1 /******************************************************************************* 2 * Copyright 2010-2018 Intel Corporation 3 * All Rights Reserved. 4 * 5 * If this software was obtained under the Intel Simplified Software License, 6 * the following terms apply: 7 * 8 * The source code, information and material ("Material") contained herein is 9 * owned by Intel Corporation or its suppliers or licensors, and title to such 10 * Material remains with Intel Corporation or its suppliers or licensors. The 11 * Material contains proprietary information of Intel or its suppliers and 12 * licensors. The Material is protected by worldwide copyright laws and treaty 13 * provisions. No part of the Material may be used, copied, reproduced, 14 * modified, published, uploaded, posted, transmitted, distributed or disclosed 15 * in any way without Intel's prior express written permission. No license under 16 * any patent, copyright or other intellectual property rights in the Material 17 * is granted to or conferred upon you, either expressly, by implication, 18 * inducement, estoppel or otherwise. Any license under such intellectual 19 * property rights must be express and approved by Intel in writing. 20 * 21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this 22 * notice or any other notice embedded in Materials by Intel or Intel's 23 * suppliers or licensors in any way. 24 * 25 * 26 * If this software was obtained under the Apache License, Version 2.0 (the 27 * "License"), the following terms apply: 28 * 29 * You may not use this file except in compliance with the License. You may 30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 31 * 32 * 33 * Unless required by applicable law or agreed to in writing, software 34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 36 * 37 * See the License for the specific language governing permissions and 38 * limitations under the License. 39 *******************************************************************************/ 40 41 /* 42 // Intel(R) Integrated Performance Primitives. Cryptography Primitives. 43 // EC over GF(p^m) definitinons 44 // 45 // Context: 46 // ippsGFpECInitStd128r2() 47 // 48 */ 49 50 #include "owndefs.h" 51 #include "owncp.h" 52 #include "pcpgfpecstuff.h" 53 #include "pcpeccp.h" 54 55 56 57 58 static void cpGFpECSetStd(int aLen, const BNU_CHUNK_T* pA, 59 int bLen, const BNU_CHUNK_T* pB, 60 int xLen, const BNU_CHUNK_T* pX, 61 int yLen, const BNU_CHUNK_T* pY, 62 int rLen, const BNU_CHUNK_T* pR, 63 BNU_CHUNK_T h, 64 IppsGFpECState* pEC) 65 { 66 IppsGFpState* pGF = ECP_GFP(pEC); 67 gsModEngine* pGFE = GFP_PMA(pGF); 68 int elemLen = GFP_FELEN(pGFE); 69 70 IppsGFpElement elmA, elmB; 71 IppsBigNumState R, H; 72 73 /* convert A ans B coeffs into GF elements */ 74 cpGFpElementConstruct(&elmA, cpGFpGetPool(1, pGFE), elemLen); 75 cpGFpElementConstruct(&elmB, cpGFpGetPool(1, pGFE), elemLen); 76 ippsGFpSetElement((Ipp32u*)pA, BITS2WORD32_SIZE(BITSIZE_BNU(pA,aLen)), &elmA, pGF); 77 ippsGFpSetElement((Ipp32u*)pB, BITS2WORD32_SIZE(BITSIZE_BNU(pB,bLen)), &elmB, pGF); 78 /* and set EC */ 79 ippsGFpECSet(&elmA, &elmB, pEC); 80 81 /* construct R and H */ 82 cpConstructBN(&R, rLen, (BNU_CHUNK_T*)pR, NULL); 83 cpConstructBN(&H, 1, &h, NULL); 84 /* convert GX ans GY coeffs into GF elements */ 85 ippsGFpSetElement((Ipp32u*)pX, BITS2WORD32_SIZE(BITSIZE_BNU(pX,xLen)), &elmA, pGF); 86 ippsGFpSetElement((Ipp32u*)pY, BITS2WORD32_SIZE(BITSIZE_BNU(pY,yLen)), &elmB, pGF); 87 /* and init EC subgroup */ 88 ippsGFpECSetSubgroup(&elmA, &elmB, &R, &H, pEC); 89 } 90 91 /*F* 92 // Name: ippsGFpECInitStd128r2 93 // 94 // Purpose: Initializes the context of EC128r2 95 // 96 // Returns: Reason: 97 // ippStsNullPtrErr NULL == pEC 98 // NULL == pGFp 99 // 100 // ippStsContextMatchErr invalid pGFp->idCtx 101 // 102 // ippStsBadArgErr pGFp does not specify the finite field over which the given 103 // standard elliptic curve is defined 104 // 105 // ippStsNoErr no error 106 // 107 // Parameters: 108 // pGFp Pointer to the IppsGFpState context of the underlying finite field 109 // pEC Pointer to the context of the elliptic curve being initialized. 110 // 111 *F*/ 112 113 IPPFUN(IppStatus, ippsGFpECInitStd128r2,(const IppsGFpState* pGFp, IppsGFpECState* pEC)) 114 { 115 IPP_BAD_PTR2_RET(pGFp, pEC); 116 117 pGFp = (IppsGFpState*)( IPP_ALIGNED_PTR(pGFp, GFP_ALIGNMENT) ); 118 IPP_BADARG_RET( !GFP_TEST_ID(pGFp), ippStsContextMatchErr ); 119 120 { 121 gsModEngine* pGFE = GFP_PMA(pGFp); 122 123 /* test if GF is prime GF */ 124 IPP_BADARG_RET(!GFP_IS_BASIC(pGFE), ippStsBadArgErr); 125 /* test underlying prime value*/ 126 IPP_BADARG_RET(cpCmp_BNU(secp128r2_p, BITS_BNU_CHUNK(128), GFP_MODULUS(pGFE), BITS_BNU_CHUNK(128)), ippStsBadArgErr); 127 128 pEC = (IppsGFpECState*)( IPP_ALIGNED_PTR(pEC, ECGFP_ALIGNMENT) ); 129 130 ippsGFpECInit(pGFp, NULL, NULL, pEC); 131 cpGFpECSetStd(BITS_BNU_CHUNK(128), secp128r2_a, 132 BITS_BNU_CHUNK(128), secp128r2_b, 133 BITS_BNU_CHUNK(128), secp128r2_gx, 134 BITS_BNU_CHUNK(128), secp128r2_gy, 135 BITS_BNU_CHUNK(128), secp128r2_r, 136 secp128r2_h, 137 pEC); 138 139 return ippStsNoErr; 140 } 141 } 142