Home | History | Annotate | Download | only in util
      1 // Copyright (c) 2016 Google Inc.
      2 //
      3 // Licensed under the Apache License, Version 2.0 (the "License");
      4 // you may not use this file except in compliance with the License.
      5 // You may obtain a copy of the License at
      6 //
      7 //     http://www.apache.org/licenses/LICENSE-2.0
      8 //
      9 // Unless required by applicable law or agreed to in writing, software
     10 // distributed under the License is distributed on an "AS IS" BASIS,
     11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 // See the License for the specific language governing permissions and
     13 // limitations under the License.
     14 
     15 #ifndef SOURCE_UTIL_PARSE_NUMBER_H_
     16 #define SOURCE_UTIL_PARSE_NUMBER_H_
     17 
     18 #include <functional>
     19 #include <string>
     20 #include <tuple>
     21 
     22 #include "source/util/hex_float.h"
     23 #include "spirv-tools/libspirv.h"
     24 
     25 namespace spvtools {
     26 namespace utils {
     27 
     28 // A struct to hold the expected type information for the number in text to be
     29 // parsed.
     30 struct NumberType {
     31   uint32_t bitwidth;
     32   // SPV_NUMBER_NONE means the type is unknown and is invalid to be used with
     33   // ParseAndEncode{|Integer|Floating}Number().
     34   spv_number_kind_t kind;
     35 };
     36 
     37 // Returns true if the type is a scalar integer type.
     38 inline bool IsIntegral(const NumberType& type) {
     39   return type.kind == SPV_NUMBER_UNSIGNED_INT ||
     40          type.kind == SPV_NUMBER_SIGNED_INT;
     41 }
     42 
     43 // Returns true if the type is a scalar floating point type.
     44 inline bool IsFloating(const NumberType& type) {
     45   return type.kind == SPV_NUMBER_FLOATING;
     46 }
     47 
     48 // Returns true if the type is a signed value.
     49 inline bool IsSigned(const NumberType& type) {
     50   return type.kind == SPV_NUMBER_FLOATING || type.kind == SPV_NUMBER_SIGNED_INT;
     51 }
     52 
     53 // Returns true if the type is unknown.
     54 inline bool IsUnknown(const NumberType& type) {
     55   return type.kind == SPV_NUMBER_NONE;
     56 }
     57 
     58 // Returns the number of bits in the type. This is only valid for integer and
     59 // floating types.
     60 inline int AssumedBitWidth(const NumberType& type) {
     61   switch (type.kind) {
     62     case SPV_NUMBER_SIGNED_INT:
     63     case SPV_NUMBER_UNSIGNED_INT:
     64     case SPV_NUMBER_FLOATING:
     65       return type.bitwidth;
     66     default:
     67       break;
     68   }
     69   // We don't care about this case.
     70   return 0;
     71 }
     72 
     73 // A templated class with a static member function Clamp, where Clamp sets a
     74 // referenced value of type T to 0 if T is an unsigned integer type, and
     75 // returns true if it modified the referenced value.
     76 template <typename T, typename = void>
     77 class ClampToZeroIfUnsignedType {
     78  public:
     79   // The default specialization does not clamp the value.
     80   static bool Clamp(T*) { return false; }
     81 };
     82 
     83 // The specialization of ClampToZeroIfUnsignedType for unsigned integer types.
     84 template <typename T>
     85 class ClampToZeroIfUnsignedType<
     86     T, typename std::enable_if<std::is_unsigned<T>::value>::type> {
     87  public:
     88   static bool Clamp(T* value_pointer) {
     89     if (*value_pointer) {
     90       *value_pointer = 0;
     91       return true;
     92     }
     93     return false;
     94   }
     95 };
     96 
     97 // Returns true if the given value fits within the target scalar integral type.
     98 // The target type may have an unusual bit width. If the value was originally
     99 // specified as a hexadecimal number, then the overflow bits should be zero.
    100 // If it was hex and the target type is signed, then return the sign-extended
    101 // value through the updated_value_for_hex pointer argument. On failure,
    102 // returns false.
    103 template <typename T>
    104 bool CheckRangeAndIfHexThenSignExtend(T value, const NumberType& type,
    105                                       bool is_hex, T* updated_value_for_hex) {
    106   // The encoded result has three regions of bits that are of interest, from
    107   // least to most significant:
    108   //   - magnitude bits, where the magnitude of the number would be stored if
    109   //     we were using a signed-magnitude representation.
    110   //   - an optional sign bit
    111   //   - overflow bits, up to bit 63 of a 64-bit number
    112   // For example:
    113   //   Type                Overflow      Sign       Magnitude
    114   //   ---------------     --------      ----       ---------
    115   //   unsigned 8 bit      8-63          n/a        0-7
    116   //   signed 8 bit        8-63          7          0-6
    117   //   unsigned 16 bit     16-63         n/a        0-15
    118   //   signed 16 bit       16-63         15         0-14
    119 
    120   // We'll use masks to define the three regions.
    121   // At first we'll assume the number is unsigned.
    122   const uint32_t bit_width = AssumedBitWidth(type);
    123   uint64_t magnitude_mask =
    124       (bit_width == 64) ? -1 : ((uint64_t(1) << bit_width) - 1);
    125   uint64_t sign_mask = 0;
    126   uint64_t overflow_mask = ~magnitude_mask;
    127 
    128   if (value < 0 || IsSigned(type)) {
    129     // Accommodate the sign bit.
    130     magnitude_mask >>= 1;
    131     sign_mask = magnitude_mask + 1;
    132   }
    133 
    134   bool failed = false;
    135   if (value < 0) {
    136     // The top bits must all be 1 for a negative signed value.
    137     failed = ((value & overflow_mask) != overflow_mask) ||
    138              ((value & sign_mask) != sign_mask);
    139   } else {
    140     if (is_hex) {
    141       // Hex values are a bit special. They decode as unsigned values, but may
    142       // represent a negative number. In this case, the overflow bits should
    143       // be zero.
    144       failed = (value & overflow_mask) != 0;
    145     } else {
    146       const uint64_t value_as_u64 = static_cast<uint64_t>(value);
    147       // Check overflow in the ordinary case.
    148       failed = (value_as_u64 & magnitude_mask) != value_as_u64;
    149     }
    150   }
    151 
    152   if (failed) {
    153     return false;
    154   }
    155 
    156   // Sign extend hex the number.
    157   if (is_hex && (value & sign_mask))
    158     *updated_value_for_hex = (value | overflow_mask);
    159 
    160   return true;
    161 }
    162 
    163 // Parses a numeric value of a given type from the given text.  The number
    164 // should take up the entire string, and should be within bounds for the target
    165 // type. On success, returns true and populates the object referenced by
    166 // value_pointer. On failure, returns false.
    167 template <typename T>
    168 bool ParseNumber(const char* text, T* value_pointer) {
    169   // C++11 doesn't define std::istringstream(int8_t&), so calling this method
    170   // with a single-byte type leads to implementation-defined behaviour.
    171   // Similarly for uint8_t.
    172   static_assert(sizeof(T) > 1,
    173                 "Single-byte types are not supported in this parse method");
    174 
    175   if (!text) return false;
    176   std::istringstream text_stream(text);
    177   // Allow both decimal and hex input for integers.
    178   // It also allows octal input, but we don't care about that case.
    179   text_stream >> std::setbase(0);
    180   text_stream >> *value_pointer;
    181 
    182   // We should have read something.
    183   bool ok = (text[0] != 0) && !text_stream.bad();
    184   // It should have been all the text.
    185   ok = ok && text_stream.eof();
    186   // It should have been in range.
    187   ok = ok && !text_stream.fail();
    188 
    189   // Work around a bug in the GNU C++11 library. It will happily parse
    190   // "-1" for uint16_t as 65535.
    191   if (ok && text[0] == '-')
    192     ok = !ClampToZeroIfUnsignedType<T>::Clamp(value_pointer);
    193 
    194   return ok;
    195 }
    196 
    197 // Enum to indicate the parsing and encoding status.
    198 enum class EncodeNumberStatus {
    199   kSuccess = 0,
    200   // Unsupported bit width etc.
    201   kUnsupported,
    202   // Expected type (NumberType) is not a scalar int or float, or putting a
    203   // negative number in an unsigned literal.
    204   kInvalidUsage,
    205   // Number value does not fit the bit width of the expected type etc.
    206   kInvalidText,
    207 };
    208 
    209 // Parses an integer value of a given |type| from the given |text| and encodes
    210 // the number by the given |emit| function. On success, returns
    211 // EncodeNumberStatus::kSuccess and the parsed number will be consumed by the
    212 // given |emit| function word by word (least significant word first). On
    213 // failure, this function returns the error code of the encoding status and
    214 // |emit| function will not be called. If the string pointer |error_msg| is not
    215 // a nullptr, it will be overwritten with error messages in case of failure. In
    216 // case of success, |error_msg| will not be touched. Integers up to 64 bits are
    217 // supported.
    218 EncodeNumberStatus ParseAndEncodeIntegerNumber(
    219     const char* text, const NumberType& type,
    220     std::function<void(uint32_t)> emit, std::string* error_msg);
    221 
    222 // Parses a floating point value of a given |type| from the given |text| and
    223 // encodes the number by the given |emit| funciton. On success, returns
    224 // EncodeNumberStatus::kSuccess and the parsed number will be consumed by the
    225 // given |emit| function word by word (least significant word first). On
    226 // failure, this function returns the error code of the encoding status and
    227 // |emit| function will not be called. If the string pointer |error_msg| is not
    228 // a nullptr, it will be overwritten with error messages in case of failure. In
    229 // case of success, |error_msg| will not be touched. Only 16, 32 and 64 bit
    230 // floating point numbers are supported.
    231 EncodeNumberStatus ParseAndEncodeFloatingPointNumber(
    232     const char* text, const NumberType& type,
    233     std::function<void(uint32_t)> emit, std::string* error_msg);
    234 
    235 // Parses an integer or floating point number of a given |type| from the given
    236 // |text| and encodes the number by the given |emit| function. On success,
    237 // returns EncodeNumberStatus::kSuccess and the parsed number will be consumed
    238 // by the given |emit| function word by word (least significant word first). On
    239 // failure, this function returns the error code of the encoding status and
    240 // |emit| function will not be called. If the string pointer |error_msg| is not
    241 // a nullptr, it will be overwritten with error messages in case of failure. In
    242 // case of success, |error_msg| will not be touched. Integers up to 64 bits
    243 // and 16/32/64 bit floating point values are supported.
    244 EncodeNumberStatus ParseAndEncodeNumber(const char* text,
    245                                         const NumberType& type,
    246                                         std::function<void(uint32_t)> emit,
    247                                         std::string* error_msg);
    248 
    249 }  // namespace utils
    250 }  // namespace spvtools
    251 
    252 #endif  // SOURCE_UTIL_PARSE_NUMBER_H_
    253