Home | History | Annotate | Download | only in debugfs
      1 /*
      2  * linux/fs/jbd2/revoke.c
      3  *
      4  * Written by Stephen C. Tweedie <sct (at) redhat.com>, 2000
      5  *
      6  * Copyright 2000 Red Hat corp --- All Rights Reserved
      7  *
      8  * This file is part of the Linux kernel and is made available under
      9  * the terms of the GNU General Public License, version 2, or at your
     10  * option, any later version, incorporated herein by reference.
     11  *
     12  * Journal revoke routines for the generic filesystem journaling code;
     13  * part of the ext2fs journaling system.
     14  *
     15  * Revoke is the mechanism used to prevent old log records for deleted
     16  * metadata from being replayed on top of newer data using the same
     17  * blocks.  The revoke mechanism is used in two separate places:
     18  *
     19  * + Commit: during commit we write the entire list of the current
     20  *   transaction's revoked blocks to the journal
     21  *
     22  * + Recovery: during recovery we record the transaction ID of all
     23  *   revoked blocks.  If there are multiple revoke records in the log
     24  *   for a single block, only the last one counts, and if there is a log
     25  *   entry for a block beyond the last revoke, then that log entry still
     26  *   gets replayed.
     27  *
     28  * We can get interactions between revokes and new log data within a
     29  * single transaction:
     30  *
     31  * Block is revoked and then journaled:
     32  *   The desired end result is the journaling of the new block, so we
     33  *   cancel the revoke before the transaction commits.
     34  *
     35  * Block is journaled and then revoked:
     36  *   The revoke must take precedence over the write of the block, so we
     37  *   need either to cancel the journal entry or to write the revoke
     38  *   later in the log than the log block.  In this case, we choose the
     39  *   latter: journaling a block cancels any revoke record for that block
     40  *   in the current transaction, so any revoke for that block in the
     41  *   transaction must have happened after the block was journaled and so
     42  *   the revoke must take precedence.
     43  *
     44  * Block is revoked and then written as data:
     45  *   The data write is allowed to succeed, but the revoke is _not_
     46  *   cancelled.  We still need to prevent old log records from
     47  *   overwriting the new data.  We don't even need to clear the revoke
     48  *   bit here.
     49  *
     50  * We cache revoke status of a buffer in the current transaction in b_states
     51  * bits.  As the name says, revokevalid flag indicates that the cached revoke
     52  * status of a buffer is valid and we can rely on the cached status.
     53  *
     54  * Revoke information on buffers is a tri-state value:
     55  *
     56  * RevokeValid clear:	no cached revoke status, need to look it up
     57  * RevokeValid set, Revoked clear:
     58  *			buffer has not been revoked, and cancel_revoke
     59  *			need do nothing.
     60  * RevokeValid set, Revoked set:
     61  *			buffer has been revoked.
     62  *
     63  * Locking rules:
     64  * We keep two hash tables of revoke records. One hashtable belongs to the
     65  * running transaction (is pointed to by journal->j_revoke), the other one
     66  * belongs to the committing transaction. Accesses to the second hash table
     67  * happen only from the kjournald and no other thread touches this table.  Also
     68  * journal_switch_revoke_table() which switches which hashtable belongs to the
     69  * running and which to the committing transaction is called only from
     70  * kjournald. Therefore we need no locks when accessing the hashtable belonging
     71  * to the committing transaction.
     72  *
     73  * All users operating on the hash table belonging to the running transaction
     74  * have a handle to the transaction. Therefore they are safe from kjournald
     75  * switching hash tables under them. For operations on the lists of entries in
     76  * the hash table j_revoke_lock is used.
     77  *
     78  * Finally, also replay code uses the hash tables but at this moment no one else
     79  * can touch them (filesystem isn't mounted yet) and hence no locking is
     80  * needed.
     81  */
     82 
     83 #ifndef __KERNEL__
     84 #include "jfs_user.h"
     85 #else
     86 #include <linux/time.h>
     87 #include <linux/fs.h>
     88 #include <linux/jbd2.h>
     89 #include <linux/errno.h>
     90 #include <linux/slab.h>
     91 #include <linux/list.h>
     92 #include <linux/init.h>
     93 #include <linux/bio.h>
     94 #include <linux/log2.h>
     95 #endif
     96 
     97 static lkmem_cache_t *jbd2_revoke_record_cache;
     98 static lkmem_cache_t *jbd2_revoke_table_cache;
     99 
    100 /* Each revoke record represents one single revoked block.  During
    101    journal replay, this involves recording the transaction ID of the
    102    last transaction to revoke this block. */
    103 
    104 struct jbd2_revoke_record_s
    105 {
    106 	struct list_head  hash;
    107 	tid_t		  sequence;	/* Used for recovery only */
    108 	unsigned long long	  blocknr;
    109 };
    110 
    111 
    112 /* The revoke table is just a simple hash table of revoke records. */
    113 struct jbd2_revoke_table_s
    114 {
    115 	/* It is conceivable that we might want a larger hash table
    116 	 * for recovery.  Must be a power of two. */
    117 	int		  hash_size;
    118 	int		  hash_shift;
    119 	struct list_head *hash_table;
    120 };
    121 
    122 
    123 #ifdef __KERNEL__
    124 static void write_one_revoke_record(journal_t *, transaction_t *,
    125 				    struct list_head *,
    126 				    struct buffer_head **, int *,
    127 				    struct jbd2_revoke_record_s *, int);
    128 static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
    129 #endif
    130 
    131 /* Utility functions to maintain the revoke table */
    132 
    133 /* Borrowed from buffer.c: this is a tried and tested block hash function */
    134 static inline int hash(journal_t *journal, unsigned long long block)
    135 {
    136 	struct jbd2_revoke_table_s *table = journal->j_revoke;
    137 
    138 	return (hash_64(block, table->hash_shift));
    139 }
    140 
    141 static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
    142 			      tid_t seq)
    143 {
    144 	struct list_head *hash_list;
    145 	struct jbd2_revoke_record_s *record;
    146 
    147 repeat:
    148 	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
    149 	if (!record)
    150 		goto oom;
    151 
    152 	record->sequence = seq;
    153 	record->blocknr = blocknr;
    154 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
    155 	spin_lock(&journal->j_revoke_lock);
    156 	list_add(&record->hash, hash_list);
    157 	spin_unlock(&journal->j_revoke_lock);
    158 	return 0;
    159 
    160 oom:
    161 	if (!journal_oom_retry)
    162 		return -ENOMEM;
    163 	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
    164 	yield();
    165 	goto repeat;
    166 }
    167 
    168 /* Find a revoke record in the journal's hash table. */
    169 
    170 static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
    171 						      unsigned long long blocknr)
    172 {
    173 	struct list_head *hash_list;
    174 	struct jbd2_revoke_record_s *record;
    175 
    176 	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
    177 
    178 	spin_lock(&journal->j_revoke_lock);
    179 	record = (struct jbd2_revoke_record_s *) hash_list->next;
    180 	while (&(record->hash) != hash_list) {
    181 		if (record->blocknr == blocknr) {
    182 			spin_unlock(&journal->j_revoke_lock);
    183 			return record;
    184 		}
    185 		record = (struct jbd2_revoke_record_s *) record->hash.next;
    186 	}
    187 	spin_unlock(&journal->j_revoke_lock);
    188 	return NULL;
    189 }
    190 
    191 void journal_destroy_revoke_caches(void)
    192 {
    193 	if (jbd2_revoke_record_cache) {
    194 		kmem_cache_destroy(jbd2_revoke_record_cache);
    195 		jbd2_revoke_record_cache = NULL;
    196 	}
    197 	if (jbd2_revoke_table_cache) {
    198 		kmem_cache_destroy(jbd2_revoke_table_cache);
    199 		jbd2_revoke_table_cache = NULL;
    200 	}
    201 }
    202 
    203 int __init journal_init_revoke_caches(void)
    204 {
    205 	J_ASSERT(!jbd2_revoke_record_cache);
    206 	J_ASSERT(!jbd2_revoke_table_cache);
    207 
    208 	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
    209 					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
    210 	if (!jbd2_revoke_record_cache)
    211 		goto record_cache_failure;
    212 
    213 	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
    214 					     SLAB_TEMPORARY);
    215 	if (!jbd2_revoke_table_cache)
    216 		goto table_cache_failure;
    217 	return 0;
    218 table_cache_failure:
    219 	journal_destroy_revoke_caches();
    220 record_cache_failure:
    221 		return -ENOMEM;
    222 }
    223 
    224 static struct jbd2_revoke_table_s *journal_init_revoke_table(int hash_size)
    225 {
    226 	int shift = 0;
    227 	int tmp = hash_size;
    228 	struct jbd2_revoke_table_s *table;
    229 
    230 	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
    231 	if (!table)
    232 		goto out;
    233 
    234 	while((tmp >>= 1UL) != 0UL)
    235 		shift++;
    236 
    237 	table->hash_size = hash_size;
    238 	table->hash_shift = shift;
    239 	table->hash_table =
    240 		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
    241 	if (!table->hash_table) {
    242 		kmem_cache_free(jbd2_revoke_table_cache, table);
    243 		table = NULL;
    244 		goto out;
    245 	}
    246 
    247 	for (tmp = 0; tmp < hash_size; tmp++)
    248 		INIT_LIST_HEAD(&table->hash_table[tmp]);
    249 
    250 out:
    251 	return table;
    252 }
    253 
    254 static void journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
    255 {
    256 	int i;
    257 	struct list_head *hash_list;
    258 
    259 	for (i = 0; i < table->hash_size; i++) {
    260 		hash_list = &table->hash_table[i];
    261 		J_ASSERT(list_empty(hash_list));
    262 	}
    263 
    264 	kfree(table->hash_table);
    265 	kmem_cache_free(jbd2_revoke_table_cache, table);
    266 }
    267 
    268 /* Initialise the revoke table for a given journal to a given size. */
    269 int journal_init_revoke(journal_t *journal, int hash_size)
    270 {
    271 	J_ASSERT(journal->j_revoke_table[0] == NULL);
    272 	J_ASSERT(is_power_of_2(hash_size));
    273 
    274 	journal->j_revoke_table[0] = journal_init_revoke_table(hash_size);
    275 	if (!journal->j_revoke_table[0])
    276 		goto fail0;
    277 
    278 	journal->j_revoke_table[1] = journal_init_revoke_table(hash_size);
    279 	if (!journal->j_revoke_table[1])
    280 		goto fail1;
    281 
    282 	journal->j_revoke = journal->j_revoke_table[1];
    283 
    284 	spin_lock_init(&journal->j_revoke_lock);
    285 
    286 	return 0;
    287 
    288 fail1:
    289 	journal_destroy_revoke_table(journal->j_revoke_table[0]);
    290 fail0:
    291 	return -ENOMEM;
    292 }
    293 
    294 /* Destroy a journal's revoke table.  The table must already be empty! */
    295 void journal_destroy_revoke(journal_t *journal)
    296 {
    297 	journal->j_revoke = NULL;
    298 	if (journal->j_revoke_table[0])
    299 		journal_destroy_revoke_table(journal->j_revoke_table[0]);
    300 	if (journal->j_revoke_table[1])
    301 		journal_destroy_revoke_table(journal->j_revoke_table[1]);
    302 }
    303 
    304 
    305 #ifdef __KERNEL__
    306 
    307 /*
    308  * journal_revoke: revoke a given buffer_head from the journal.  This
    309  * prevents the block from being replayed during recovery if we take a
    310  * crash after this current transaction commits.  Any subsequent
    311  * metadata writes of the buffer in this transaction cancel the
    312  * revoke.
    313  *
    314  * Note that this call may block --- it is up to the caller to make
    315  * sure that there are no further calls to journal_write_metadata
    316  * before the revoke is complete.  In ext3, this implies calling the
    317  * revoke before clearing the block bitmap when we are deleting
    318  * metadata.
    319  *
    320  * Revoke performs a journal_forget on any buffer_head passed in as a
    321  * parameter, but does _not_ forget the buffer_head if the bh was only
    322  * found implicitly.
    323  *
    324  * bh_in may not be a journalled buffer - it may have come off
    325  * the hash tables without an attached journal_head.
    326  *
    327  * If bh_in is non-zero, journal_revoke() will decrement its b_count
    328  * by one.
    329  */
    330 
    331 int journal_revoke(handle_t *handle, unsigned long long blocknr,
    332 		   struct buffer_head *bh_in)
    333 {
    334 	struct buffer_head *bh = NULL;
    335 	journal_t *journal;
    336 	struct block_device *bdev;
    337 	int err;
    338 
    339 	might_sleep();
    340 	if (bh_in)
    341 		BUFFER_TRACE(bh_in, "enter");
    342 
    343 	journal = handle->h_transaction->t_journal;
    344 	if (!journal_set_features(journal, 0, 0, JFS_FEATURE_INCOMPAT_REVOKE)){
    345 		J_ASSERT (!"Cannot set revoke feature!");
    346 		return -EINVAL;
    347 	}
    348 
    349 	bdev = journal->j_fs_dev;
    350 	bh = bh_in;
    351 
    352 	if (!bh) {
    353 		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
    354 		if (bh)
    355 			BUFFER_TRACE(bh, "found on hash");
    356 	}
    357 #ifdef JFS_EXPENSIVE_CHECKING
    358 	else {
    359 		struct buffer_head *bh2;
    360 
    361 		/* If there is a different buffer_head lying around in
    362 		 * memory anywhere... */
    363 		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
    364 		if (bh2) {
    365 			/* ... and it has RevokeValid status... */
    366 			if (bh2 != bh && buffer_revokevalid(bh2))
    367 				/* ...then it better be revoked too,
    368 				 * since it's illegal to create a revoke
    369 				 * record against a buffer_head which is
    370 				 * not marked revoked --- that would
    371 				 * risk missing a subsequent revoke
    372 				 * cancel. */
    373 				J_ASSERT_BH(bh2, buffer_revoked(bh2));
    374 			put_bh(bh2);
    375 		}
    376 	}
    377 #endif
    378 
    379 	/* We really ought not ever to revoke twice in a row without
    380            first having the revoke cancelled: it's illegal to free a
    381            block twice without allocating it in between! */
    382 	if (bh) {
    383 		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
    384 				 "inconsistent data on disk")) {
    385 			if (!bh_in)
    386 				brelse(bh);
    387 			return -EIO;
    388 		}
    389 		set_buffer_revoked(bh);
    390 		set_buffer_revokevalid(bh);
    391 		if (bh_in) {
    392 			BUFFER_TRACE(bh_in, "call journal_forget");
    393 			journal_forget(handle, bh_in);
    394 		} else {
    395 			BUFFER_TRACE(bh, "call brelse");
    396 			__brelse(bh);
    397 		}
    398 	}
    399 
    400 	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
    401 	err = insert_revoke_hash(journal, blocknr,
    402 				handle->h_transaction->t_tid);
    403 	BUFFER_TRACE(bh_in, "exit");
    404 	return err;
    405 }
    406 
    407 /*
    408  * Cancel an outstanding revoke.  For use only internally by the
    409  * journaling code (called from journal_get_write_access).
    410  *
    411  * We trust buffer_revoked() on the buffer if the buffer is already
    412  * being journaled: if there is no revoke pending on the buffer, then we
    413  * don't do anything here.
    414  *
    415  * This would break if it were possible for a buffer to be revoked and
    416  * discarded, and then reallocated within the same transaction.  In such
    417  * a case we would have lost the revoked bit, but when we arrived here
    418  * the second time we would still have a pending revoke to cancel.  So,
    419  * do not trust the Revoked bit on buffers unless RevokeValid is also
    420  * set.
    421  */
    422 int journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
    423 {
    424 	struct jbd2_revoke_record_s *record;
    425 	journal_t *journal = handle->h_transaction->t_journal;
    426 	int need_cancel;
    427 	int did_revoke = 0;	/* akpm: debug */
    428 	struct buffer_head *bh = jh2bh(jh);
    429 
    430 	jbd_debug(4, "journal_head %p, canceling revoke\n", jh);
    431 
    432 	/* Is the existing Revoke bit valid?  If so, we trust it, and
    433 	 * only perform the full cancel if the revoke bit is set.  If
    434 	 * not, we can't trust the revoke bit, and we need to do the
    435 	 * full search for a revoke record. */
    436 	if (test_set_buffer_revokevalid(bh)) {
    437 		need_cancel = test_clear_buffer_revoked(bh);
    438 	} else {
    439 		need_cancel = 1;
    440 		clear_buffer_revoked(bh);
    441 	}
    442 
    443 	if (need_cancel) {
    444 		record = find_revoke_record(journal, bh->b_blocknr);
    445 		if (record) {
    446 			jbd_debug(4, "cancelled existing revoke on "
    447 				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
    448 			spin_lock(&journal->j_revoke_lock);
    449 			list_del(&record->hash);
    450 			spin_unlock(&journal->j_revoke_lock);
    451 			kmem_cache_free(jbd2_revoke_record_cache, record);
    452 			did_revoke = 1;
    453 		}
    454 	}
    455 
    456 #ifdef JFS_EXPENSIVE_CHECKING
    457 	/* There better not be one left behind by now! */
    458 	record = find_revoke_record(journal, bh->b_blocknr);
    459 	J_ASSERT_JH(jh, record == NULL);
    460 #endif
    461 
    462 	/* Finally, have we just cleared revoke on an unhashed
    463 	 * buffer_head?  If so, we'd better make sure we clear the
    464 	 * revoked status on any hashed alias too, otherwise the revoke
    465 	 * state machine will get very upset later on. */
    466 	if (need_cancel) {
    467 		struct buffer_head *bh2;
    468 		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
    469 		if (bh2) {
    470 			if (bh2 != bh)
    471 				clear_buffer_revoked(bh2);
    472 			__brelse(bh2);
    473 		}
    474 	}
    475 	return did_revoke;
    476 }
    477 
    478 /*
    479  * journal_clear_revoked_flag clears revoked flag of buffers in
    480  * revoke table to reflect there is no revoked buffers in the next
    481  * transaction which is going to be started.
    482  */
    483 void jbd2_clear_buffer_revoked_flags(journal_t *journal)
    484 {
    485 	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
    486 	int i = 0;
    487 
    488 	for (i = 0; i < revoke->hash_size; i++) {
    489 		struct list_head *hash_list;
    490 		struct list_head *list_entry;
    491 		hash_list = &revoke->hash_table[i];
    492 
    493 		list_for_each(list_entry, hash_list) {
    494 			struct jbd2_revoke_record_s *record;
    495 			struct buffer_head *bh;
    496 			record = (struct jbd2_revoke_record_s *)list_entry;
    497 			bh = __find_get_block(journal->j_fs_dev,
    498 					      record->blocknr,
    499 					      journal->j_blocksize);
    500 			if (bh) {
    501 				clear_buffer_revoked(bh);
    502 				__brelse(bh);
    503 			}
    504 		}
    505 	}
    506 }
    507 
    508 /* journal_switch_revoke table select j_revoke for next transaction
    509  * we do not want to suspend any processing until all revokes are
    510  * written -bzzz
    511  */
    512 void journal_switch_revoke_table(journal_t *journal)
    513 {
    514 	int i;
    515 
    516 	if (journal->j_revoke == journal->j_revoke_table[0])
    517 		journal->j_revoke = journal->j_revoke_table[1];
    518 	else
    519 		journal->j_revoke = journal->j_revoke_table[0];
    520 
    521 	for (i = 0; i < journal->j_revoke->hash_size; i++)
    522 		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
    523 }
    524 
    525 /*
    526  * Write revoke records to the journal for all entries in the current
    527  * revoke hash, deleting the entries as we go.
    528  */
    529 void journal_write_revoke_records(journal_t *journal,
    530 				       transaction_t *transaction,
    531 				       struct list_head *log_bufs,
    532 				       int write_op)
    533 {
    534 	struct buffer_head *descriptor;
    535 	struct jbd2_revoke_record_s *record;
    536 	struct jbd2_revoke_table_s *revoke;
    537 	struct list_head *hash_list;
    538 	int i, offset, count;
    539 
    540 	descriptor = NULL;
    541 	offset = 0;
    542 	count = 0;
    543 
    544 	/* select revoke table for committing transaction */
    545 	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
    546 		journal->j_revoke_table[1] : journal->j_revoke_table[0];
    547 
    548 	for (i = 0; i < revoke->hash_size; i++) {
    549 		hash_list = &revoke->hash_table[i];
    550 
    551 		while (!list_empty(hash_list)) {
    552 			record = (struct jbd2_revoke_record_s *)
    553 				hash_list->next;
    554 			write_one_revoke_record(journal, transaction, log_bufs,
    555 						&descriptor, &offset,
    556 						record, write_op);
    557 			count++;
    558 			list_del(&record->hash);
    559 			kmem_cache_free(jbd2_revoke_record_cache, record);
    560 		}
    561 	}
    562 	if (descriptor)
    563 		flush_descriptor(journal, descriptor, offset, write_op);
    564 	jbd_debug(1, "Wrote %d revoke records\n", count);
    565 }
    566 
    567 /*
    568  * Write out one revoke record.  We need to create a new descriptor
    569  * block if the old one is full or if we have not already created one.
    570  */
    571 
    572 static void write_one_revoke_record(journal_t *journal,
    573 				    transaction_t *transaction,
    574 				    struct list_head *log_bufs,
    575 				    struct buffer_head **descriptorp,
    576 				    int *offsetp,
    577 				    struct jbd2_revoke_record_s *record,
    578 				    int write_op)
    579 {
    580 	int csum_size = 0;
    581 	struct buffer_head *descriptor;
    582 	int sz, offset;
    583 	journal_header_t *header;
    584 
    585 	/* If we are already aborting, this all becomes a noop.  We
    586            still need to go round the loop in
    587            journal_write_revoke_records in order to free all of the
    588            revoke records: only the IO to the journal is omitted. */
    589 	if (is_journal_aborted(journal))
    590 		return;
    591 
    592 	descriptor = *descriptorp;
    593 	offset = *offsetp;
    594 
    595 	/* Do we need to leave space at the end for a checksum? */
    596 	if (journal_has_csum_v2or3(journal))
    597 		csum_size = sizeof(struct journal_revoke_tail);
    598 
    599 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
    600 		sz = 8;
    601 	else
    602 		sz = 4;
    603 
    604 	/* Make sure we have a descriptor with space left for the record */
    605 	if (descriptor) {
    606 		if (offset + sz > journal->j_blocksize - csum_size) {
    607 			flush_descriptor(journal, descriptor, offset, write_op);
    608 			descriptor = NULL;
    609 		}
    610 	}
    611 
    612 	if (!descriptor) {
    613 		descriptor = journal_get_descriptor_buffer(journal);
    614 		if (!descriptor)
    615 			return;
    616 		header = (journal_header_t *)descriptor->b_data;
    617 		header->h_magic     = ext2fs_cpu_to_be32(JFS_MAGIC_NUMBER);
    618 		header->h_blocktype = ext2fs_cpu_to_be32(JFS_REVOKE_BLOCK);
    619 		header->h_sequence  = ext2fs_cpu_to_be32(transaction->t_tid);
    620 
    621 		/* Record it so that we can wait for IO completion later */
    622 		BUFFER_TRACE(descriptor, "file in log_bufs");
    623 		jbd2_file_log_bh(log_bufs, descriptor);
    624 
    625 		offset = sizeof(journal_revoke_header_t);
    626 		*descriptorp = descriptor;
    627 	}
    628 
    629 	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT)) {
    630 		* ((__be64 *)(&descriptor->b_data[offset])) =
    631 			cpu_to_be64(record->blocknr);
    632 	else
    633 		* ((__be32 *)(&descriptor->b_data[offset])) =
    634 			cpu_to_be32(record->blocknr);
    635 	offset += sz;
    636 
    637 	*offsetp = offset;
    638 }
    639 
    640 static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
    641 {
    642 	struct journal_revoke_tail *tail;
    643 	__u32 csum;
    644 
    645 	if (!journal_has_csum_v2or3(j))
    646 		return;
    647 
    648 	tail = (struct journal_revoke_tail *)(bh->b_data + j->j_blocksize -
    649 			sizeof(struct journal_revoke_tail));
    650 	tail->r_checksum = 0;
    651 	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
    652 	tail->r_checksum = ext2fs_cpu_to_be32(csum);
    653 }
    654 
    655 /*
    656  * Flush a revoke descriptor out to the journal.  If we are aborting,
    657  * this is a noop; otherwise we are generating a buffer which needs to
    658  * be waited for during commit, so it has to go onto the appropriate
    659  * journal buffer list.
    660  */
    661 
    662 static void flush_descriptor(journal_t *journal,
    663 			     struct buffer_head *descriptor,
    664 			     int offset, int write_op)
    665 {
    666 	journal_revoke_header_t *header;
    667 
    668 	if (is_journal_aborted(journal)) {
    669 		put_bh(descriptor);
    670 		return;
    671 	}
    672 
    673 	header = (journal_revoke_header_t *)descriptor->b_data;
    674 	header->r_count = ext2fs_cpu_to_be32(offset);
    675 	jbd2_revoke_csum_set(journal, descriptor);
    676 
    677 	set_buffer_jwrite(descriptor);
    678 	BUFFER_TRACE(descriptor, "write");
    679 	set_buffer_dirty(descriptor);
    680 	write_dirty_buffer(descriptor, write_op);
    681 }
    682 #endif
    683 
    684 /*
    685  * Revoke support for recovery.
    686  *
    687  * Recovery needs to be able to:
    688  *
    689  *  record all revoke records, including the tid of the latest instance
    690  *  of each revoke in the journal
    691  *
    692  *  check whether a given block in a given transaction should be replayed
    693  *  (ie. has not been revoked by a revoke record in that or a subsequent
    694  *  transaction)
    695  *
    696  *  empty the revoke table after recovery.
    697  */
    698 
    699 /*
    700  * First, setting revoke records.  We create a new revoke record for
    701  * every block ever revoked in the log as we scan it for recovery, and
    702  * we update the existing records if we find multiple revokes for a
    703  * single block.
    704  */
    705 
    706 int journal_set_revoke(journal_t *journal,
    707 		       unsigned long long blocknr,
    708 		       tid_t sequence)
    709 {
    710 	struct jbd2_revoke_record_s *record;
    711 
    712 	record = find_revoke_record(journal, blocknr);
    713 	if (record) {
    714 		/* If we have multiple occurrences, only record the
    715 		 * latest sequence number in the hashed record */
    716 		if (tid_gt(sequence, record->sequence))
    717 			record->sequence = sequence;
    718 		return 0;
    719 	}
    720 	return insert_revoke_hash(journal, blocknr, sequence);
    721 }
    722 
    723 /*
    724  * Test revoke records.  For a given block referenced in the log, has
    725  * that block been revoked?  A revoke record with a given transaction
    726  * sequence number revokes all blocks in that transaction and earlier
    727  * ones, but later transactions still need replayed.
    728  */
    729 
    730 int journal_test_revoke(journal_t *journal,
    731 			unsigned long long blocknr,
    732 			tid_t sequence)
    733 {
    734 	struct jbd2_revoke_record_s *record;
    735 
    736 	record = find_revoke_record(journal, blocknr);
    737 	if (!record)
    738 		return 0;
    739 	if (tid_gt(sequence, record->sequence))
    740 		return 0;
    741 	return 1;
    742 }
    743 
    744 /*
    745  * Finally, once recovery is over, we need to clear the revoke table so
    746  * that it can be reused by the running filesystem.
    747  */
    748 
    749 void journal_clear_revoke(journal_t *journal)
    750 {
    751 	int i;
    752 	struct list_head *hash_list;
    753 	struct jbd2_revoke_record_s *record;
    754 	struct jbd2_revoke_table_s *revoke;
    755 
    756 	revoke = journal->j_revoke;
    757 
    758 	for (i = 0; i < revoke->hash_size; i++) {
    759 		hash_list = &revoke->hash_table[i];
    760 		while (!list_empty(hash_list)) {
    761 			record = (struct jbd2_revoke_record_s*) hash_list->next;
    762 			list_del(&record->hash);
    763 			kmem_cache_free(jbd2_revoke_record_cache, record);
    764 		}
    765 	}
    766 }
    767