1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2009, 2010, 2013 Jitse Niesen <jitse (at) maths.leeds.ac.uk> 5 // Copyright (C) 2011, 2013 Chen-Pang He <jdh8 (at) ms63.hinet.net> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_MATRIX_EXPONENTIAL 12 #define EIGEN_MATRIX_EXPONENTIAL 13 14 #include "StemFunction.h" 15 16 namespace Eigen { 17 namespace internal { 18 19 /** \brief Scaling operator. 20 * 21 * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$. 22 */ 23 template <typename RealScalar> 24 struct MatrixExponentialScalingOp 25 { 26 /** \brief Constructor. 27 * 28 * \param[in] squarings The integer \f$ s \f$ in this document. 29 */ 30 MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { } 31 32 33 /** \brief Scale a matrix coefficient. 34 * 35 * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. 36 */ 37 inline const RealScalar operator() (const RealScalar& x) const 38 { 39 using std::ldexp; 40 return ldexp(x, -m_squarings); 41 } 42 43 typedef std::complex<RealScalar> ComplexScalar; 44 45 /** \brief Scale a matrix coefficient. 46 * 47 * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. 48 */ 49 inline const ComplexScalar operator() (const ComplexScalar& x) const 50 { 51 using std::ldexp; 52 return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings)); 53 } 54 55 private: 56 int m_squarings; 57 }; 58 59 /** \brief Compute the (3,3)-Padé approximant to the exponential. 60 * 61 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 62 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 63 */ 64 template <typename MatA, typename MatU, typename MatV> 65 void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V) 66 { 67 typedef typename MatA::PlainObject MatrixType; 68 typedef typename NumTraits<typename traits<MatA>::Scalar>::Real RealScalar; 69 const RealScalar b[] = {120.L, 60.L, 12.L, 1.L}; 70 const MatrixType A2 = A * A; 71 const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); 72 U.noalias() = A * tmp; 73 V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); 74 } 75 76 /** \brief Compute the (5,5)-Padé approximant to the exponential. 77 * 78 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 79 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 80 */ 81 template <typename MatA, typename MatU, typename MatV> 82 void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V) 83 { 84 typedef typename MatA::PlainObject MatrixType; 85 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; 86 const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L}; 87 const MatrixType A2 = A * A; 88 const MatrixType A4 = A2 * A2; 89 const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); 90 U.noalias() = A * tmp; 91 V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); 92 } 93 94 /** \brief Compute the (7,7)-Padé approximant to the exponential. 95 * 96 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 97 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 98 */ 99 template <typename MatA, typename MatU, typename MatV> 100 void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V) 101 { 102 typedef typename MatA::PlainObject MatrixType; 103 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; 104 const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L}; 105 const MatrixType A2 = A * A; 106 const MatrixType A4 = A2 * A2; 107 const MatrixType A6 = A4 * A2; 108 const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2 109 + b[1] * MatrixType::Identity(A.rows(), A.cols()); 110 U.noalias() = A * tmp; 111 V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); 112 113 } 114 115 /** \brief Compute the (9,9)-Padé approximant to the exponential. 116 * 117 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 118 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 119 */ 120 template <typename MatA, typename MatU, typename MatV> 121 void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V) 122 { 123 typedef typename MatA::PlainObject MatrixType; 124 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; 125 const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L, 126 2162160.L, 110880.L, 3960.L, 90.L, 1.L}; 127 const MatrixType A2 = A * A; 128 const MatrixType A4 = A2 * A2; 129 const MatrixType A6 = A4 * A2; 130 const MatrixType A8 = A6 * A2; 131 const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 132 + b[1] * MatrixType::Identity(A.rows(), A.cols()); 133 U.noalias() = A * tmp; 134 V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); 135 } 136 137 /** \brief Compute the (13,13)-Padé approximant to the exponential. 138 * 139 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 140 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 141 */ 142 template <typename MatA, typename MatU, typename MatV> 143 void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V) 144 { 145 typedef typename MatA::PlainObject MatrixType; 146 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; 147 const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L, 148 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L, 149 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L}; 150 const MatrixType A2 = A * A; 151 const MatrixType A4 = A2 * A2; 152 const MatrixType A6 = A4 * A2; 153 V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage 154 MatrixType tmp = A6 * V; 155 tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); 156 U.noalias() = A * tmp; 157 tmp = b[12] * A6 + b[10] * A4 + b[8] * A2; 158 V.noalias() = A6 * tmp; 159 V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); 160 } 161 162 /** \brief Compute the (17,17)-Padé approximant to the exponential. 163 * 164 * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé 165 * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. 166 * 167 * This function activates only if your long double is double-double or quadruple. 168 */ 169 #if LDBL_MANT_DIG > 64 170 template <typename MatA, typename MatU, typename MatV> 171 void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V) 172 { 173 typedef typename MatA::PlainObject MatrixType; 174 typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; 175 const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, 176 100610229646136770560000.L, 15720348382208870400000.L, 177 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, 178 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, 179 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, 180 46512.L, 306.L, 1.L}; 181 const MatrixType A2 = A * A; 182 const MatrixType A4 = A2 * A2; 183 const MatrixType A6 = A4 * A2; 184 const MatrixType A8 = A4 * A4; 185 V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage 186 MatrixType tmp = A8 * V; 187 tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 188 + b[1] * MatrixType::Identity(A.rows(), A.cols()); 189 U.noalias() = A * tmp; 190 tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2; 191 V.noalias() = tmp * A8; 192 V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 193 + b[0] * MatrixType::Identity(A.rows(), A.cols()); 194 } 195 #endif 196 197 template <typename MatrixType, typename RealScalar = typename NumTraits<typename traits<MatrixType>::Scalar>::Real> 198 struct matrix_exp_computeUV 199 { 200 /** \brief Compute Padé approximant to the exponential. 201 * 202 * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé 203 * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$ 204 * denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings 205 * are chosen such that the approximation error is no more than the round-off error. 206 */ 207 static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings); 208 }; 209 210 template <typename MatrixType> 211 struct matrix_exp_computeUV<MatrixType, float> 212 { 213 template <typename ArgType> 214 static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) 215 { 216 using std::frexp; 217 using std::pow; 218 const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); 219 squarings = 0; 220 if (l1norm < 4.258730016922831e-001f) { 221 matrix_exp_pade3(arg, U, V); 222 } else if (l1norm < 1.880152677804762e+000f) { 223 matrix_exp_pade5(arg, U, V); 224 } else { 225 const float maxnorm = 3.925724783138660f; 226 frexp(l1norm / maxnorm, &squarings); 227 if (squarings < 0) squarings = 0; 228 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<float>(squarings)); 229 matrix_exp_pade7(A, U, V); 230 } 231 } 232 }; 233 234 template <typename MatrixType> 235 struct matrix_exp_computeUV<MatrixType, double> 236 { 237 template <typename ArgType> 238 static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) 239 { 240 using std::frexp; 241 using std::pow; 242 const double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); 243 squarings = 0; 244 if (l1norm < 1.495585217958292e-002) { 245 matrix_exp_pade3(arg, U, V); 246 } else if (l1norm < 2.539398330063230e-001) { 247 matrix_exp_pade5(arg, U, V); 248 } else if (l1norm < 9.504178996162932e-001) { 249 matrix_exp_pade7(arg, U, V); 250 } else if (l1norm < 2.097847961257068e+000) { 251 matrix_exp_pade9(arg, U, V); 252 } else { 253 const double maxnorm = 5.371920351148152; 254 frexp(l1norm / maxnorm, &squarings); 255 if (squarings < 0) squarings = 0; 256 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<double>(squarings)); 257 matrix_exp_pade13(A, U, V); 258 } 259 } 260 }; 261 262 template <typename MatrixType> 263 struct matrix_exp_computeUV<MatrixType, long double> 264 { 265 template <typename ArgType> 266 static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) 267 { 268 #if LDBL_MANT_DIG == 53 // double precision 269 matrix_exp_computeUV<MatrixType, double>::run(arg, U, V, squarings); 270 271 #else 272 273 using std::frexp; 274 using std::pow; 275 const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); 276 squarings = 0; 277 278 #if LDBL_MANT_DIG <= 64 // extended precision 279 280 if (l1norm < 4.1968497232266989671e-003L) { 281 matrix_exp_pade3(arg, U, V); 282 } else if (l1norm < 1.1848116734693823091e-001L) { 283 matrix_exp_pade5(arg, U, V); 284 } else if (l1norm < 5.5170388480686700274e-001L) { 285 matrix_exp_pade7(arg, U, V); 286 } else if (l1norm < 1.3759868875587845383e+000L) { 287 matrix_exp_pade9(arg, U, V); 288 } else { 289 const long double maxnorm = 4.0246098906697353063L; 290 frexp(l1norm / maxnorm, &squarings); 291 if (squarings < 0) squarings = 0; 292 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); 293 matrix_exp_pade13(A, U, V); 294 } 295 296 #elif LDBL_MANT_DIG <= 106 // double-double 297 298 if (l1norm < 3.2787892205607026992947488108213e-005L) { 299 matrix_exp_pade3(arg, U, V); 300 } else if (l1norm < 6.4467025060072760084130906076332e-003L) { 301 matrix_exp_pade5(arg, U, V); 302 } else if (l1norm < 6.8988028496595374751374122881143e-002L) { 303 matrix_exp_pade7(arg, U, V); 304 } else if (l1norm < 2.7339737518502231741495857201670e-001L) { 305 matrix_exp_pade9(arg, U, V); 306 } else if (l1norm < 1.3203382096514474905666448850278e+000L) { 307 matrix_exp_pade13(arg, U, V); 308 } else { 309 const long double maxnorm = 3.2579440895405400856599663723517L; 310 frexp(l1norm / maxnorm, &squarings); 311 if (squarings < 0) squarings = 0; 312 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); 313 matrix_exp_pade17(A, U, V); 314 } 315 316 #elif LDBL_MANT_DIG <= 112 // quadruple precison 317 318 if (l1norm < 1.639394610288918690547467954466970e-005L) { 319 matrix_exp_pade3(arg, U, V); 320 } else if (l1norm < 4.253237712165275566025884344433009e-003L) { 321 matrix_exp_pade5(arg, U, V); 322 } else if (l1norm < 5.125804063165764409885122032933142e-002L) { 323 matrix_exp_pade7(arg, U, V); 324 } else if (l1norm < 2.170000765161155195453205651889853e-001L) { 325 matrix_exp_pade9(arg, U, V); 326 } else if (l1norm < 1.125358383453143065081397882891878e+000L) { 327 matrix_exp_pade13(arg, U, V); 328 } else { 329 frexp(l1norm / maxnorm, &squarings); 330 if (squarings < 0) squarings = 0; 331 MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<long double>(squarings)); 332 matrix_exp_pade17(A, U, V); 333 } 334 335 #else 336 337 // this case should be handled in compute() 338 eigen_assert(false && "Bug in MatrixExponential"); 339 340 #endif 341 #endif // LDBL_MANT_DIG 342 } 343 }; 344 345 346 /* Computes the matrix exponential 347 * 348 * \param arg argument of matrix exponential (should be plain object) 349 * \param result variable in which result will be stored 350 */ 351 template <typename ArgType, typename ResultType> 352 void matrix_exp_compute(const ArgType& arg, ResultType &result) 353 { 354 typedef typename ArgType::PlainObject MatrixType; 355 #if LDBL_MANT_DIG > 112 // rarely happens 356 typedef typename traits<MatrixType>::Scalar Scalar; 357 typedef typename NumTraits<Scalar>::Real RealScalar; 358 typedef typename std::complex<RealScalar> ComplexScalar; 359 if (sizeof(RealScalar) > 14) { 360 result = arg.matrixFunction(internal::stem_function_exp<ComplexScalar>); 361 return; 362 } 363 #endif 364 MatrixType U, V; 365 int squarings; 366 matrix_exp_computeUV<MatrixType>::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V) 367 MatrixType numer = U + V; 368 MatrixType denom = -U + V; 369 result = denom.partialPivLu().solve(numer); 370 for (int i=0; i<squarings; i++) 371 result *= result; // undo scaling by repeated squaring 372 } 373 374 } // end namespace Eigen::internal 375 376 /** \ingroup MatrixFunctions_Module 377 * 378 * \brief Proxy for the matrix exponential of some matrix (expression). 379 * 380 * \tparam Derived Type of the argument to the matrix exponential. 381 * 382 * This class holds the argument to the matrix exponential until it is assigned or evaluated for 383 * some other reason (so the argument should not be changed in the meantime). It is the return type 384 * of MatrixBase::exp() and most of the time this is the only way it is used. 385 */ 386 template<typename Derived> struct MatrixExponentialReturnValue 387 : public ReturnByValue<MatrixExponentialReturnValue<Derived> > 388 { 389 typedef typename Derived::Index Index; 390 public: 391 /** \brief Constructor. 392 * 393 * \param src %Matrix (expression) forming the argument of the matrix exponential. 394 */ 395 MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } 396 397 /** \brief Compute the matrix exponential. 398 * 399 * \param result the matrix exponential of \p src in the constructor. 400 */ 401 template <typename ResultType> 402 inline void evalTo(ResultType& result) const 403 { 404 const typename internal::nested_eval<Derived, 10>::type tmp(m_src); 405 internal::matrix_exp_compute(tmp, result); 406 } 407 408 Index rows() const { return m_src.rows(); } 409 Index cols() const { return m_src.cols(); } 410 411 protected: 412 const typename internal::ref_selector<Derived>::type m_src; 413 }; 414 415 namespace internal { 416 template<typename Derived> 417 struct traits<MatrixExponentialReturnValue<Derived> > 418 { 419 typedef typename Derived::PlainObject ReturnType; 420 }; 421 } 422 423 template <typename Derived> 424 const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const 425 { 426 eigen_assert(rows() == cols()); 427 return MatrixExponentialReturnValue<Derived>(derived()); 428 } 429 430 } // end namespace Eigen 431 432 #endif // EIGEN_MATRIX_EXPONENTIAL 433