    111         return newKey;
    112     }
    113 
    114     /**
    115      * initialise a RC2 cipher.
    116      *
    117      * @param encrypting whether or not we are for encryption.
    118      * @param params the parameters required to set up the cipher.
    119      * @exception IllegalArgumentException if the params argument is
    120      * inappropriate.
    121      */
    122     public void init(
    123         boolean           encrypting,
    124         CipherParameters  params)
    125     {
    126         this.encrypting = encrypting;
    127 
    128         if (params instanceof RC2Parameters)
    129         {
    130             RC2Parameters   param = (RC2Parameters)params;
    131 
    132             workingKey = generateWorkingKey(param.getKey(),
    133                                             param.getEffectiveKeyBits());
    134         }
    135         else if (params instanceof KeyParameter)
    136         {
    137             byte[]    key = ((KeyParameter)params).getKey();
    138 
    139             workingKey = generateWorkingKey(key, key.length * 8);
    140         }
    141         else
    142         {
    143             throw new IllegalArgumentException("invalid parameter passed to RC2 init - " + params.getClass().getName());
    144         }
    145 
    146     }
    147 
    148     public void reset()
    149     {
    150     }
    151 
    152     public String getAlgorithmName()
    153     {
    154         return "RC2";
    155     }
    156 
    157     public int getBlockSize()
    158     {
    159         return BLOCK_SIZE;
    160     }
    161 
    162     public final int processBlock(
    163         byte[] in,
    164         int inOff,
    165         byte[] out,
    166         int outOff)
    167     {
    168         if (workingKey == null)
    169         {
    170             throw new IllegalStateException("RC2 engine not initialised");
    171         }
    172 
    173         if ((inOff + BLOCK_SIZE) > in.length)
    174         {
    175             throw new DataLengthException("input buffer too short");
    176         }
    177 
    178         if ((outOff + BLOCK_SIZE) > out.length)
    179         {
    180             throw new OutputLengthException("output buffer too short");
    181         }
    182 
    183         if (encrypting)
    184         {
    185             encryptBlock(in, inOff, out, outOff);
    186         }
    187         else
    188         {
    189             decryptBlock(in, inOff, out, outOff);
    190         }
    191 
    192         return BLOCK_SIZE;
    193     }
    194 
    195     /**
    196      * return the result rotating the 16 bit number in x left by y
    197      */
    198     private int rotateWordLeft(
    199         int x,
    200         int y)
    201     {
    202         x &= 0xffff;
    203         return (x << y) | (x >> (16 - y));
    204     }
    205 
    206     private void encryptBlock(
    207         byte[]  in,
    208         int     inOff,
    209         byte[]  out,
    210         int     outOff)
    211     {
    212         int x76, x54, x32, x10;
    213 
    214         x76 = ((in[inOff + 7] & 0xff) << 8) + (in[inOff + 6] & 0xff);
    215         x54 = ((in[inOff + 5] & 0xff) << 8) + (in[inOff + 4] & 0xff);
    216         x32 = ((in[inOff + 3] & 0xff) << 8) + (in[inOff + 2] & 0xff);
    217         x10 = ((in[inOff + 1] & 0xff) << 8) + (in[inOff + 0] & 0xff);
    218 
    219         for (int i = 0; i <= 16; i += 4)
    220         {
    221                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    222                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    223                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    224                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    225         }
    226 
    227         x10 += workingKey[x76 & 63];
    228         x32 += workingKey[x10 & 63];
    229         x54 += workingKey[x32 & 63];
    230         x76 += workingKey[x54 & 63];
    231 
    232         for (int i = 20; i <= 40; i += 4)
    233         {
    234                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    235                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    236                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    237                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    238         }
    239 
    240         x10 += workingKey[x76 & 63];
    241         x32 += workingKey[x10 & 63];
    242         x54 += workingKey[x32 & 63];
    243         x76 += workingKey[x54 & 63];
    244 
    245         for (int i = 44; i < 64; i += 4)
    246         {
    247                 x10 = rotateWordLeft(x10 + (x32 & ~x76) + (x54 & x76) + workingKey[i  ], 1);
    248                 x32 = rotateWordLeft(x32 + (x54 & ~x10) + (x76 & x10) + workingKey[i+1], 2);
    249                 x54 = rotateWordLeft(x54 + (x76 & ~x32) + (x10 & x32) + workingKey[i+2], 3);
    250                 x76 = rotateWordLeft(x76 + (x10 & ~x54) + (x32 & x54) + workingKey[i+3], 5);
    251         }
    252 
    253         out[outOff + 0] = (byte)x10;
    254         out[outOff + 1] = (byte)(x10 >> 8);
    255         out[outOff + 2] = (byte)x32;
    256         out[outOff + 3] = (byte)(x32 >> 8);
    257         out[outOff + 4] = (byte)x54;
    258         out[outOff + 5] = (byte)(x54 >> 8);
    259         out[outOff + 6] = (byte)x76;
    260         out[outOff + 7] = (byte)(x76 >> 8);
    261     }
    262 
    263     private void decryptBlock(
    264         byte[]  in,
    265         int     inOff,
    266         byte[]  out,
    267         int     outOff)
    268     {
    269         int x76, x54, x32, x10;
    270 
    271         x76 = ((in[inOff + 7] & 0xff) << 8) + (in[inOff + 6] & 0xff);
    272         x54 = ((in[inOff + 5] & 0xff) << 8) + (in[inOff + 4] & 0xff);
    273         x32 = ((in[inOff + 3] & 0xff) << 8) + (in[inOff + 2] & 0xff);
    274         x10 = ((in[inOff + 1] & 0xff) << 8) + (in[inOff + 0] & 0xff);
    275 
    276         for (int i = 60; i >= 44; i -= 4)
    277         {
    278             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    279             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    280             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    281             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    282         }
    283 
    284         x76 -= workingKey[x54 & 63];
    285         x54 -= workingKey[x32 & 63];
    286         x32 -= workingKey[x10 & 63];
    287         x10 -= workingKey[x76 & 63];
    288 
    289         for (int i = 40; i >= 20; i -= 4)
    290         {
    291             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    292             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    293             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    294             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    295         }
    296 
    297         x76 -= workingKey[x54 & 63];
    298         x54 -= workingKey[x32 & 63];
    299         x32 -= workingKey[x10 & 63];
    300         x10 -= workingKey[x76 & 63];
    301 
    302         for (int i = 16; i >= 0; i -= 4)
    303         {
    304             x76 = rotateWordLeft(x76, 11) - ((x10 & ~x54) + (x32 & x54) + workingKey[i+3]);
    305             x54 = rotateWordLeft(x54, 13) - ((x76 & ~x32) + (x10 & x32) + workingKey[i+2]);
    306             x32 = rotateWordLeft(x32, 14) - ((x54 & ~x10) + (x76 & x10) + workingKey[i+1]);
    307             x10 = rotateWordLeft(x10, 15) - ((x32 & ~x76) + (x54 & x76) + workingKey[i  ]);
    308         }
    309 
    310         out[outOff + 0] = (byte)x10;
    311         out[outOff + 1] = (byte)(x10 >> 8);
    312         out[outOff + 2] = (byte)x32;
    313         out[outOff + 3] = (byte)(x32 >> 8);
    314         out[outOff + 4] = (byte)x54;
    315         out[outOff + 5] = (byte)(x54 >> 8);
    316         out[outOff + 6] = (byte)x76;
    317         out[outOff + 7] = (byte)(x76 >> 8);
    318     }
    319 }
    320