1 /******************************************************************************* 2 * Copyright 2013-2018 Intel Corporation 3 * All Rights Reserved. 4 * 5 * If this software was obtained under the Intel Simplified Software License, 6 * the following terms apply: 7 * 8 * The source code, information and material ("Material") contained herein is 9 * owned by Intel Corporation or its suppliers or licensors, and title to such 10 * Material remains with Intel Corporation or its suppliers or licensors. The 11 * Material contains proprietary information of Intel or its suppliers and 12 * licensors. The Material is protected by worldwide copyright laws and treaty 13 * provisions. No part of the Material may be used, copied, reproduced, 14 * modified, published, uploaded, posted, transmitted, distributed or disclosed 15 * in any way without Intel's prior express written permission. No license under 16 * any patent, copyright or other intellectual property rights in the Material 17 * is granted to or conferred upon you, either expressly, by implication, 18 * inducement, estoppel or otherwise. Any license under such intellectual 19 * property rights must be express and approved by Intel in writing. 20 * 21 * Unless otherwise agreed by Intel in writing, you may not remove or alter this 22 * notice or any other notice embedded in Materials by Intel or Intel's 23 * suppliers or licensors in any way. 24 * 25 * 26 * If this software was obtained under the Apache License, Version 2.0 (the 27 * "License"), the following terms apply: 28 * 29 * You may not use this file except in compliance with the License. You may 30 * obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 31 * 32 * 33 * Unless required by applicable law or agreed to in writing, software 34 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT 35 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 36 * 37 * See the License for the specific language governing permissions and 38 * limitations under the License. 39 *******************************************************************************/ 40 41 /* 42 // 43 // Purpose: 44 // Cryptography Primitive. 45 // RSA Functions 46 // 47 // 48 */ 49 50 #include "owndefs.h" 51 #include "owncp.h" 52 #include "pcpbn.h" 53 #include "pcpprimeg.h" 54 #include "pcpprng.h" 55 #include "pcpngrsa.h" 56 57 58 static int cpMillerRabinTest(BNU_CHUNK_T* pW, cpSize nsW, 59 const BNU_CHUNK_T* pE, cpSize bitsizeE, 60 int k, 61 const BNU_CHUNK_T* pPrime1, 62 gsModEngine* pMont, 63 BNU_CHUNK_T* pBuffer) 64 { 65 cpSize nsP = MOD_LEN(pMont); 66 67 /* to Montgomery Domain */ 68 ZEXPAND_BNU(pW, nsW, nsP); 69 MOD_METHOD(pMont)->encode(pW, pW, pMont); 70 71 /* w = exp(w,e) */ 72 gsMontExpWin_BNU_sscm(pW, pW, nsP, pE, bitsizeE, pMont, pBuffer); 73 74 /* if (w==1) ||(w==prime-1) => probably prime */ 75 if ((0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP)) 76 || (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP))) 77 return 1; /* witness of the primality */ 78 79 while (--k) { 80 MOD_METHOD(pMont)->sqr(pW, pW, pMont); 81 82 if (0 == cpCmp_BNU(pW, nsP, MOD_MNT_R(pMont), nsP)) 83 return 0; /* witness of the compositeness */ 84 if (0 == cpCmp_BNU(pW, nsP, pPrime1, nsP)) 85 return 1; /* witness of the primality */ 86 } 87 return 0; 88 } 89 90 /* test if P is prime 91 92 returns: 93 IPP_IS_PRIME (==1) - prime value has been detected 94 IPP_IS_COMPOSITE (==0) - composite value has been detected 95 -1 - if internal error (ippStsNoErr != rndFunc()) 96 */ 97 static int cpIsProbablyPrime(BNU_CHUNK_T* pPrime, int bitSize, 98 int nTrials, 99 IppBitSupplier rndFunc, void* pRndParam, 100 gsModEngine* pME, 101 BNU_CHUNK_T* pBuffer) 102 { 103 /* if test for trivial divisors passed*/ 104 int ret = cpMimimalPrimeTest((Ipp32u*)pPrime, BITS2WORD32_SIZE(bitSize)); 105 106 /* appy Miller-Rabin test */ 107 if (ret) { 108 int ns = BITS_BNU_CHUNK(bitSize); 109 BNU_CHUNK_T* pPrime1 = pBuffer; 110 BNU_CHUNK_T* pOdd = pPrime1 + ns; 111 BNU_CHUNK_T* pWitness = pOdd + ns; 112 BNU_CHUNK_T* pMontPrime1 = pWitness + ns; 113 BNU_CHUNK_T* pScratchBuffer = pMontPrime1 + ns; 114 int k, a, lenOdd; 115 116 /* prime1 = prime-1 = odd*2^a */ 117 cpDec_BNU(pPrime1, pPrime, ns, 1); 118 for (k = 0, a = 0; k<ns; k++) { 119 cpSize da = cpNTZ_BNU(pPrime1[k]); 120 a += da; 121 if (BNU_CHUNK_BITS != da) 122 break; 123 } 124 lenOdd = cpLSR_BNU(pOdd, pPrime1, ns, a); 125 FIX_BNU(pOdd, lenOdd); 126 127 /* prime1 to (Montgomery Domain) */ 128 cpSub_BNU(pMontPrime1, pPrime, MOD_MNT_R(pME), ns); 129 130 for (k = 0, ret = 0; k<nTrials && !ret; k++) { 131 BNU_CHUNK_T one = 1; 132 ret = cpPRNGenRange(pWitness, &one, 1, pPrime1, ns, rndFunc, pRndParam); 133 if (ret <= 0) break; /* internal error */ 134 /* test primality */ 135 ret = cpMillerRabinTest(pWitness, ns, 136 //pOdd, lenOdd, a, 137 pOdd, bitSize - a, a, 138 pMontPrime1, 139 pME, pScratchBuffer); 140 } 141 } 142 return ret; 143 }