Home | History | Annotate | Download | only in NonLinearOptimization
      1 namespace Eigen {
      2 
      3 namespace internal {
      4 
      5 template <typename Scalar>
      6 void covar(
      7         Matrix< Scalar, Dynamic, Dynamic > &r,
      8         const VectorXi &ipvt,
      9         Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon()) )
     10 {
     11     using std::abs;
     12     typedef DenseIndex Index;
     13 
     14     /* Local variables */
     15     Index i, j, k, l, ii, jj;
     16     bool sing;
     17     Scalar temp;
     18 
     19     /* Function Body */
     20     const Index n = r.cols();
     21     const Scalar tolr = tol * abs(r(0,0));
     22     Matrix< Scalar, Dynamic, 1 > wa(n);
     23     eigen_assert(ipvt.size()==n);
     24 
     25     /* form the inverse of r in the full upper triangle of r. */
     26     l = -1;
     27     for (k = 0; k < n; ++k)
     28         if (abs(r(k,k)) > tolr) {
     29             r(k,k) = 1. / r(k,k);
     30             for (j = 0; j <= k-1; ++j) {
     31                 temp = r(k,k) * r(j,k);
     32                 r(j,k) = 0.;
     33                 r.col(k).head(j+1) -= r.col(j).head(j+1) * temp;
     34             }
     35             l = k;
     36         }
     37 
     38     /* form the full upper triangle of the inverse of (r transpose)*r */
     39     /* in the full upper triangle of r. */
     40     for (k = 0; k <= l; ++k) {
     41         for (j = 0; j <= k-1; ++j)
     42             r.col(j).head(j+1) += r.col(k).head(j+1) * r(j,k);
     43         r.col(k).head(k+1) *= r(k,k);
     44     }
     45 
     46     /* form the full lower triangle of the covariance matrix */
     47     /* in the strict lower triangle of r and in wa. */
     48     for (j = 0; j < n; ++j) {
     49         jj = ipvt[j];
     50         sing = j > l;
     51         for (i = 0; i <= j; ++i) {
     52             if (sing)
     53                 r(i,j) = 0.;
     54             ii = ipvt[i];
     55             if (ii > jj)
     56                 r(ii,jj) = r(i,j);
     57             if (ii < jj)
     58                 r(jj,ii) = r(i,j);
     59         }
     60         wa[jj] = r(j,j);
     61     }
     62 
     63     /* symmetrize the covariance matrix in r. */
     64     r.topLeftCorner(n,n).template triangularView<StrictlyUpper>() = r.topLeftCorner(n,n).transpose();
     65     r.diagonal() = wa;
     66 }
     67 
     68 } // end namespace internal
     69 
     70 } // end namespace Eigen
     71