Home | History | Annotate | Download | only in SparseLU
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2012 Dsir Nuentsa-Wakam <desire.nuentsa_wakam (at) inria.fr>
      5 //
      6 // This Source Code Form is subject to the terms of the Mozilla
      7 // Public License v. 2.0. If a copy of the MPL was not distributed
      8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
      9 
     10 /*
     11 
     12  * NOTE: This file is the modified version of xpivotL.c file in SuperLU
     13 
     14  * -- SuperLU routine (version 3.0) --
     15  * Univ. of California Berkeley, Xerox Palo Alto Research Center,
     16  * and Lawrence Berkeley National Lab.
     17  * October 15, 2003
     18  *
     19  * Copyright (c) 1994 by Xerox Corporation.  All rights reserved.
     20  *
     21  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
     22  * EXPRESSED OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
     23  *
     24  * Permission is hereby granted to use or copy this program for any
     25  * purpose, provided the above notices are retained on all copies.
     26  * Permission to modify the code and to distribute modified code is
     27  * granted, provided the above notices are retained, and a notice that
     28  * the code was modified is included with the above copyright notice.
     29  */
     30 #ifndef SPARSELU_PIVOTL_H
     31 #define SPARSELU_PIVOTL_H
     32 
     33 namespace Eigen {
     34 namespace internal {
     35 
     36 /**
     37  * \brief Performs the numerical pivotin on the current column of L, and the CDIV operation.
     38  *
     39  * Pivot policy :
     40  * (1) Compute thresh = u * max_(i>=j) abs(A_ij);
     41  * (2) IF user specifies pivot row k and abs(A_kj) >= thresh THEN
     42  *           pivot row = k;
     43  *       ELSE IF abs(A_jj) >= thresh THEN
     44  *           pivot row = j;
     45  *       ELSE
     46  *           pivot row = m;
     47  *
     48  *   Note: If you absolutely want to use a given pivot order, then set u=0.0.
     49  *
     50  * \param jcol The current column of L
     51  * \param diagpivotthresh diagonal pivoting threshold
     52  * \param[in,out] perm_r Row permutation (threshold pivoting)
     53  * \param[in] iperm_c column permutation - used to finf diagonal of Pc*A*Pc'
     54  * \param[out] pivrow  The pivot row
     55  * \param glu Global LU data
     56  * \return 0 if success, i > 0 if U(i,i) is exactly zero
     57  *
     58  */
     59 template <typename Scalar, typename StorageIndex>
     60 Index SparseLUImpl<Scalar,StorageIndex>::pivotL(const Index jcol, const RealScalar& diagpivotthresh, IndexVector& perm_r, IndexVector& iperm_c, Index& pivrow, GlobalLU_t& glu)
     61 {
     62 
     63   Index fsupc = (glu.xsup)((glu.supno)(jcol)); // First column in the supernode containing the column jcol
     64   Index nsupc = jcol - fsupc; // Number of columns in the supernode portion, excluding jcol; nsupc >=0
     65   Index lptr = glu.xlsub(fsupc); // pointer to the starting location of the row subscripts for this supernode portion
     66   Index nsupr = glu.xlsub(fsupc+1) - lptr; // Number of rows in the supernode
     67   Index lda = glu.xlusup(fsupc+1) - glu.xlusup(fsupc); // leading dimension
     68   Scalar* lu_sup_ptr = &(glu.lusup.data()[glu.xlusup(fsupc)]); // Start of the current supernode
     69   Scalar* lu_col_ptr = &(glu.lusup.data()[glu.xlusup(jcol)]); // Start of jcol in the supernode
     70   StorageIndex* lsub_ptr = &(glu.lsub.data()[lptr]); // Start of row indices of the supernode
     71 
     72   // Determine the largest abs numerical value for partial pivoting
     73   Index diagind = iperm_c(jcol); // diagonal index
     74   RealScalar pivmax(-1.0);
     75   Index pivptr = nsupc;
     76   Index diag = emptyIdxLU;
     77   RealScalar rtemp;
     78   Index isub, icol, itemp, k;
     79   for (isub = nsupc; isub < nsupr; ++isub) {
     80     using std::abs;
     81     rtemp = abs(lu_col_ptr[isub]);
     82     if (rtemp > pivmax) {
     83       pivmax = rtemp;
     84       pivptr = isub;
     85     }
     86     if (lsub_ptr[isub] == diagind) diag = isub;
     87   }
     88 
     89   // Test for singularity
     90   if ( pivmax <= RealScalar(0.0) ) {
     91     // if pivmax == -1, the column is structurally empty, otherwise it is only numerically zero
     92     pivrow = pivmax < RealScalar(0.0) ? diagind : lsub_ptr[pivptr];
     93     perm_r(pivrow) = StorageIndex(jcol);
     94     return (jcol+1);
     95   }
     96 
     97   RealScalar thresh = diagpivotthresh * pivmax;
     98 
     99   // Choose appropriate pivotal element
    100 
    101   {
    102     // Test if the diagonal element can be used as a pivot (given the threshold value)
    103     if (diag >= 0 )
    104     {
    105       // Diagonal element exists
    106       using std::abs;
    107       rtemp = abs(lu_col_ptr[diag]);
    108       if (rtemp != RealScalar(0.0) && rtemp >= thresh) pivptr = diag;
    109     }
    110     pivrow = lsub_ptr[pivptr];
    111   }
    112 
    113   // Record pivot row
    114   perm_r(pivrow) = StorageIndex(jcol);
    115   // Interchange row subscripts
    116   if (pivptr != nsupc )
    117   {
    118     std::swap( lsub_ptr[pivptr], lsub_ptr[nsupc] );
    119     // Interchange numerical values as well, for the two rows in the whole snode
    120     // such that L is indexed the same way as A
    121     for (icol = 0; icol <= nsupc; icol++)
    122     {
    123       itemp = pivptr + icol * lda;
    124       std::swap(lu_sup_ptr[itemp], lu_sup_ptr[nsupc + icol * lda]);
    125     }
    126   }
    127   // cdiv operations
    128   Scalar temp = Scalar(1.0) / lu_col_ptr[nsupc];
    129   for (k = nsupc+1; k < nsupr; k++)
    130     lu_col_ptr[k] *= temp;
    131   return 0;
    132 }
    133 
    134 } // end namespace internal
    135 } // end namespace Eigen
    136 
    137 #endif // SPARSELU_PIVOTL_H
    138