Home | History | Annotate | Download | only in test
      1 // This file is part of Eigen, a lightweight C++ template library
      2 // for linear algebra.
      3 //
      4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog (a] gmail.com>
      5 // Copyright (C) 2014 Navdeep Jaitly <ndjaitly (a] google.com>
      6 //
      7 // This Source Code Form is subject to the terms of the Mozilla
      8 // Public License v. 2.0. If a copy of the MPL was not distributed
      9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
     10 
     11 #define EIGEN_TEST_NO_LONGDOUBLE
     12 #define EIGEN_TEST_NO_COMPLEX
     13 #define EIGEN_TEST_FUNC cxx11_tensor_cuda
     14 #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
     15 #define EIGEN_USE_GPU
     16 
     17 #if defined __CUDACC_VER__ && __CUDACC_VER__ >= 70500
     18 #include <cuda_fp16.h>
     19 #endif
     20 #include "main.h"
     21 #include <unsupported/Eigen/CXX11/Tensor>
     22 
     23 using Eigen::Tensor;
     24 typedef Tensor<float, 1>::DimensionPair DimPair;
     25 
     26 template<int DataLayout>
     27 void test_cuda_contraction(int m_size, int k_size, int n_size)
     28 {
     29   std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
     30   // with these dimensions, the output has 300 * 140 elements, which is
     31   // more than 30 * 1024, which is the number of threads in blocks on
     32   // a 15 SM GK110 GPU
     33   Tensor<float, 2, DataLayout> t_left(m_size, k_size);
     34   Tensor<float, 2, DataLayout> t_right(k_size, n_size);
     35   Tensor<float, 2, DataLayout> t_result(m_size, n_size);
     36   Tensor<float, 2, DataLayout> t_result_gpu(m_size, n_size);
     37   Eigen::array<DimPair, 1> dims(DimPair(1, 0));
     38 
     39   t_left.setRandom();
     40   t_right.setRandom();
     41 
     42   std::size_t t_left_bytes = t_left.size()  * sizeof(float);
     43   std::size_t t_right_bytes = t_right.size() * sizeof(float);
     44   std::size_t t_result_bytes = t_result.size() * sizeof(float);
     45 
     46   float* d_t_left;
     47   float* d_t_right;
     48   float* d_t_result;
     49 
     50   cudaMalloc((void**)(&d_t_left), t_left_bytes);
     51   cudaMalloc((void**)(&d_t_right), t_right_bytes);
     52   cudaMalloc((void**)(&d_t_result), t_result_bytes);
     53 
     54   cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice);
     55   cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice);
     56 
     57   Eigen::CudaStreamDevice stream;
     58   Eigen::GpuDevice gpu_device(&stream);
     59 
     60   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
     61       gpu_t_left(d_t_left, Eigen::array<int, 2>(m_size, k_size));
     62   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
     63       gpu_t_right(d_t_right, Eigen::array<int, 2>(k_size, n_size));
     64   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
     65       gpu_t_result(d_t_result, Eigen::array<int, 2>(m_size, n_size));
     66 
     67 
     68   gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
     69   t_result = t_left.contract(t_right, dims);
     70 
     71   cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
     72   for (DenseIndex i = 0; i < t_result.size(); i++) {
     73     if (fabs(t_result(i) - t_result_gpu(i)) < 1e-4f) {
     74       continue;
     75     }
     76     if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
     77       continue;
     78     }
     79     std::cout << "mismatch detected at index " << i << ": " << t_result(i)
     80               << " vs " <<  t_result_gpu(i) << std::endl;
     81     assert(false);
     82   }
     83 
     84   cudaFree((void*)d_t_left);
     85   cudaFree((void*)d_t_right);
     86   cudaFree((void*)d_t_result);
     87 }
     88 
     89 
     90 template<int DataLayout>
     91 void test_scalar(int m_size, int k_size, int n_size)
     92 {
     93   std::cout << "Testing for (" << m_size << "," << k_size << "," << n_size << ")" << std::endl;
     94   // with these dimensions, the output has 300 * 140 elements, which is
     95   // more than 30 * 1024, which is the number of threads in blocks on
     96   // a 15 SM GK110 GPU
     97   Tensor<float, 2, DataLayout> t_left(m_size, k_size);
     98   Tensor<float, 2, DataLayout> t_right(k_size, n_size);
     99   Tensor<float, 0, DataLayout> t_result;
    100   Tensor<float, 0, DataLayout> t_result_gpu;
    101   Eigen::array<DimPair, 2> dims(DimPair(0, 0), DimPair(1, 1));
    102 
    103   t_left.setRandom();
    104   t_right.setRandom();
    105 
    106   std::size_t t_left_bytes = t_left.size()  * sizeof(float);
    107   std::size_t t_right_bytes = t_right.size() * sizeof(float);
    108   std::size_t t_result_bytes = sizeof(float);
    109 
    110   float* d_t_left;
    111   float* d_t_right;
    112   float* d_t_result;
    113 
    114   cudaMalloc((void**)(&d_t_left), t_left_bytes);
    115   cudaMalloc((void**)(&d_t_right), t_right_bytes);
    116   cudaMalloc((void**)(&d_t_result), t_result_bytes);
    117 
    118   cudaMemcpy(d_t_left, t_left.data(), t_left_bytes, cudaMemcpyHostToDevice);
    119   cudaMemcpy(d_t_right, t_right.data(), t_right_bytes, cudaMemcpyHostToDevice);
    120 
    121   Eigen::CudaStreamDevice stream;
    122   Eigen::GpuDevice gpu_device(&stream);
    123 
    124   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
    125       gpu_t_left(d_t_left, m_size, k_size);
    126   Eigen::TensorMap<Eigen::Tensor<float, 2, DataLayout> >
    127       gpu_t_right(d_t_right, k_size, n_size);
    128   Eigen::TensorMap<Eigen::Tensor<float, 0, DataLayout> >
    129       gpu_t_result(d_t_result);
    130 
    131   gpu_t_result.device(gpu_device) = gpu_t_left.contract(gpu_t_right, dims);
    132   t_result = t_left.contract(t_right, dims);
    133 
    134   cudaMemcpy(t_result_gpu.data(), d_t_result, t_result_bytes, cudaMemcpyDeviceToHost);
    135   if (fabs(t_result() - t_result_gpu()) > 1e-4f &&
    136       !Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) {
    137     std::cout << "mismatch detected: " << t_result()
    138               << " vs " <<  t_result_gpu() << std::endl;
    139     assert(false);
    140   }
    141 
    142   cudaFree((void*)d_t_left);
    143   cudaFree((void*)d_t_right);
    144   cudaFree((void*)d_t_result);
    145 }
    146 
    147 
    148 template<int DataLayout>
    149 void test_cuda_contraction_m() {
    150   for (int k = 32; k < 256; k++) {
    151     test_cuda_contraction<ColMajor>(k, 128, 128);
    152     test_cuda_contraction<RowMajor>(k, 128, 128);
    153   }
    154 }
    155 
    156 template<int DataLayout>
    157 void test_cuda_contraction_k() {
    158   for (int k = 32; k < 256; k++) {
    159     test_cuda_contraction<ColMajor>(128, k, 128);
    160     test_cuda_contraction<RowMajor>(128, k, 128);
    161   }
    162 }
    163 
    164 template<int DataLayout>
    165 void test_cuda_contraction_n() {
    166   for (int k = 32; k < 256; k++) {
    167     test_cuda_contraction<ColMajor>(128, 128, k);
    168     test_cuda_contraction<RowMajor>(128, 128, k);
    169   }
    170 }
    171 
    172 
    173 template<int DataLayout>
    174 void test_cuda_contraction_sizes() {
    175   int m_sizes[] = { 31,  39,   63,   64,   65,
    176                    127, 129,  255,  257 , 511,
    177                    512, 513, 1023, 1024, 1025};
    178 
    179   int n_sizes[] = { 31,  39,   63,   64,   65,
    180                    127, 129,  255,  257,  511,
    181                    512, 513, 1023, 1024, 1025};
    182 
    183   int k_sizes[] = {  31,   39,  63,  64,   65,
    184                      95,   96, 127, 129,  255,
    185                     257,  511, 512, 513, 1023,
    186                    1024, 1025};
    187 
    188   for (int i = 0; i < 15; i++) {
    189     for (int j = 0; j < 15; j++) {
    190       for (int k = 0; k < 17; k++) {
    191         test_cuda_contraction<DataLayout>(m_sizes[i], n_sizes[j], k_sizes[k]);
    192       }
    193     }
    194   }
    195 }
    196 
    197 void test_cxx11_tensor_cuda()
    198 {
    199   CALL_SUBTEST_1(test_cuda_contraction<ColMajor>(128, 128, 128));
    200   CALL_SUBTEST_1(test_cuda_contraction<RowMajor>(128, 128, 128));
    201 
    202   CALL_SUBTEST_1(test_scalar<ColMajor>(128, 128, 128));
    203   CALL_SUBTEST_1(test_scalar<RowMajor>(128, 128, 128));
    204 
    205   CALL_SUBTEST_2(test_cuda_contraction_m<ColMajor>());
    206   CALL_SUBTEST_3(test_cuda_contraction_m<RowMajor>());
    207 
    208   CALL_SUBTEST_4(test_cuda_contraction_k<ColMajor>());
    209   CALL_SUBTEST_5(test_cuda_contraction_k<RowMajor>());
    210 
    211   CALL_SUBTEST_6(test_cuda_contraction_n<ColMajor>());
    212   CALL_SUBTEST_7(test_cuda_contraction_n<RowMajor>());
    213 
    214   CALL_SUBTEST_8(test_cuda_contraction_sizes<ColMajor>());
    215   CALL_SUBTEST_9(test_cuda_contraction_sizes<RowMajor>());
    216 }
    217