Home | History | Annotate | Download | only in enc
      1 /* Copyright 2014 Google Inc. All Rights Reserved.
      2 
      3    Distributed under MIT license.
      4    See file LICENSE for detail or copy at https://opensource.org/licenses/MIT
      5 */
      6 
      7 /* Brotli bit stream functions to support the low level format. There are no
      8    compression algorithms here, just the right ordering of bits to match the
      9    specs. */
     10 
     11 #include "./brotli_bit_stream.h"
     12 
     13 #include <string.h>  /* memcpy, memset */
     14 
     15 #include "../common/constants.h"
     16 #include "../common/context.h"
     17 #include "../common/platform.h"
     18 #include <brotli/types.h>
     19 #include "./entropy_encode.h"
     20 #include "./entropy_encode_static.h"
     21 #include "./fast_log.h"
     22 #include "./histogram.h"
     23 #include "./memory.h"
     24 #include "./write_bits.h"
     25 
     26 #if defined(__cplusplus) || defined(c_plusplus)
     27 extern "C" {
     28 #endif
     29 
     30 #define MAX_HUFFMAN_TREE_SIZE (2 * BROTLI_NUM_COMMAND_SYMBOLS + 1)
     31 /* The maximum size of Huffman dictionary for distances assuming that
     32    NPOSTFIX = 0 and NDIRECT = 0. */
     33 #define MAX_SIMPLE_DISTANCE_ALPHABET_SIZE \
     34   BROTLI_DISTANCE_ALPHABET_SIZE(0, 0, BROTLI_LARGE_MAX_DISTANCE_BITS)
     35 /* MAX_SIMPLE_DISTANCE_ALPHABET_SIZE == 140 */
     36 
     37 /* Represents the range of values belonging to a prefix code:
     38    [offset, offset + 2^nbits) */
     39 typedef struct PrefixCodeRange {
     40   uint32_t offset;
     41   uint32_t nbits;
     42 } PrefixCodeRange;
     43 
     44 static const PrefixCodeRange
     45     kBlockLengthPrefixCode[BROTLI_NUM_BLOCK_LEN_SYMBOLS] = {
     46   { 1, 2}, { 5, 2}, { 9, 2}, {13, 2}, {17, 3}, { 25, 3}, { 33, 3},
     47   {41, 3}, {49, 4}, {65, 4}, {81, 4}, {97, 4}, {113, 5}, {145, 5},
     48   {177, 5}, { 209,  5}, { 241,  6}, { 305,  6}, { 369,  7}, {  497,  8},
     49   {753, 9}, {1265, 10}, {2289, 11}, {4337, 12}, {8433, 13}, {16625, 24}
     50 };
     51 
     52 static BROTLI_INLINE uint32_t BlockLengthPrefixCode(uint32_t len) {
     53   uint32_t code = (len >= 177) ? (len >= 753 ? 20 : 14) : (len >= 41 ? 7 : 0);
     54   while (code < (BROTLI_NUM_BLOCK_LEN_SYMBOLS - 1) &&
     55       len >= kBlockLengthPrefixCode[code + 1].offset) ++code;
     56   return code;
     57 }
     58 
     59 static BROTLI_INLINE void GetBlockLengthPrefixCode(uint32_t len, size_t* code,
     60     uint32_t* n_extra, uint32_t* extra) {
     61   *code = BlockLengthPrefixCode(len);
     62   *n_extra = kBlockLengthPrefixCode[*code].nbits;
     63   *extra = len - kBlockLengthPrefixCode[*code].offset;
     64 }
     65 
     66 typedef struct BlockTypeCodeCalculator {
     67   size_t last_type;
     68   size_t second_last_type;
     69 } BlockTypeCodeCalculator;
     70 
     71 static void InitBlockTypeCodeCalculator(BlockTypeCodeCalculator* self) {
     72   self->last_type = 1;
     73   self->second_last_type = 0;
     74 }
     75 
     76 static BROTLI_INLINE size_t NextBlockTypeCode(
     77     BlockTypeCodeCalculator* calculator, uint8_t type) {
     78   size_t type_code = (type == calculator->last_type + 1) ? 1u :
     79       (type == calculator->second_last_type) ? 0u : type + 2u;
     80   calculator->second_last_type = calculator->last_type;
     81   calculator->last_type = type;
     82   return type_code;
     83 }
     84 
     85 /* |nibblesbits| represents the 2 bits to encode MNIBBLES (0-3)
     86    REQUIRES: length > 0
     87    REQUIRES: length <= (1 << 24) */
     88 static void BrotliEncodeMlen(size_t length, uint64_t* bits,
     89                              size_t* numbits, uint64_t* nibblesbits) {
     90   size_t lg = (length == 1) ? 1 : Log2FloorNonZero((uint32_t)(length - 1)) + 1;
     91   size_t mnibbles = (lg < 16 ? 16 : (lg + 3)) / 4;
     92   BROTLI_DCHECK(length > 0);
     93   BROTLI_DCHECK(length <= (1 << 24));
     94   BROTLI_DCHECK(lg <= 24);
     95   *nibblesbits = mnibbles - 4;
     96   *numbits = mnibbles * 4;
     97   *bits = length - 1;
     98 }
     99 
    100 static BROTLI_INLINE void StoreCommandExtra(
    101     const Command* cmd, size_t* storage_ix, uint8_t* storage) {
    102   uint32_t copylen_code = CommandCopyLenCode(cmd);
    103   uint16_t inscode = GetInsertLengthCode(cmd->insert_len_);
    104   uint16_t copycode = GetCopyLengthCode(copylen_code);
    105   uint32_t insnumextra = GetInsertExtra(inscode);
    106   uint64_t insextraval = cmd->insert_len_ - GetInsertBase(inscode);
    107   uint64_t copyextraval = copylen_code - GetCopyBase(copycode);
    108   uint64_t bits = (copyextraval << insnumextra) | insextraval;
    109   BrotliWriteBits(
    110       insnumextra + GetCopyExtra(copycode), bits, storage_ix, storage);
    111 }
    112 
    113 /* Data structure that stores almost everything that is needed to encode each
    114    block switch command. */
    115 typedef struct BlockSplitCode {
    116   BlockTypeCodeCalculator type_code_calculator;
    117   uint8_t type_depths[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
    118   uint16_t type_bits[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
    119   uint8_t length_depths[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
    120   uint16_t length_bits[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
    121 } BlockSplitCode;
    122 
    123 /* Stores a number between 0 and 255. */
    124 static void StoreVarLenUint8(size_t n, size_t* storage_ix, uint8_t* storage) {
    125   if (n == 0) {
    126     BrotliWriteBits(1, 0, storage_ix, storage);
    127   } else {
    128     size_t nbits = Log2FloorNonZero(n);
    129     BrotliWriteBits(1, 1, storage_ix, storage);
    130     BrotliWriteBits(3, nbits, storage_ix, storage);
    131     BrotliWriteBits(nbits, n - ((size_t)1 << nbits), storage_ix, storage);
    132   }
    133 }
    134 
    135 /* Stores the compressed meta-block header.
    136    REQUIRES: length > 0
    137    REQUIRES: length <= (1 << 24) */
    138 static void StoreCompressedMetaBlockHeader(BROTLI_BOOL is_final_block,
    139                                            size_t length,
    140                                            size_t* storage_ix,
    141                                            uint8_t* storage) {
    142   uint64_t lenbits;
    143   size_t nlenbits;
    144   uint64_t nibblesbits;
    145 
    146   /* Write ISLAST bit. */
    147   BrotliWriteBits(1, (uint64_t)is_final_block, storage_ix, storage);
    148   /* Write ISEMPTY bit. */
    149   if (is_final_block) {
    150     BrotliWriteBits(1, 0, storage_ix, storage);
    151   }
    152 
    153   BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
    154   BrotliWriteBits(2, nibblesbits, storage_ix, storage);
    155   BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
    156 
    157   if (!is_final_block) {
    158     /* Write ISUNCOMPRESSED bit. */
    159     BrotliWriteBits(1, 0, storage_ix, storage);
    160   }
    161 }
    162 
    163 /* Stores the uncompressed meta-block header.
    164    REQUIRES: length > 0
    165    REQUIRES: length <= (1 << 24) */
    166 static void BrotliStoreUncompressedMetaBlockHeader(size_t length,
    167                                                    size_t* storage_ix,
    168                                                    uint8_t* storage) {
    169   uint64_t lenbits;
    170   size_t nlenbits;
    171   uint64_t nibblesbits;
    172 
    173   /* Write ISLAST bit.
    174      Uncompressed block cannot be the last one, so set to 0. */
    175   BrotliWriteBits(1, 0, storage_ix, storage);
    176   BrotliEncodeMlen(length, &lenbits, &nlenbits, &nibblesbits);
    177   BrotliWriteBits(2, nibblesbits, storage_ix, storage);
    178   BrotliWriteBits(nlenbits, lenbits, storage_ix, storage);
    179   /* Write ISUNCOMPRESSED bit. */
    180   BrotliWriteBits(1, 1, storage_ix, storage);
    181 }
    182 
    183 static void BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(
    184     const int num_codes, const uint8_t* code_length_bitdepth,
    185     size_t* storage_ix, uint8_t* storage) {
    186   static const uint8_t kStorageOrder[BROTLI_CODE_LENGTH_CODES] = {
    187     1, 2, 3, 4, 0, 5, 17, 6, 16, 7, 8, 9, 10, 11, 12, 13, 14, 15
    188   };
    189   /* The bit lengths of the Huffman code over the code length alphabet
    190      are compressed with the following static Huffman code:
    191        Symbol   Code
    192        ------   ----
    193        0          00
    194        1        1110
    195        2         110
    196        3          01
    197        4          10
    198        5        1111 */
    199   static const uint8_t kHuffmanBitLengthHuffmanCodeSymbols[6] = {
    200      0, 7, 3, 2, 1, 15
    201   };
    202   static const uint8_t kHuffmanBitLengthHuffmanCodeBitLengths[6] = {
    203     2, 4, 3, 2, 2, 4
    204   };
    205 
    206   size_t skip_some = 0;  /* skips none. */
    207 
    208   /* Throw away trailing zeros: */
    209   size_t codes_to_store = BROTLI_CODE_LENGTH_CODES;
    210   if (num_codes > 1) {
    211     for (; codes_to_store > 0; --codes_to_store) {
    212       if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
    213         break;
    214       }
    215     }
    216   }
    217   if (code_length_bitdepth[kStorageOrder[0]] == 0 &&
    218       code_length_bitdepth[kStorageOrder[1]] == 0) {
    219     skip_some = 2;  /* skips two. */
    220     if (code_length_bitdepth[kStorageOrder[2]] == 0) {
    221       skip_some = 3;  /* skips three. */
    222     }
    223   }
    224   BrotliWriteBits(2, skip_some, storage_ix, storage);
    225   {
    226     size_t i;
    227     for (i = skip_some; i < codes_to_store; ++i) {
    228       size_t l = code_length_bitdepth[kStorageOrder[i]];
    229       BrotliWriteBits(kHuffmanBitLengthHuffmanCodeBitLengths[l],
    230           kHuffmanBitLengthHuffmanCodeSymbols[l], storage_ix, storage);
    231     }
    232   }
    233 }
    234 
    235 static void BrotliStoreHuffmanTreeToBitMask(
    236     const size_t huffman_tree_size, const uint8_t* huffman_tree,
    237     const uint8_t* huffman_tree_extra_bits, const uint8_t* code_length_bitdepth,
    238     const uint16_t* code_length_bitdepth_symbols,
    239     size_t* BROTLI_RESTRICT storage_ix, uint8_t* BROTLI_RESTRICT storage) {
    240   size_t i;
    241   for (i = 0; i < huffman_tree_size; ++i) {
    242     size_t ix = huffman_tree[i];
    243     BrotliWriteBits(code_length_bitdepth[ix], code_length_bitdepth_symbols[ix],
    244                     storage_ix, storage);
    245     /* Extra bits */
    246     switch (ix) {
    247       case BROTLI_REPEAT_PREVIOUS_CODE_LENGTH:
    248         BrotliWriteBits(2, huffman_tree_extra_bits[i], storage_ix, storage);
    249         break;
    250       case BROTLI_REPEAT_ZERO_CODE_LENGTH:
    251         BrotliWriteBits(3, huffman_tree_extra_bits[i], storage_ix, storage);
    252         break;
    253     }
    254   }
    255 }
    256 
    257 static void StoreSimpleHuffmanTree(const uint8_t* depths,
    258                                    size_t symbols[4],
    259                                    size_t num_symbols,
    260                                    size_t max_bits,
    261                                    size_t* storage_ix, uint8_t* storage) {
    262   /* value of 1 indicates a simple Huffman code */
    263   BrotliWriteBits(2, 1, storage_ix, storage);
    264   BrotliWriteBits(2, num_symbols - 1, storage_ix, storage);  /* NSYM - 1 */
    265 
    266   {
    267     /* Sort */
    268     size_t i;
    269     for (i = 0; i < num_symbols; i++) {
    270       size_t j;
    271       for (j = i + 1; j < num_symbols; j++) {
    272         if (depths[symbols[j]] < depths[symbols[i]]) {
    273           BROTLI_SWAP(size_t, symbols, j, i);
    274         }
    275       }
    276     }
    277   }
    278 
    279   if (num_symbols == 2) {
    280     BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
    281     BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
    282   } else if (num_symbols == 3) {
    283     BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
    284     BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
    285     BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
    286   } else {
    287     BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
    288     BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
    289     BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
    290     BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
    291     /* tree-select */
    292     BrotliWriteBits(1, depths[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
    293   }
    294 }
    295 
    296 /* num = alphabet size
    297    depths = symbol depths */
    298 void BrotliStoreHuffmanTree(const uint8_t* depths, size_t num,
    299                             HuffmanTree* tree,
    300                             size_t* storage_ix, uint8_t* storage) {
    301   /* Write the Huffman tree into the brotli-representation.
    302      The command alphabet is the largest, so this allocation will fit all
    303      alphabets. */
    304   uint8_t huffman_tree[BROTLI_NUM_COMMAND_SYMBOLS];
    305   uint8_t huffman_tree_extra_bits[BROTLI_NUM_COMMAND_SYMBOLS];
    306   size_t huffman_tree_size = 0;
    307   uint8_t code_length_bitdepth[BROTLI_CODE_LENGTH_CODES] = { 0 };
    308   uint16_t code_length_bitdepth_symbols[BROTLI_CODE_LENGTH_CODES];
    309   uint32_t huffman_tree_histogram[BROTLI_CODE_LENGTH_CODES] = { 0 };
    310   size_t i;
    311   int num_codes = 0;
    312   size_t code = 0;
    313 
    314   BROTLI_DCHECK(num <= BROTLI_NUM_COMMAND_SYMBOLS);
    315 
    316   BrotliWriteHuffmanTree(depths, num, &huffman_tree_size, huffman_tree,
    317                          huffman_tree_extra_bits);
    318 
    319   /* Calculate the statistics of the Huffman tree in brotli-representation. */
    320   for (i = 0; i < huffman_tree_size; ++i) {
    321     ++huffman_tree_histogram[huffman_tree[i]];
    322   }
    323 
    324   for (i = 0; i < BROTLI_CODE_LENGTH_CODES; ++i) {
    325     if (huffman_tree_histogram[i]) {
    326       if (num_codes == 0) {
    327         code = i;
    328         num_codes = 1;
    329       } else if (num_codes == 1) {
    330         num_codes = 2;
    331         break;
    332       }
    333     }
    334   }
    335 
    336   /* Calculate another Huffman tree to use for compressing both the
    337      earlier Huffman tree with. */
    338   BrotliCreateHuffmanTree(huffman_tree_histogram, BROTLI_CODE_LENGTH_CODES,
    339                           5, tree, code_length_bitdepth);
    340   BrotliConvertBitDepthsToSymbols(code_length_bitdepth,
    341                                   BROTLI_CODE_LENGTH_CODES,
    342                                   code_length_bitdepth_symbols);
    343 
    344   /* Now, we have all the data, let's start storing it */
    345   BrotliStoreHuffmanTreeOfHuffmanTreeToBitMask(num_codes, code_length_bitdepth,
    346                                                storage_ix, storage);
    347 
    348   if (num_codes == 1) {
    349     code_length_bitdepth[code] = 0;
    350   }
    351 
    352   /* Store the real Huffman tree now. */
    353   BrotliStoreHuffmanTreeToBitMask(huffman_tree_size,
    354                                   huffman_tree,
    355                                   huffman_tree_extra_bits,
    356                                   code_length_bitdepth,
    357                                   code_length_bitdepth_symbols,
    358                                   storage_ix, storage);
    359 }
    360 
    361 /* Builds a Huffman tree from histogram[0:length] into depth[0:length] and
    362    bits[0:length] and stores the encoded tree to the bit stream. */
    363 static void BuildAndStoreHuffmanTree(const uint32_t* histogram,
    364                                      const size_t histogram_length,
    365                                      const size_t alphabet_size,
    366                                      HuffmanTree* tree,
    367                                      uint8_t* depth,
    368                                      uint16_t* bits,
    369                                      size_t* storage_ix,
    370                                      uint8_t* storage) {
    371   size_t count = 0;
    372   size_t s4[4] = { 0 };
    373   size_t i;
    374   size_t max_bits = 0;
    375   for (i = 0; i < histogram_length; i++) {
    376     if (histogram[i]) {
    377       if (count < 4) {
    378         s4[count] = i;
    379       } else if (count > 4) {
    380         break;
    381       }
    382       count++;
    383     }
    384   }
    385 
    386   {
    387     size_t max_bits_counter = alphabet_size - 1;
    388     while (max_bits_counter) {
    389       max_bits_counter >>= 1;
    390       ++max_bits;
    391     }
    392   }
    393 
    394   if (count <= 1) {
    395     BrotliWriteBits(4, 1, storage_ix, storage);
    396     BrotliWriteBits(max_bits, s4[0], storage_ix, storage);
    397     depth[s4[0]] = 0;
    398     bits[s4[0]] = 0;
    399     return;
    400   }
    401 
    402   memset(depth, 0, histogram_length * sizeof(depth[0]));
    403   BrotliCreateHuffmanTree(histogram, histogram_length, 15, tree, depth);
    404   BrotliConvertBitDepthsToSymbols(depth, histogram_length, bits);
    405 
    406   if (count <= 4) {
    407     StoreSimpleHuffmanTree(depth, s4, count, max_bits, storage_ix, storage);
    408   } else {
    409     BrotliStoreHuffmanTree(depth, histogram_length, tree, storage_ix, storage);
    410   }
    411 }
    412 
    413 static BROTLI_INLINE BROTLI_BOOL SortHuffmanTree(
    414     const HuffmanTree* v0, const HuffmanTree* v1) {
    415   return TO_BROTLI_BOOL(v0->total_count_ < v1->total_count_);
    416 }
    417 
    418 void BrotliBuildAndStoreHuffmanTreeFast(MemoryManager* m,
    419                                         const uint32_t* histogram,
    420                                         const size_t histogram_total,
    421                                         const size_t max_bits,
    422                                         uint8_t* depth, uint16_t* bits,
    423                                         size_t* storage_ix,
    424                                         uint8_t* storage) {
    425   size_t count = 0;
    426   size_t symbols[4] = { 0 };
    427   size_t length = 0;
    428   size_t total = histogram_total;
    429   while (total != 0) {
    430     if (histogram[length]) {
    431       if (count < 4) {
    432         symbols[count] = length;
    433       }
    434       ++count;
    435       total -= histogram[length];
    436     }
    437     ++length;
    438   }
    439 
    440   if (count <= 1) {
    441     BrotliWriteBits(4, 1, storage_ix, storage);
    442     BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
    443     depth[symbols[0]] = 0;
    444     bits[symbols[0]] = 0;
    445     return;
    446   }
    447 
    448   memset(depth, 0, length * sizeof(depth[0]));
    449   {
    450     const size_t max_tree_size = 2 * length + 1;
    451     HuffmanTree* tree = BROTLI_ALLOC(m, HuffmanTree, max_tree_size);
    452     uint32_t count_limit;
    453     if (BROTLI_IS_OOM(m)) return;
    454     for (count_limit = 1; ; count_limit *= 2) {
    455       HuffmanTree* node = tree;
    456       size_t l;
    457       for (l = length; l != 0;) {
    458         --l;
    459         if (histogram[l]) {
    460           if (BROTLI_PREDICT_TRUE(histogram[l] >= count_limit)) {
    461             InitHuffmanTree(node, histogram[l], -1, (int16_t)l);
    462           } else {
    463             InitHuffmanTree(node, count_limit, -1, (int16_t)l);
    464           }
    465           ++node;
    466         }
    467       }
    468       {
    469         const int n = (int)(node - tree);
    470         HuffmanTree sentinel;
    471         int i = 0;      /* Points to the next leaf node. */
    472         int j = n + 1;  /* Points to the next non-leaf node. */
    473         int k;
    474 
    475         SortHuffmanTreeItems(tree, (size_t)n, SortHuffmanTree);
    476         /* The nodes are:
    477            [0, n): the sorted leaf nodes that we start with.
    478            [n]: we add a sentinel here.
    479            [n + 1, 2n): new parent nodes are added here, starting from
    480                         (n+1). These are naturally in ascending order.
    481            [2n]: we add a sentinel at the end as well.
    482            There will be (2n+1) elements at the end. */
    483         InitHuffmanTree(&sentinel, BROTLI_UINT32_MAX, -1, -1);
    484         *node++ = sentinel;
    485         *node++ = sentinel;
    486 
    487         for (k = n - 1; k > 0; --k) {
    488           int left, right;
    489           if (tree[i].total_count_ <= tree[j].total_count_) {
    490             left = i;
    491             ++i;
    492           } else {
    493             left = j;
    494             ++j;
    495           }
    496           if (tree[i].total_count_ <= tree[j].total_count_) {
    497             right = i;
    498             ++i;
    499           } else {
    500             right = j;
    501             ++j;
    502           }
    503           /* The sentinel node becomes the parent node. */
    504           node[-1].total_count_ =
    505               tree[left].total_count_ + tree[right].total_count_;
    506           node[-1].index_left_ = (int16_t)left;
    507           node[-1].index_right_or_value_ = (int16_t)right;
    508           /* Add back the last sentinel node. */
    509           *node++ = sentinel;
    510         }
    511         if (BrotliSetDepth(2 * n - 1, tree, depth, 14)) {
    512           /* We need to pack the Huffman tree in 14 bits. If this was not
    513              successful, add fake entities to the lowest values and retry. */
    514           break;
    515         }
    516       }
    517     }
    518     BROTLI_FREE(m, tree);
    519   }
    520   BrotliConvertBitDepthsToSymbols(depth, length, bits);
    521   if (count <= 4) {
    522     size_t i;
    523     /* value of 1 indicates a simple Huffman code */
    524     BrotliWriteBits(2, 1, storage_ix, storage);
    525     BrotliWriteBits(2, count - 1, storage_ix, storage);  /* NSYM - 1 */
    526 
    527     /* Sort */
    528     for (i = 0; i < count; i++) {
    529       size_t j;
    530       for (j = i + 1; j < count; j++) {
    531         if (depth[symbols[j]] < depth[symbols[i]]) {
    532           BROTLI_SWAP(size_t, symbols, j, i);
    533         }
    534       }
    535     }
    536 
    537     if (count == 2) {
    538       BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
    539       BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
    540     } else if (count == 3) {
    541       BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
    542       BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
    543       BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
    544     } else {
    545       BrotliWriteBits(max_bits, symbols[0], storage_ix, storage);
    546       BrotliWriteBits(max_bits, symbols[1], storage_ix, storage);
    547       BrotliWriteBits(max_bits, symbols[2], storage_ix, storage);
    548       BrotliWriteBits(max_bits, symbols[3], storage_ix, storage);
    549       /* tree-select */
    550       BrotliWriteBits(1, depth[symbols[0]] == 1 ? 1 : 0, storage_ix, storage);
    551     }
    552   } else {
    553     uint8_t previous_value = 8;
    554     size_t i;
    555     /* Complex Huffman Tree */
    556     StoreStaticCodeLengthCode(storage_ix, storage);
    557 
    558     /* Actual RLE coding. */
    559     for (i = 0; i < length;) {
    560       const uint8_t value = depth[i];
    561       size_t reps = 1;
    562       size_t k;
    563       for (k = i + 1; k < length && depth[k] == value; ++k) {
    564         ++reps;
    565       }
    566       i += reps;
    567       if (value == 0) {
    568         BrotliWriteBits(kZeroRepsDepth[reps], kZeroRepsBits[reps],
    569                         storage_ix, storage);
    570       } else {
    571         if (previous_value != value) {
    572           BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
    573                           storage_ix, storage);
    574           --reps;
    575         }
    576         if (reps < 3) {
    577           while (reps != 0) {
    578             reps--;
    579             BrotliWriteBits(kCodeLengthDepth[value], kCodeLengthBits[value],
    580                             storage_ix, storage);
    581           }
    582         } else {
    583           reps -= 3;
    584           BrotliWriteBits(kNonZeroRepsDepth[reps], kNonZeroRepsBits[reps],
    585                           storage_ix, storage);
    586         }
    587         previous_value = value;
    588       }
    589     }
    590   }
    591 }
    592 
    593 static size_t IndexOf(const uint8_t* v, size_t v_size, uint8_t value) {
    594   size_t i = 0;
    595   for (; i < v_size; ++i) {
    596     if (v[i] == value) return i;
    597   }
    598   return i;
    599 }
    600 
    601 static void MoveToFront(uint8_t* v, size_t index) {
    602   uint8_t value = v[index];
    603   size_t i;
    604   for (i = index; i != 0; --i) {
    605     v[i] = v[i - 1];
    606   }
    607   v[0] = value;
    608 }
    609 
    610 static void MoveToFrontTransform(const uint32_t* BROTLI_RESTRICT v_in,
    611                                  const size_t v_size,
    612                                  uint32_t* v_out) {
    613   size_t i;
    614   uint8_t mtf[256];
    615   uint32_t max_value;
    616   if (v_size == 0) {
    617     return;
    618   }
    619   max_value = v_in[0];
    620   for (i = 1; i < v_size; ++i) {
    621     if (v_in[i] > max_value) max_value = v_in[i];
    622   }
    623   BROTLI_DCHECK(max_value < 256u);
    624   for (i = 0; i <= max_value; ++i) {
    625     mtf[i] = (uint8_t)i;
    626   }
    627   {
    628     size_t mtf_size = max_value + 1;
    629     for (i = 0; i < v_size; ++i) {
    630       size_t index = IndexOf(mtf, mtf_size, (uint8_t)v_in[i]);
    631       BROTLI_DCHECK(index < mtf_size);
    632       v_out[i] = (uint32_t)index;
    633       MoveToFront(mtf, index);
    634     }
    635   }
    636 }
    637 
    638 /* Finds runs of zeros in v[0..in_size) and replaces them with a prefix code of
    639    the run length plus extra bits (lower 9 bits is the prefix code and the rest
    640    are the extra bits). Non-zero values in v[] are shifted by
    641    *max_length_prefix. Will not create prefix codes bigger than the initial
    642    value of *max_run_length_prefix. The prefix code of run length L is simply
    643    Log2Floor(L) and the number of extra bits is the same as the prefix code. */
    644 static void RunLengthCodeZeros(const size_t in_size,
    645     uint32_t* BROTLI_RESTRICT v, size_t* BROTLI_RESTRICT out_size,
    646     uint32_t* BROTLI_RESTRICT max_run_length_prefix) {
    647   uint32_t max_reps = 0;
    648   size_t i;
    649   uint32_t max_prefix;
    650   for (i = 0; i < in_size;) {
    651     uint32_t reps = 0;
    652     for (; i < in_size && v[i] != 0; ++i) ;
    653     for (; i < in_size && v[i] == 0; ++i) {
    654       ++reps;
    655     }
    656     max_reps = BROTLI_MAX(uint32_t, reps, max_reps);
    657   }
    658   max_prefix = max_reps > 0 ? Log2FloorNonZero(max_reps) : 0;
    659   max_prefix = BROTLI_MIN(uint32_t, max_prefix, *max_run_length_prefix);
    660   *max_run_length_prefix = max_prefix;
    661   *out_size = 0;
    662   for (i = 0; i < in_size;) {
    663     BROTLI_DCHECK(*out_size <= i);
    664     if (v[i] != 0) {
    665       v[*out_size] = v[i] + *max_run_length_prefix;
    666       ++i;
    667       ++(*out_size);
    668     } else {
    669       uint32_t reps = 1;
    670       size_t k;
    671       for (k = i + 1; k < in_size && v[k] == 0; ++k) {
    672         ++reps;
    673       }
    674       i += reps;
    675       while (reps != 0) {
    676         if (reps < (2u << max_prefix)) {
    677           uint32_t run_length_prefix = Log2FloorNonZero(reps);
    678           const uint32_t extra_bits = reps - (1u << run_length_prefix);
    679           v[*out_size] = run_length_prefix + (extra_bits << 9);
    680           ++(*out_size);
    681           break;
    682         } else {
    683           const uint32_t extra_bits = (1u << max_prefix) - 1u;
    684           v[*out_size] = max_prefix + (extra_bits << 9);
    685           reps -= (2u << max_prefix) - 1u;
    686           ++(*out_size);
    687         }
    688       }
    689     }
    690   }
    691 }
    692 
    693 #define SYMBOL_BITS 9
    694 
    695 static void EncodeContextMap(MemoryManager* m,
    696                              const uint32_t* context_map,
    697                              size_t context_map_size,
    698                              size_t num_clusters,
    699                              HuffmanTree* tree,
    700                              size_t* storage_ix, uint8_t* storage) {
    701   size_t i;
    702   uint32_t* rle_symbols;
    703   uint32_t max_run_length_prefix = 6;
    704   size_t num_rle_symbols = 0;
    705   uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
    706   static const uint32_t kSymbolMask = (1u << SYMBOL_BITS) - 1u;
    707   uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
    708   uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
    709 
    710   StoreVarLenUint8(num_clusters - 1, storage_ix, storage);
    711 
    712   if (num_clusters == 1) {
    713     return;
    714   }
    715 
    716   rle_symbols = BROTLI_ALLOC(m, uint32_t, context_map_size);
    717   if (BROTLI_IS_OOM(m)) return;
    718   MoveToFrontTransform(context_map, context_map_size, rle_symbols);
    719   RunLengthCodeZeros(context_map_size, rle_symbols,
    720                      &num_rle_symbols, &max_run_length_prefix);
    721   memset(histogram, 0, sizeof(histogram));
    722   for (i = 0; i < num_rle_symbols; ++i) {
    723     ++histogram[rle_symbols[i] & kSymbolMask];
    724   }
    725   {
    726     BROTLI_BOOL use_rle = TO_BROTLI_BOOL(max_run_length_prefix > 0);
    727     BrotliWriteBits(1, (uint64_t)use_rle, storage_ix, storage);
    728     if (use_rle) {
    729       BrotliWriteBits(4, max_run_length_prefix - 1, storage_ix, storage);
    730     }
    731   }
    732   BuildAndStoreHuffmanTree(histogram, num_clusters + max_run_length_prefix,
    733                            num_clusters + max_run_length_prefix,
    734                            tree, depths, bits, storage_ix, storage);
    735   for (i = 0; i < num_rle_symbols; ++i) {
    736     const uint32_t rle_symbol = rle_symbols[i] & kSymbolMask;
    737     const uint32_t extra_bits_val = rle_symbols[i] >> SYMBOL_BITS;
    738     BrotliWriteBits(depths[rle_symbol], bits[rle_symbol], storage_ix, storage);
    739     if (rle_symbol > 0 && rle_symbol <= max_run_length_prefix) {
    740       BrotliWriteBits(rle_symbol, extra_bits_val, storage_ix, storage);
    741     }
    742   }
    743   BrotliWriteBits(1, 1, storage_ix, storage);  /* use move-to-front */
    744   BROTLI_FREE(m, rle_symbols);
    745 }
    746 
    747 /* Stores the block switch command with index block_ix to the bit stream. */
    748 static BROTLI_INLINE void StoreBlockSwitch(BlockSplitCode* code,
    749                                            const uint32_t block_len,
    750                                            const uint8_t block_type,
    751                                            BROTLI_BOOL is_first_block,
    752                                            size_t* storage_ix,
    753                                            uint8_t* storage) {
    754   size_t typecode = NextBlockTypeCode(&code->type_code_calculator, block_type);
    755   size_t lencode;
    756   uint32_t len_nextra;
    757   uint32_t len_extra;
    758   if (!is_first_block) {
    759     BrotliWriteBits(code->type_depths[typecode], code->type_bits[typecode],
    760                     storage_ix, storage);
    761   }
    762   GetBlockLengthPrefixCode(block_len, &lencode, &len_nextra, &len_extra);
    763 
    764   BrotliWriteBits(code->length_depths[lencode], code->length_bits[lencode],
    765                   storage_ix, storage);
    766   BrotliWriteBits(len_nextra, len_extra, storage_ix, storage);
    767 }
    768 
    769 /* Builds a BlockSplitCode data structure from the block split given by the
    770    vector of block types and block lengths and stores it to the bit stream. */
    771 static void BuildAndStoreBlockSplitCode(const uint8_t* types,
    772                                         const uint32_t* lengths,
    773                                         const size_t num_blocks,
    774                                         const size_t num_types,
    775                                         HuffmanTree* tree,
    776                                         BlockSplitCode* code,
    777                                         size_t* storage_ix,
    778                                         uint8_t* storage) {
    779   uint32_t type_histo[BROTLI_MAX_BLOCK_TYPE_SYMBOLS];
    780   uint32_t length_histo[BROTLI_NUM_BLOCK_LEN_SYMBOLS];
    781   size_t i;
    782   BlockTypeCodeCalculator type_code_calculator;
    783   memset(type_histo, 0, (num_types + 2) * sizeof(type_histo[0]));
    784   memset(length_histo, 0, sizeof(length_histo));
    785   InitBlockTypeCodeCalculator(&type_code_calculator);
    786   for (i = 0; i < num_blocks; ++i) {
    787     size_t type_code = NextBlockTypeCode(&type_code_calculator, types[i]);
    788     if (i != 0) ++type_histo[type_code];
    789     ++length_histo[BlockLengthPrefixCode(lengths[i])];
    790   }
    791   StoreVarLenUint8(num_types - 1, storage_ix, storage);
    792   if (num_types > 1) {  /* TODO: else? could StoreBlockSwitch occur? */
    793     BuildAndStoreHuffmanTree(&type_histo[0], num_types + 2, num_types + 2, tree,
    794                              &code->type_depths[0], &code->type_bits[0],
    795                              storage_ix, storage);
    796     BuildAndStoreHuffmanTree(&length_histo[0], BROTLI_NUM_BLOCK_LEN_SYMBOLS,
    797                              BROTLI_NUM_BLOCK_LEN_SYMBOLS,
    798                              tree, &code->length_depths[0],
    799                              &code->length_bits[0], storage_ix, storage);
    800     StoreBlockSwitch(code, lengths[0], types[0], 1, storage_ix, storage);
    801   }
    802 }
    803 
    804 /* Stores a context map where the histogram type is always the block type. */
    805 static void StoreTrivialContextMap(size_t num_types,
    806                                    size_t context_bits,
    807                                    HuffmanTree* tree,
    808                                    size_t* storage_ix,
    809                                    uint8_t* storage) {
    810   StoreVarLenUint8(num_types - 1, storage_ix, storage);
    811   if (num_types > 1) {
    812     size_t repeat_code = context_bits - 1u;
    813     size_t repeat_bits = (1u << repeat_code) - 1u;
    814     size_t alphabet_size = num_types + repeat_code;
    815     uint32_t histogram[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
    816     uint8_t depths[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
    817     uint16_t bits[BROTLI_MAX_CONTEXT_MAP_SYMBOLS];
    818     size_t i;
    819     memset(histogram, 0, alphabet_size * sizeof(histogram[0]));
    820     /* Write RLEMAX. */
    821     BrotliWriteBits(1, 1, storage_ix, storage);
    822     BrotliWriteBits(4, repeat_code - 1, storage_ix, storage);
    823     histogram[repeat_code] = (uint32_t)num_types;
    824     histogram[0] = 1;
    825     for (i = context_bits; i < alphabet_size; ++i) {
    826       histogram[i] = 1;
    827     }
    828     BuildAndStoreHuffmanTree(histogram, alphabet_size, alphabet_size,
    829                              tree, depths, bits, storage_ix, storage);
    830     for (i = 0; i < num_types; ++i) {
    831       size_t code = (i == 0 ? 0 : i + context_bits - 1);
    832       BrotliWriteBits(depths[code], bits[code], storage_ix, storage);
    833       BrotliWriteBits(
    834           depths[repeat_code], bits[repeat_code], storage_ix, storage);
    835       BrotliWriteBits(repeat_code, repeat_bits, storage_ix, storage);
    836     }
    837     /* Write IMTF (inverse-move-to-front) bit. */
    838     BrotliWriteBits(1, 1, storage_ix, storage);
    839   }
    840 }
    841 
    842 /* Manages the encoding of one block category (literal, command or distance). */
    843 typedef struct BlockEncoder {
    844   size_t histogram_length_;
    845   size_t num_block_types_;
    846   const uint8_t* block_types_;  /* Not owned. */
    847   const uint32_t* block_lengths_;  /* Not owned. */
    848   size_t num_blocks_;
    849   BlockSplitCode block_split_code_;
    850   size_t block_ix_;
    851   size_t block_len_;
    852   size_t entropy_ix_;
    853   uint8_t* depths_;
    854   uint16_t* bits_;
    855 } BlockEncoder;
    856 
    857 static void InitBlockEncoder(BlockEncoder* self, size_t histogram_length,
    858     size_t num_block_types, const uint8_t* block_types,
    859     const uint32_t* block_lengths, const size_t num_blocks) {
    860   self->histogram_length_ = histogram_length;
    861   self->num_block_types_ = num_block_types;
    862   self->block_types_ = block_types;
    863   self->block_lengths_ = block_lengths;
    864   self->num_blocks_ = num_blocks;
    865   InitBlockTypeCodeCalculator(&self->block_split_code_.type_code_calculator);
    866   self->block_ix_ = 0;
    867   self->block_len_ = num_blocks == 0 ? 0 : block_lengths[0];
    868   self->entropy_ix_ = 0;
    869   self->depths_ = 0;
    870   self->bits_ = 0;
    871 }
    872 
    873 static void CleanupBlockEncoder(MemoryManager* m, BlockEncoder* self) {
    874   BROTLI_FREE(m, self->depths_);
    875   BROTLI_FREE(m, self->bits_);
    876 }
    877 
    878 /* Creates entropy codes of block lengths and block types and stores them
    879    to the bit stream. */
    880 static void BuildAndStoreBlockSwitchEntropyCodes(BlockEncoder* self,
    881     HuffmanTree* tree, size_t* storage_ix, uint8_t* storage) {
    882   BuildAndStoreBlockSplitCode(self->block_types_, self->block_lengths_,
    883       self->num_blocks_, self->num_block_types_, tree, &self->block_split_code_,
    884       storage_ix, storage);
    885 }
    886 
    887 /* Stores the next symbol with the entropy code of the current block type.
    888    Updates the block type and block length at block boundaries. */
    889 static void StoreSymbol(BlockEncoder* self, size_t symbol, size_t* storage_ix,
    890     uint8_t* storage) {
    891   if (self->block_len_ == 0) {
    892     size_t block_ix = ++self->block_ix_;
    893     uint32_t block_len = self->block_lengths_[block_ix];
    894     uint8_t block_type = self->block_types_[block_ix];
    895     self->block_len_ = block_len;
    896     self->entropy_ix_ = block_type * self->histogram_length_;
    897     StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
    898         storage_ix, storage);
    899   }
    900   --self->block_len_;
    901   {
    902     size_t ix = self->entropy_ix_ + symbol;
    903     BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
    904   }
    905 }
    906 
    907 /* Stores the next symbol with the entropy code of the current block type and
    908    context value.
    909    Updates the block type and block length at block boundaries. */
    910 static void StoreSymbolWithContext(BlockEncoder* self, size_t symbol,
    911     size_t context, const uint32_t* context_map, size_t* storage_ix,
    912     uint8_t* storage, const size_t context_bits) {
    913   if (self->block_len_ == 0) {
    914     size_t block_ix = ++self->block_ix_;
    915     uint32_t block_len = self->block_lengths_[block_ix];
    916     uint8_t block_type = self->block_types_[block_ix];
    917     self->block_len_ = block_len;
    918     self->entropy_ix_ = (size_t)block_type << context_bits;
    919     StoreBlockSwitch(&self->block_split_code_, block_len, block_type, 0,
    920         storage_ix, storage);
    921   }
    922   --self->block_len_;
    923   {
    924     size_t histo_ix = context_map[self->entropy_ix_ + context];
    925     size_t ix = histo_ix * self->histogram_length_ + symbol;
    926     BrotliWriteBits(self->depths_[ix], self->bits_[ix], storage_ix, storage);
    927   }
    928 }
    929 
    930 #define FN(X) X ## Literal
    931 /* NOLINTNEXTLINE(build/include) */
    932 #include "./block_encoder_inc.h"
    933 #undef FN
    934 
    935 #define FN(X) X ## Command
    936 /* NOLINTNEXTLINE(build/include) */
    937 #include "./block_encoder_inc.h"
    938 #undef FN
    939 
    940 #define FN(X) X ## Distance
    941 /* NOLINTNEXTLINE(build/include) */
    942 #include "./block_encoder_inc.h"
    943 #undef FN
    944 
    945 static void JumpToByteBoundary(size_t* storage_ix, uint8_t* storage) {
    946   *storage_ix = (*storage_ix + 7u) & ~7u;
    947   storage[*storage_ix >> 3] = 0;
    948 }
    949 
    950 void BrotliStoreMetaBlock(MemoryManager* m,
    951     const uint8_t* input, size_t start_pos, size_t length, size_t mask,
    952     uint8_t prev_byte, uint8_t prev_byte2, BROTLI_BOOL is_last,
    953     const BrotliEncoderParams* params, ContextType literal_context_mode,
    954     const Command* commands, size_t n_commands, const MetaBlockSplit* mb,
    955     size_t* storage_ix, uint8_t* storage) {
    956 
    957   size_t pos = start_pos;
    958   size_t i;
    959   uint32_t num_distance_symbols = params->dist.alphabet_size;
    960   uint32_t num_effective_distance_symbols = num_distance_symbols;
    961   HuffmanTree* tree;
    962   ContextLut literal_context_lut = BROTLI_CONTEXT_LUT(literal_context_mode);
    963   BlockEncoder literal_enc;
    964   BlockEncoder command_enc;
    965   BlockEncoder distance_enc;
    966   const BrotliDistanceParams* dist = &params->dist;
    967   if (params->large_window &&
    968       num_effective_distance_symbols > BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS) {
    969     num_effective_distance_symbols = BROTLI_NUM_HISTOGRAM_DISTANCE_SYMBOLS;
    970   }
    971 
    972   StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
    973 
    974   tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
    975   if (BROTLI_IS_OOM(m)) return;
    976   InitBlockEncoder(&literal_enc, BROTLI_NUM_LITERAL_SYMBOLS,
    977       mb->literal_split.num_types, mb->literal_split.types,
    978       mb->literal_split.lengths, mb->literal_split.num_blocks);
    979   InitBlockEncoder(&command_enc, BROTLI_NUM_COMMAND_SYMBOLS,
    980       mb->command_split.num_types, mb->command_split.types,
    981       mb->command_split.lengths, mb->command_split.num_blocks);
    982   InitBlockEncoder(&distance_enc, num_effective_distance_symbols,
    983       mb->distance_split.num_types, mb->distance_split.types,
    984       mb->distance_split.lengths, mb->distance_split.num_blocks);
    985 
    986   BuildAndStoreBlockSwitchEntropyCodes(&literal_enc, tree, storage_ix, storage);
    987   BuildAndStoreBlockSwitchEntropyCodes(&command_enc, tree, storage_ix, storage);
    988   BuildAndStoreBlockSwitchEntropyCodes(
    989       &distance_enc, tree, storage_ix, storage);
    990 
    991   BrotliWriteBits(2, dist->distance_postfix_bits, storage_ix, storage);
    992   BrotliWriteBits(
    993       4, dist->num_direct_distance_codes >> dist->distance_postfix_bits,
    994       storage_ix, storage);
    995   for (i = 0; i < mb->literal_split.num_types; ++i) {
    996     BrotliWriteBits(2, literal_context_mode, storage_ix, storage);
    997   }
    998 
    999   if (mb->literal_context_map_size == 0) {
   1000     StoreTrivialContextMap(mb->literal_histograms_size,
   1001         BROTLI_LITERAL_CONTEXT_BITS, tree, storage_ix, storage);
   1002   } else {
   1003     EncodeContextMap(m,
   1004         mb->literal_context_map, mb->literal_context_map_size,
   1005         mb->literal_histograms_size, tree, storage_ix, storage);
   1006     if (BROTLI_IS_OOM(m)) return;
   1007   }
   1008 
   1009   if (mb->distance_context_map_size == 0) {
   1010     StoreTrivialContextMap(mb->distance_histograms_size,
   1011         BROTLI_DISTANCE_CONTEXT_BITS, tree, storage_ix, storage);
   1012   } else {
   1013     EncodeContextMap(m,
   1014         mb->distance_context_map, mb->distance_context_map_size,
   1015         mb->distance_histograms_size, tree, storage_ix, storage);
   1016     if (BROTLI_IS_OOM(m)) return;
   1017   }
   1018 
   1019   BuildAndStoreEntropyCodesLiteral(m, &literal_enc, mb->literal_histograms,
   1020       mb->literal_histograms_size, BROTLI_NUM_LITERAL_SYMBOLS, tree,
   1021       storage_ix, storage);
   1022   if (BROTLI_IS_OOM(m)) return;
   1023   BuildAndStoreEntropyCodesCommand(m, &command_enc, mb->command_histograms,
   1024       mb->command_histograms_size, BROTLI_NUM_COMMAND_SYMBOLS, tree,
   1025       storage_ix, storage);
   1026   if (BROTLI_IS_OOM(m)) return;
   1027   BuildAndStoreEntropyCodesDistance(m, &distance_enc, mb->distance_histograms,
   1028       mb->distance_histograms_size, num_distance_symbols, tree,
   1029       storage_ix, storage);
   1030   if (BROTLI_IS_OOM(m)) return;
   1031   BROTLI_FREE(m, tree);
   1032 
   1033   for (i = 0; i < n_commands; ++i) {
   1034     const Command cmd = commands[i];
   1035     size_t cmd_code = cmd.cmd_prefix_;
   1036     StoreSymbol(&command_enc, cmd_code, storage_ix, storage);
   1037     StoreCommandExtra(&cmd, storage_ix, storage);
   1038     if (mb->literal_context_map_size == 0) {
   1039       size_t j;
   1040       for (j = cmd.insert_len_; j != 0; --j) {
   1041         StoreSymbol(&literal_enc, input[pos & mask], storage_ix, storage);
   1042         ++pos;
   1043       }
   1044     } else {
   1045       size_t j;
   1046       for (j = cmd.insert_len_; j != 0; --j) {
   1047         size_t context =
   1048             BROTLI_CONTEXT(prev_byte, prev_byte2, literal_context_lut);
   1049         uint8_t literal = input[pos & mask];
   1050         StoreSymbolWithContext(&literal_enc, literal, context,
   1051             mb->literal_context_map, storage_ix, storage,
   1052             BROTLI_LITERAL_CONTEXT_BITS);
   1053         prev_byte2 = prev_byte;
   1054         prev_byte = literal;
   1055         ++pos;
   1056       }
   1057     }
   1058     pos += CommandCopyLen(&cmd);
   1059     if (CommandCopyLen(&cmd)) {
   1060       prev_byte2 = input[(pos - 2) & mask];
   1061       prev_byte = input[(pos - 1) & mask];
   1062       if (cmd.cmd_prefix_ >= 128) {
   1063         size_t dist_code = cmd.dist_prefix_ & 0x3FF;
   1064         uint32_t distnumextra = cmd.dist_prefix_ >> 10;
   1065         uint64_t distextra = cmd.dist_extra_;
   1066         if (mb->distance_context_map_size == 0) {
   1067           StoreSymbol(&distance_enc, dist_code, storage_ix, storage);
   1068         } else {
   1069           size_t context = CommandDistanceContext(&cmd);
   1070           StoreSymbolWithContext(&distance_enc, dist_code, context,
   1071               mb->distance_context_map, storage_ix, storage,
   1072               BROTLI_DISTANCE_CONTEXT_BITS);
   1073         }
   1074         BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
   1075       }
   1076     }
   1077   }
   1078   CleanupBlockEncoder(m, &distance_enc);
   1079   CleanupBlockEncoder(m, &command_enc);
   1080   CleanupBlockEncoder(m, &literal_enc);
   1081   if (is_last) {
   1082     JumpToByteBoundary(storage_ix, storage);
   1083   }
   1084 }
   1085 
   1086 static void BuildHistograms(const uint8_t* input,
   1087                             size_t start_pos,
   1088                             size_t mask,
   1089                             const Command* commands,
   1090                             size_t n_commands,
   1091                             HistogramLiteral* lit_histo,
   1092                             HistogramCommand* cmd_histo,
   1093                             HistogramDistance* dist_histo) {
   1094   size_t pos = start_pos;
   1095   size_t i;
   1096   for (i = 0; i < n_commands; ++i) {
   1097     const Command cmd = commands[i];
   1098     size_t j;
   1099     HistogramAddCommand(cmd_histo, cmd.cmd_prefix_);
   1100     for (j = cmd.insert_len_; j != 0; --j) {
   1101       HistogramAddLiteral(lit_histo, input[pos & mask]);
   1102       ++pos;
   1103     }
   1104     pos += CommandCopyLen(&cmd);
   1105     if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
   1106       HistogramAddDistance(dist_histo, cmd.dist_prefix_ & 0x3FF);
   1107     }
   1108   }
   1109 }
   1110 
   1111 static void StoreDataWithHuffmanCodes(const uint8_t* input,
   1112                                       size_t start_pos,
   1113                                       size_t mask,
   1114                                       const Command* commands,
   1115                                       size_t n_commands,
   1116                                       const uint8_t* lit_depth,
   1117                                       const uint16_t* lit_bits,
   1118                                       const uint8_t* cmd_depth,
   1119                                       const uint16_t* cmd_bits,
   1120                                       const uint8_t* dist_depth,
   1121                                       const uint16_t* dist_bits,
   1122                                       size_t* storage_ix,
   1123                                       uint8_t* storage) {
   1124   size_t pos = start_pos;
   1125   size_t i;
   1126   for (i = 0; i < n_commands; ++i) {
   1127     const Command cmd = commands[i];
   1128     const size_t cmd_code = cmd.cmd_prefix_;
   1129     size_t j;
   1130     BrotliWriteBits(
   1131         cmd_depth[cmd_code], cmd_bits[cmd_code], storage_ix, storage);
   1132     StoreCommandExtra(&cmd, storage_ix, storage);
   1133     for (j = cmd.insert_len_; j != 0; --j) {
   1134       const uint8_t literal = input[pos & mask];
   1135       BrotliWriteBits(
   1136           lit_depth[literal], lit_bits[literal], storage_ix, storage);
   1137       ++pos;
   1138     }
   1139     pos += CommandCopyLen(&cmd);
   1140     if (CommandCopyLen(&cmd) && cmd.cmd_prefix_ >= 128) {
   1141       const size_t dist_code = cmd.dist_prefix_ & 0x3FF;
   1142       const uint32_t distnumextra = cmd.dist_prefix_ >> 10;
   1143       const uint32_t distextra = cmd.dist_extra_;
   1144       BrotliWriteBits(dist_depth[dist_code], dist_bits[dist_code],
   1145                       storage_ix, storage);
   1146       BrotliWriteBits(distnumextra, distextra, storage_ix, storage);
   1147     }
   1148   }
   1149 }
   1150 
   1151 void BrotliStoreMetaBlockTrivial(MemoryManager* m,
   1152     const uint8_t* input, size_t start_pos, size_t length, size_t mask,
   1153     BROTLI_BOOL is_last, const BrotliEncoderParams* params,
   1154     const Command* commands, size_t n_commands,
   1155     size_t* storage_ix, uint8_t* storage) {
   1156   HistogramLiteral lit_histo;
   1157   HistogramCommand cmd_histo;
   1158   HistogramDistance dist_histo;
   1159   uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
   1160   uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
   1161   uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
   1162   uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
   1163   uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
   1164   uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
   1165   HuffmanTree* tree;
   1166   uint32_t num_distance_symbols = params->dist.alphabet_size;
   1167 
   1168   StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
   1169 
   1170   HistogramClearLiteral(&lit_histo);
   1171   HistogramClearCommand(&cmd_histo);
   1172   HistogramClearDistance(&dist_histo);
   1173 
   1174   BuildHistograms(input, start_pos, mask, commands, n_commands,
   1175                   &lit_histo, &cmd_histo, &dist_histo);
   1176 
   1177   BrotliWriteBits(13, 0, storage_ix, storage);
   1178 
   1179   tree = BROTLI_ALLOC(m, HuffmanTree, MAX_HUFFMAN_TREE_SIZE);
   1180   if (BROTLI_IS_OOM(m)) return;
   1181   BuildAndStoreHuffmanTree(lit_histo.data_, BROTLI_NUM_LITERAL_SYMBOLS,
   1182                            BROTLI_NUM_LITERAL_SYMBOLS, tree,
   1183                            lit_depth, lit_bits,
   1184                            storage_ix, storage);
   1185   BuildAndStoreHuffmanTree(cmd_histo.data_, BROTLI_NUM_COMMAND_SYMBOLS,
   1186                            BROTLI_NUM_COMMAND_SYMBOLS, tree,
   1187                            cmd_depth, cmd_bits,
   1188                            storage_ix, storage);
   1189   BuildAndStoreHuffmanTree(dist_histo.data_, MAX_SIMPLE_DISTANCE_ALPHABET_SIZE,
   1190                            num_distance_symbols, tree,
   1191                            dist_depth, dist_bits,
   1192                            storage_ix, storage);
   1193   BROTLI_FREE(m, tree);
   1194   StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
   1195                             n_commands, lit_depth, lit_bits,
   1196                             cmd_depth, cmd_bits,
   1197                             dist_depth, dist_bits,
   1198                             storage_ix, storage);
   1199   if (is_last) {
   1200     JumpToByteBoundary(storage_ix, storage);
   1201   }
   1202 }
   1203 
   1204 void BrotliStoreMetaBlockFast(MemoryManager* m,
   1205     const uint8_t* input, size_t start_pos, size_t length, size_t mask,
   1206     BROTLI_BOOL is_last, const BrotliEncoderParams* params,
   1207     const Command* commands, size_t n_commands,
   1208     size_t* storage_ix, uint8_t* storage) {
   1209   uint32_t num_distance_symbols = params->dist.alphabet_size;
   1210   uint32_t distance_alphabet_bits =
   1211       Log2FloorNonZero(num_distance_symbols - 1) + 1;
   1212 
   1213   StoreCompressedMetaBlockHeader(is_last, length, storage_ix, storage);
   1214 
   1215   BrotliWriteBits(13, 0, storage_ix, storage);
   1216 
   1217   if (n_commands <= 128) {
   1218     uint32_t histogram[BROTLI_NUM_LITERAL_SYMBOLS] = { 0 };
   1219     size_t pos = start_pos;
   1220     size_t num_literals = 0;
   1221     size_t i;
   1222     uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
   1223     uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
   1224     for (i = 0; i < n_commands; ++i) {
   1225       const Command cmd = commands[i];
   1226       size_t j;
   1227       for (j = cmd.insert_len_; j != 0; --j) {
   1228         ++histogram[input[pos & mask]];
   1229         ++pos;
   1230       }
   1231       num_literals += cmd.insert_len_;
   1232       pos += CommandCopyLen(&cmd);
   1233     }
   1234     BrotliBuildAndStoreHuffmanTreeFast(m, histogram, num_literals,
   1235                                        /* max_bits = */ 8,
   1236                                        lit_depth, lit_bits,
   1237                                        storage_ix, storage);
   1238     if (BROTLI_IS_OOM(m)) return;
   1239     StoreStaticCommandHuffmanTree(storage_ix, storage);
   1240     StoreStaticDistanceHuffmanTree(storage_ix, storage);
   1241     StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
   1242                               n_commands, lit_depth, lit_bits,
   1243                               kStaticCommandCodeDepth,
   1244                               kStaticCommandCodeBits,
   1245                               kStaticDistanceCodeDepth,
   1246                               kStaticDistanceCodeBits,
   1247                               storage_ix, storage);
   1248   } else {
   1249     HistogramLiteral lit_histo;
   1250     HistogramCommand cmd_histo;
   1251     HistogramDistance dist_histo;
   1252     uint8_t lit_depth[BROTLI_NUM_LITERAL_SYMBOLS];
   1253     uint16_t lit_bits[BROTLI_NUM_LITERAL_SYMBOLS];
   1254     uint8_t cmd_depth[BROTLI_NUM_COMMAND_SYMBOLS];
   1255     uint16_t cmd_bits[BROTLI_NUM_COMMAND_SYMBOLS];
   1256     uint8_t dist_depth[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
   1257     uint16_t dist_bits[MAX_SIMPLE_DISTANCE_ALPHABET_SIZE];
   1258     HistogramClearLiteral(&lit_histo);
   1259     HistogramClearCommand(&cmd_histo);
   1260     HistogramClearDistance(&dist_histo);
   1261     BuildHistograms(input, start_pos, mask, commands, n_commands,
   1262                     &lit_histo, &cmd_histo, &dist_histo);
   1263     BrotliBuildAndStoreHuffmanTreeFast(m, lit_histo.data_,
   1264                                        lit_histo.total_count_,
   1265                                        /* max_bits = */ 8,
   1266                                        lit_depth, lit_bits,
   1267                                        storage_ix, storage);
   1268     if (BROTLI_IS_OOM(m)) return;
   1269     BrotliBuildAndStoreHuffmanTreeFast(m, cmd_histo.data_,
   1270                                        cmd_histo.total_count_,
   1271                                        /* max_bits = */ 10,
   1272                                        cmd_depth, cmd_bits,
   1273                                        storage_ix, storage);
   1274     if (BROTLI_IS_OOM(m)) return;
   1275     BrotliBuildAndStoreHuffmanTreeFast(m, dist_histo.data_,
   1276                                        dist_histo.total_count_,
   1277                                        /* max_bits = */
   1278                                        distance_alphabet_bits,
   1279                                        dist_depth, dist_bits,
   1280                                        storage_ix, storage);
   1281     if (BROTLI_IS_OOM(m)) return;
   1282     StoreDataWithHuffmanCodes(input, start_pos, mask, commands,
   1283                               n_commands, lit_depth, lit_bits,
   1284                               cmd_depth, cmd_bits,
   1285                               dist_depth, dist_bits,
   1286                               storage_ix, storage);
   1287   }
   1288 
   1289   if (is_last) {
   1290     JumpToByteBoundary(storage_ix, storage);
   1291   }
   1292 }
   1293 
   1294 /* This is for storing uncompressed blocks (simple raw storage of
   1295    bytes-as-bytes). */
   1296 void BrotliStoreUncompressedMetaBlock(BROTLI_BOOL is_final_block,
   1297                                       const uint8_t* BROTLI_RESTRICT input,
   1298                                       size_t position, size_t mask,
   1299                                       size_t len,
   1300                                       size_t* BROTLI_RESTRICT storage_ix,
   1301                                       uint8_t* BROTLI_RESTRICT storage) {
   1302   size_t masked_pos = position & mask;
   1303   BrotliStoreUncompressedMetaBlockHeader(len, storage_ix, storage);
   1304   JumpToByteBoundary(storage_ix, storage);
   1305 
   1306   if (masked_pos + len > mask + 1) {
   1307     size_t len1 = mask + 1 - masked_pos;
   1308     memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len1);
   1309     *storage_ix += len1 << 3;
   1310     len -= len1;
   1311     masked_pos = 0;
   1312   }
   1313   memcpy(&storage[*storage_ix >> 3], &input[masked_pos], len);
   1314   *storage_ix += len << 3;
   1315 
   1316   /* We need to clear the next 4 bytes to continue to be
   1317      compatible with BrotliWriteBits. */
   1318   BrotliWriteBitsPrepareStorage(*storage_ix, storage);
   1319 
   1320   /* Since the uncompressed block itself may not be the final block, add an
   1321      empty one after this. */
   1322   if (is_final_block) {
   1323     BrotliWriteBits(1, 1, storage_ix, storage);  /* islast */
   1324     BrotliWriteBits(1, 1, storage_ix, storage);  /* isempty */
   1325     JumpToByteBoundary(storage_ix, storage);
   1326   }
   1327 }
   1328 
   1329 #if defined(__cplusplus) || defined(c_plusplus)
   1330 }  /* extern "C" */
   1331 #endif
   1332