Home | History | Annotate | Download | only in fsck
      1 /**
      2  * mount.c
      3  *
      4  * Copyright (c) 2013 Samsung Electronics Co., Ltd.
      5  *             http://www.samsung.com/
      6  *
      7  * This program is free software; you can redistribute it and/or modify
      8  * it under the terms of the GNU General Public License version 2 as
      9  * published by the Free Software Foundation.
     10  */
     11 #include "fsck.h"
     12 #include "xattr.h"
     13 #include <locale.h>
     14 #ifdef HAVE_LINUX_POSIX_ACL_H
     15 #include <linux/posix_acl.h>
     16 #endif
     17 #ifdef HAVE_SYS_ACL_H
     18 #include <sys/acl.h>
     19 #endif
     20 
     21 #ifndef ACL_UNDEFINED_TAG
     22 #define ACL_UNDEFINED_TAG	(0x00)
     23 #define ACL_USER_OBJ		(0x01)
     24 #define ACL_USER		(0x02)
     25 #define ACL_GROUP_OBJ		(0x04)
     26 #define ACL_GROUP		(0x08)
     27 #define ACL_MASK		(0x10)
     28 #define ACL_OTHER		(0x20)
     29 #endif
     30 
     31 u32 get_free_segments(struct f2fs_sb_info *sbi)
     32 {
     33 	u32 i, free_segs = 0;
     34 
     35 	for (i = 0; i < TOTAL_SEGS(sbi); i++) {
     36 		struct seg_entry *se = get_seg_entry(sbi, i);
     37 
     38 		if (se->valid_blocks == 0x0 && !IS_CUR_SEGNO(sbi, i))
     39 			free_segs++;
     40 	}
     41 	return free_segs;
     42 }
     43 
     44 void update_free_segments(struct f2fs_sb_info *sbi)
     45 {
     46 	char *progress = "-*|*-";
     47 	static int i = 0;
     48 
     49 	if (c.dbg_lv)
     50 		return;
     51 
     52 	MSG(0, "\r [ %c ] Free segments: 0x%x", progress[i % 5], get_free_segments(sbi));
     53 	fflush(stdout);
     54 	i++;
     55 }
     56 
     57 #if defined(HAVE_LINUX_POSIX_ACL_H) || defined(HAVE_SYS_ACL_H)
     58 void print_acl(char *value, int size)
     59 {
     60 	struct f2fs_acl_header *hdr = (struct f2fs_acl_header *)value;
     61 	struct f2fs_acl_entry *entry = (struct f2fs_acl_entry *)(hdr + 1);
     62 	const char *end = value + size;
     63 	int i, count;
     64 
     65 	if (hdr->a_version != cpu_to_le32(F2FS_ACL_VERSION)) {
     66 		MSG(0, "Invalid ACL version [0x%x : 0x%x]\n",
     67 				le32_to_cpu(hdr->a_version), F2FS_ACL_VERSION);
     68 		return;
     69 	}
     70 
     71 	count = f2fs_acl_count(size);
     72 	if (count <= 0) {
     73 		MSG(0, "Invalid ACL value size %d\n", size);
     74 		return;
     75 	}
     76 
     77 	for (i = 0; i < count; i++) {
     78 		if ((char *)entry > end) {
     79 			MSG(0, "Invalid ACL entries count %d\n", count);
     80 			return;
     81 		}
     82 
     83 		switch (le16_to_cpu(entry->e_tag)) {
     84 		case ACL_USER_OBJ:
     85 		case ACL_GROUP_OBJ:
     86 		case ACL_MASK:
     87 		case ACL_OTHER:
     88 			MSG(0, "tag:0x%x perm:0x%x\n",
     89 					le16_to_cpu(entry->e_tag),
     90 					le16_to_cpu(entry->e_perm));
     91 			entry = (struct f2fs_acl_entry *)((char *)entry +
     92 					sizeof(struct f2fs_acl_entry_short));
     93 			break;
     94 		case ACL_USER:
     95 			MSG(0, "tag:0x%x perm:0x%x uid:%u\n",
     96 					le16_to_cpu(entry->e_tag),
     97 					le16_to_cpu(entry->e_perm),
     98 					le32_to_cpu(entry->e_id));
     99 			entry = (struct f2fs_acl_entry *)((char *)entry +
    100 					sizeof(struct f2fs_acl_entry));
    101 			break;
    102 		case ACL_GROUP:
    103 			MSG(0, "tag:0x%x perm:0x%x gid:%u\n",
    104 					le16_to_cpu(entry->e_tag),
    105 					le16_to_cpu(entry->e_perm),
    106 					le32_to_cpu(entry->e_id));
    107 			entry = (struct f2fs_acl_entry *)((char *)entry +
    108 					sizeof(struct f2fs_acl_entry));
    109 			break;
    110 		default:
    111 			MSG(0, "Unknown ACL tag 0x%x\n",
    112 					le16_to_cpu(entry->e_tag));
    113 			return;
    114 		}
    115 	}
    116 }
    117 #else
    118 #define print_acl(value, size) do {		\
    119 	int i;					\
    120 	for (i = 0; i < size; i++)		\
    121 		MSG(0, "%02X", value[i]);	\
    122 	MSG(0, "\n");				\
    123 } while (0)
    124 #endif
    125 
    126 void print_xattr_entry(struct f2fs_xattr_entry *ent)
    127 {
    128 	char *value = (char *)(ent->e_name + le16_to_cpu(ent->e_name_len));
    129 	struct fscrypt_context *ctx;
    130 	int i;
    131 
    132 	MSG(0, "\nxattr: e_name_index:%d e_name:", ent->e_name_index);
    133 	for (i = 0; i < le16_to_cpu(ent->e_name_len); i++)
    134 		MSG(0, "%c", ent->e_name[i]);
    135 	MSG(0, " e_name_len:%d e_value_size:%d e_value:\n",
    136 			ent->e_name_len, le16_to_cpu(ent->e_value_size));
    137 
    138 	switch (ent->e_name_index) {
    139 	case F2FS_XATTR_INDEX_POSIX_ACL_ACCESS:
    140 	case F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT:
    141 		print_acl(value, le16_to_cpu(ent->e_value_size));
    142 		break;
    143 	case F2FS_XATTR_INDEX_USER:
    144 	case F2FS_XATTR_INDEX_SECURITY:
    145 	case F2FS_XATTR_INDEX_TRUSTED:
    146 	case F2FS_XATTR_INDEX_LUSTRE:
    147 		for (i = 0; i < le16_to_cpu(ent->e_value_size); i++)
    148 			MSG(0, "%02X", value[i]);
    149 		MSG(0, "\n");
    150 		break;
    151 	case F2FS_XATTR_INDEX_ENCRYPTION:
    152 		ctx = (struct fscrypt_context *)value;
    153 		MSG(0, "format: %d\n", ctx->format);
    154 		MSG(0, "contents_encryption_mode: 0x%x\n", ctx->contents_encryption_mode);
    155 		MSG(0, "filenames_encryption_mode: 0x%x\n", ctx->filenames_encryption_mode);
    156 		MSG(0, "flags: 0x%x\n", ctx->flags);
    157 		MSG(0, "master_key_descriptor: ");
    158 		for (i = 0; i < FS_KEY_DESCRIPTOR_SIZE; i++)
    159 			MSG(0, "%02X", ctx->master_key_descriptor[i]);
    160 		MSG(0, "\nnonce: ");
    161 		for (i = 0; i < FS_KEY_DERIVATION_NONCE_SIZE; i++)
    162 			MSG(0, "%02X", ctx->nonce[i]);
    163 		MSG(0, "\n");
    164 		break;
    165 	default:
    166 		break;
    167 	}
    168 }
    169 
    170 void print_inode_info(struct f2fs_sb_info *sbi,
    171 			struct f2fs_node *node, int name)
    172 {
    173 	struct f2fs_inode *inode = &node->i;
    174 	void *xattr_addr;
    175 	struct f2fs_xattr_entry *ent;
    176 	unsigned char en[F2FS_NAME_LEN + 1];
    177 	unsigned int i = 0;
    178 	u32 namelen = le32_to_cpu(inode->i_namelen);
    179 	int enc_name = file_enc_name(inode);
    180 	int ofs = __get_extra_isize(inode);
    181 
    182 	namelen = convert_encrypted_name(inode->i_name, namelen, en, enc_name);
    183 	en[namelen] = '\0';
    184 	if (name && namelen) {
    185 		inode->i_name[namelen] = '\0';
    186 		MSG(0, " - File name         : %s%s\n", en,
    187 				enc_name ? " <encrypted>" : "");
    188 		setlocale(LC_ALL, "");
    189 		MSG(0, " - File size         : %'llu (bytes)\n",
    190 				le64_to_cpu(inode->i_size));
    191 		return;
    192 	}
    193 
    194 	DISP_u32(inode, i_mode);
    195 	DISP_u32(inode, i_advise);
    196 	DISP_u32(inode, i_uid);
    197 	DISP_u32(inode, i_gid);
    198 	DISP_u32(inode, i_links);
    199 	DISP_u64(inode, i_size);
    200 	DISP_u64(inode, i_blocks);
    201 
    202 	DISP_u64(inode, i_atime);
    203 	DISP_u32(inode, i_atime_nsec);
    204 	DISP_u64(inode, i_ctime);
    205 	DISP_u32(inode, i_ctime_nsec);
    206 	DISP_u64(inode, i_mtime);
    207 	DISP_u32(inode, i_mtime_nsec);
    208 
    209 	DISP_u32(inode, i_generation);
    210 	DISP_u32(inode, i_current_depth);
    211 	DISP_u32(inode, i_xattr_nid);
    212 	DISP_u32(inode, i_flags);
    213 	DISP_u32(inode, i_inline);
    214 	DISP_u32(inode, i_pino);
    215 	DISP_u32(inode, i_dir_level);
    216 
    217 	if (namelen) {
    218 		DISP_u32(inode, i_namelen);
    219 		printf("%-30s\t\t[%s]\n", "i_name", en);
    220 	}
    221 
    222 	printf("i_ext: fofs:%x blkaddr:%x len:%x\n",
    223 			le32_to_cpu(inode->i_ext.fofs),
    224 			le32_to_cpu(inode->i_ext.blk_addr),
    225 			le32_to_cpu(inode->i_ext.len));
    226 
    227 	if (c.feature & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
    228 		DISP_u16(inode, i_extra_isize);
    229 		if (c.feature & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR))
    230 			DISP_u16(inode, i_inline_xattr_size);
    231 		if (c.feature & cpu_to_le32(F2FS_FEATURE_PRJQUOTA))
    232 			DISP_u32(inode, i_projid);
    233 		if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
    234 			DISP_u32(inode, i_inode_checksum);
    235 		if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
    236 			DISP_u64(inode, i_crtime);
    237 			DISP_u32(inode, i_crtime_nsec);
    238 		}
    239 	}
    240 
    241 	DISP_u32(inode, i_addr[ofs]);		/* Pointers to data blocks */
    242 	DISP_u32(inode, i_addr[ofs + 1]);	/* Pointers to data blocks */
    243 	DISP_u32(inode, i_addr[ofs + 2]);	/* Pointers to data blocks */
    244 	DISP_u32(inode, i_addr[ofs + 3]);	/* Pointers to data blocks */
    245 
    246 	for (i = ofs + 3; i < ADDRS_PER_INODE(inode); i++) {
    247 		if (inode->i_addr[i] == 0x0)
    248 			break;
    249 		printf("i_addr[0x%x] points data block\t\t[0x%4x]\n",
    250 				i, le32_to_cpu(inode->i_addr[i]));
    251 	}
    252 
    253 	DISP_u32(inode, i_nid[0]);	/* direct */
    254 	DISP_u32(inode, i_nid[1]);	/* direct */
    255 	DISP_u32(inode, i_nid[2]);	/* indirect */
    256 	DISP_u32(inode, i_nid[3]);	/* indirect */
    257 	DISP_u32(inode, i_nid[4]);	/* double indirect */
    258 
    259 	xattr_addr = read_all_xattrs(sbi, node);
    260 	list_for_each_xattr(ent, xattr_addr) {
    261 		print_xattr_entry(ent);
    262 	}
    263 	free(xattr_addr);
    264 
    265 	printf("\n");
    266 }
    267 
    268 void print_node_info(struct f2fs_sb_info *sbi,
    269 			struct f2fs_node *node_block, int verbose)
    270 {
    271 	nid_t ino = le32_to_cpu(node_block->footer.ino);
    272 	nid_t nid = le32_to_cpu(node_block->footer.nid);
    273 	/* Is this inode? */
    274 	if (ino == nid) {
    275 		DBG(verbose, "Node ID [0x%x:%u] is inode\n", nid, nid);
    276 		print_inode_info(sbi, node_block, verbose);
    277 	} else {
    278 		int i;
    279 		u32 *dump_blk = (u32 *)node_block;
    280 		DBG(verbose,
    281 			"Node ID [0x%x:%u] is direct node or indirect node.\n",
    282 								nid, nid);
    283 		for (i = 0; i <= 10; i++)
    284 			MSG(verbose, "[%d]\t\t\t[0x%8x : %d]\n",
    285 						i, dump_blk[i], dump_blk[i]);
    286 	}
    287 }
    288 
    289 static void DISP_label(u_int16_t *name)
    290 {
    291 	char buffer[MAX_VOLUME_NAME];
    292 
    293 	utf16_to_utf8(buffer, name, MAX_VOLUME_NAME, MAX_VOLUME_NAME);
    294 	printf("%-30s" "\t\t[%s]\n", "volum_name", buffer);
    295 }
    296 
    297 void print_raw_sb_info(struct f2fs_super_block *sb)
    298 {
    299 	if (!c.dbg_lv)
    300 		return;
    301 
    302 	printf("\n");
    303 	printf("+--------------------------------------------------------+\n");
    304 	printf("| Super block                                            |\n");
    305 	printf("+--------------------------------------------------------+\n");
    306 
    307 	DISP_u32(sb, magic);
    308 	DISP_u32(sb, major_ver);
    309 
    310 	DISP_label(sb->volume_name);
    311 
    312 	DISP_u32(sb, minor_ver);
    313 	DISP_u32(sb, log_sectorsize);
    314 	DISP_u32(sb, log_sectors_per_block);
    315 
    316 	DISP_u32(sb, log_blocksize);
    317 	DISP_u32(sb, log_blocks_per_seg);
    318 	DISP_u32(sb, segs_per_sec);
    319 	DISP_u32(sb, secs_per_zone);
    320 	DISP_u32(sb, checksum_offset);
    321 	DISP_u64(sb, block_count);
    322 
    323 	DISP_u32(sb, section_count);
    324 	DISP_u32(sb, segment_count);
    325 	DISP_u32(sb, segment_count_ckpt);
    326 	DISP_u32(sb, segment_count_sit);
    327 	DISP_u32(sb, segment_count_nat);
    328 
    329 	DISP_u32(sb, segment_count_ssa);
    330 	DISP_u32(sb, segment_count_main);
    331 	DISP_u32(sb, segment0_blkaddr);
    332 
    333 	DISP_u32(sb, cp_blkaddr);
    334 	DISP_u32(sb, sit_blkaddr);
    335 	DISP_u32(sb, nat_blkaddr);
    336 	DISP_u32(sb, ssa_blkaddr);
    337 	DISP_u32(sb, main_blkaddr);
    338 
    339 	DISP_u32(sb, root_ino);
    340 	DISP_u32(sb, node_ino);
    341 	DISP_u32(sb, meta_ino);
    342 	DISP_u32(sb, cp_payload);
    343 	DISP_u32(sb, crc);
    344 	DISP("%-.256s", sb, version);
    345 	printf("\n");
    346 }
    347 
    348 void print_ckpt_info(struct f2fs_sb_info *sbi)
    349 {
    350 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
    351 
    352 	if (!c.dbg_lv)
    353 		return;
    354 
    355 	printf("\n");
    356 	printf("+--------------------------------------------------------+\n");
    357 	printf("| Checkpoint                                             |\n");
    358 	printf("+--------------------------------------------------------+\n");
    359 
    360 	DISP_u64(cp, checkpoint_ver);
    361 	DISP_u64(cp, user_block_count);
    362 	DISP_u64(cp, valid_block_count);
    363 	DISP_u32(cp, rsvd_segment_count);
    364 	DISP_u32(cp, overprov_segment_count);
    365 	DISP_u32(cp, free_segment_count);
    366 
    367 	DISP_u32(cp, alloc_type[CURSEG_HOT_NODE]);
    368 	DISP_u32(cp, alloc_type[CURSEG_WARM_NODE]);
    369 	DISP_u32(cp, alloc_type[CURSEG_COLD_NODE]);
    370 	DISP_u32(cp, cur_node_segno[0]);
    371 	DISP_u32(cp, cur_node_segno[1]);
    372 	DISP_u32(cp, cur_node_segno[2]);
    373 
    374 	DISP_u32(cp, cur_node_blkoff[0]);
    375 	DISP_u32(cp, cur_node_blkoff[1]);
    376 	DISP_u32(cp, cur_node_blkoff[2]);
    377 
    378 
    379 	DISP_u32(cp, alloc_type[CURSEG_HOT_DATA]);
    380 	DISP_u32(cp, alloc_type[CURSEG_WARM_DATA]);
    381 	DISP_u32(cp, alloc_type[CURSEG_COLD_DATA]);
    382 	DISP_u32(cp, cur_data_segno[0]);
    383 	DISP_u32(cp, cur_data_segno[1]);
    384 	DISP_u32(cp, cur_data_segno[2]);
    385 
    386 	DISP_u32(cp, cur_data_blkoff[0]);
    387 	DISP_u32(cp, cur_data_blkoff[1]);
    388 	DISP_u32(cp, cur_data_blkoff[2]);
    389 
    390 	DISP_u32(cp, ckpt_flags);
    391 	DISP_u32(cp, cp_pack_total_block_count);
    392 	DISP_u32(cp, cp_pack_start_sum);
    393 	DISP_u32(cp, valid_node_count);
    394 	DISP_u32(cp, valid_inode_count);
    395 	DISP_u32(cp, next_free_nid);
    396 	DISP_u32(cp, sit_ver_bitmap_bytesize);
    397 	DISP_u32(cp, nat_ver_bitmap_bytesize);
    398 	DISP_u32(cp, checksum_offset);
    399 	DISP_u64(cp, elapsed_time);
    400 
    401 	DISP_u32(cp, sit_nat_version_bitmap[0]);
    402 	printf("\n\n");
    403 }
    404 
    405 void print_cp_state(u32 flag)
    406 {
    407 	MSG(0, "Info: checkpoint state = %x : ", flag);
    408 	if (flag & CP_QUOTA_NEED_FSCK_FLAG)
    409 		MSG(0, "%s", " quota_need_fsck");
    410 	if (flag & CP_LARGE_NAT_BITMAP_FLAG)
    411 		MSG(0, "%s", " large_nat_bitmap");
    412 	if (flag & CP_NOCRC_RECOVERY_FLAG)
    413 		MSG(0, "%s", " allow_nocrc");
    414 	if (flag & CP_TRIMMED_FLAG)
    415 		MSG(0, "%s", " trimmed");
    416 	if (flag & CP_NAT_BITS_FLAG)
    417 		MSG(0, "%s", " nat_bits");
    418 	if (flag & CP_CRC_RECOVERY_FLAG)
    419 		MSG(0, "%s", " crc");
    420 	if (flag & CP_FASTBOOT_FLAG)
    421 		MSG(0, "%s", " fastboot");
    422 	if (flag & CP_FSCK_FLAG)
    423 		MSG(0, "%s", " fsck");
    424 	if (flag & CP_ERROR_FLAG)
    425 		MSG(0, "%s", " error");
    426 	if (flag & CP_COMPACT_SUM_FLAG)
    427 		MSG(0, "%s", " compacted_summary");
    428 	if (flag & CP_ORPHAN_PRESENT_FLAG)
    429 		MSG(0, "%s", " orphan_inodes");
    430 	if (flag & CP_DISABLED_FLAG)
    431 		MSG(0, "%s", " disabled");
    432 	if (flag & CP_UMOUNT_FLAG)
    433 		MSG(0, "%s", " unmount");
    434 	else
    435 		MSG(0, "%s", " sudden-power-off");
    436 	MSG(0, "\n");
    437 }
    438 
    439 void print_sb_state(struct f2fs_super_block *sb)
    440 {
    441 	__le32 f = sb->feature;
    442 	int i;
    443 
    444 	MSG(0, "Info: superblock features = %x : ", f);
    445 	if (f & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) {
    446 		MSG(0, "%s", " encrypt");
    447 	}
    448 	if (f & cpu_to_le32(F2FS_FEATURE_VERITY)) {
    449 		MSG(0, "%s", " verity");
    450 	}
    451 	if (f & cpu_to_le32(F2FS_FEATURE_BLKZONED)) {
    452 		MSG(0, "%s", " blkzoned");
    453 	}
    454 	if (f & cpu_to_le32(F2FS_FEATURE_EXTRA_ATTR)) {
    455 		MSG(0, "%s", " extra_attr");
    456 	}
    457 	if (f & cpu_to_le32(F2FS_FEATURE_PRJQUOTA)) {
    458 		MSG(0, "%s", " project_quota");
    459 	}
    460 	if (f & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM)) {
    461 		MSG(0, "%s", " inode_checksum");
    462 	}
    463 	if (f & cpu_to_le32(F2FS_FEATURE_FLEXIBLE_INLINE_XATTR)) {
    464 		MSG(0, "%s", " flexible_inline_xattr");
    465 	}
    466 	if (f & cpu_to_le32(F2FS_FEATURE_QUOTA_INO)) {
    467 		MSG(0, "%s", " quota_ino");
    468 	}
    469 	if (f & cpu_to_le32(F2FS_FEATURE_INODE_CRTIME)) {
    470 		MSG(0, "%s", " inode_crtime");
    471 	}
    472 	if (f & cpu_to_le32(F2FS_FEATURE_LOST_FOUND)) {
    473 		MSG(0, "%s", " lost_found");
    474 	}
    475 	if (f & cpu_to_le32(F2FS_FEATURE_SB_CHKSUM)) {
    476 		MSG(0, "%s", " sb_checksum");
    477 	}
    478 	MSG(0, "\n");
    479 	MSG(0, "Info: superblock encrypt level = %d, salt = ",
    480 					sb->encryption_level);
    481 	for (i = 0; i < 16; i++)
    482 		MSG(0, "%02x", sb->encrypt_pw_salt[i]);
    483 	MSG(0, "\n");
    484 }
    485 
    486 void update_superblock(struct f2fs_super_block *sb, int sb_mask)
    487 {
    488 	int addr, ret;
    489 	u_int8_t *buf;
    490 	u32 old_crc, new_crc;
    491 
    492 	buf = calloc(BLOCK_SZ, 1);
    493 	ASSERT(buf);
    494 
    495 	if (get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) {
    496 		old_crc = get_sb(crc);
    497 		new_crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, sb,
    498 						SB_CHKSUM_OFFSET);
    499 		set_sb(crc, new_crc);
    500 		MSG(1, "Info: SB CRC is updated (0x%x -> 0x%x)\n",
    501 							old_crc, new_crc);
    502 	}
    503 
    504 	memcpy(buf + F2FS_SUPER_OFFSET, sb, sizeof(*sb));
    505 	for (addr = SB0_ADDR; addr < SB_MAX_ADDR; addr++) {
    506 		if (SB_MASK(addr) & sb_mask) {
    507 			ret = dev_write_block(buf, addr);
    508 			ASSERT(ret >= 0);
    509 		}
    510 	}
    511 
    512 	free(buf);
    513 	DBG(0, "Info: Done to update superblock\n");
    514 }
    515 
    516 static inline int sanity_check_area_boundary(struct f2fs_super_block *sb,
    517 							enum SB_ADDR sb_addr)
    518 {
    519 	u32 segment0_blkaddr = get_sb(segment0_blkaddr);
    520 	u32 cp_blkaddr = get_sb(cp_blkaddr);
    521 	u32 sit_blkaddr = get_sb(sit_blkaddr);
    522 	u32 nat_blkaddr = get_sb(nat_blkaddr);
    523 	u32 ssa_blkaddr = get_sb(ssa_blkaddr);
    524 	u32 main_blkaddr = get_sb(main_blkaddr);
    525 	u32 segment_count_ckpt = get_sb(segment_count_ckpt);
    526 	u32 segment_count_sit = get_sb(segment_count_sit);
    527 	u32 segment_count_nat = get_sb(segment_count_nat);
    528 	u32 segment_count_ssa = get_sb(segment_count_ssa);
    529 	u32 segment_count_main = get_sb(segment_count_main);
    530 	u32 segment_count = get_sb(segment_count);
    531 	u32 log_blocks_per_seg = get_sb(log_blocks_per_seg);
    532 	u64 main_end_blkaddr = main_blkaddr +
    533 				(segment_count_main << log_blocks_per_seg);
    534 	u64 seg_end_blkaddr = segment0_blkaddr +
    535 				(segment_count << log_blocks_per_seg);
    536 
    537 	if (segment0_blkaddr != cp_blkaddr) {
    538 		MSG(0, "\tMismatch segment0(%u) cp_blkaddr(%u)\n",
    539 				segment0_blkaddr, cp_blkaddr);
    540 		return -1;
    541 	}
    542 
    543 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
    544 							sit_blkaddr) {
    545 		MSG(0, "\tWrong CP boundary, start(%u) end(%u) blocks(%u)\n",
    546 			cp_blkaddr, sit_blkaddr,
    547 			segment_count_ckpt << log_blocks_per_seg);
    548 		return -1;
    549 	}
    550 
    551 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
    552 							nat_blkaddr) {
    553 		MSG(0, "\tWrong SIT boundary, start(%u) end(%u) blocks(%u)\n",
    554 			sit_blkaddr, nat_blkaddr,
    555 			segment_count_sit << log_blocks_per_seg);
    556 		return -1;
    557 	}
    558 
    559 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
    560 							ssa_blkaddr) {
    561 		MSG(0, "\tWrong NAT boundary, start(%u) end(%u) blocks(%u)\n",
    562 			nat_blkaddr, ssa_blkaddr,
    563 			segment_count_nat << log_blocks_per_seg);
    564 		return -1;
    565 	}
    566 
    567 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
    568 							main_blkaddr) {
    569 		MSG(0, "\tWrong SSA boundary, start(%u) end(%u) blocks(%u)\n",
    570 			ssa_blkaddr, main_blkaddr,
    571 			segment_count_ssa << log_blocks_per_seg);
    572 		return -1;
    573 	}
    574 
    575 	if (main_end_blkaddr > seg_end_blkaddr) {
    576 		MSG(0, "\tWrong MAIN_AREA, start(%u) end(%u) block(%u)\n",
    577 			main_blkaddr,
    578 			segment0_blkaddr +
    579 				(segment_count << log_blocks_per_seg),
    580 			segment_count_main << log_blocks_per_seg);
    581 		return -1;
    582 	} else if (main_end_blkaddr < seg_end_blkaddr) {
    583 		set_sb(segment_count, (main_end_blkaddr -
    584 				segment0_blkaddr) >> log_blocks_per_seg);
    585 
    586 		update_superblock(sb, SB_MASK(sb_addr));
    587 		MSG(0, "Info: Fix alignment: start(%u) end(%u) block(%u)\n",
    588 			main_blkaddr,
    589 			segment0_blkaddr +
    590 				(segment_count << log_blocks_per_seg),
    591 			segment_count_main << log_blocks_per_seg);
    592 	}
    593 	return 0;
    594 }
    595 
    596 static int verify_sb_chksum(struct f2fs_super_block *sb)
    597 {
    598 	if (SB_CHKSUM_OFFSET != get_sb(checksum_offset)) {
    599 		MSG(0, "\tInvalid SB CRC offset: %u\n",
    600 					get_sb(checksum_offset));
    601 		return -1;
    602 	}
    603 	if (f2fs_crc_valid(get_sb(crc), sb,
    604 			get_sb(checksum_offset))) {
    605 		MSG(0, "\tInvalid SB CRC: 0x%x\n", get_sb(crc));
    606 		return -1;
    607 	}
    608 	return 0;
    609 }
    610 
    611 int sanity_check_raw_super(struct f2fs_super_block *sb, enum SB_ADDR sb_addr)
    612 {
    613 	unsigned int blocksize;
    614 
    615 	if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM) &&
    616 					verify_sb_chksum(sb))
    617 		return -1;
    618 
    619 	if (F2FS_SUPER_MAGIC != get_sb(magic))
    620 		return -1;
    621 
    622 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE)
    623 		return -1;
    624 
    625 	blocksize = 1 << get_sb(log_blocksize);
    626 	if (F2FS_BLKSIZE != blocksize)
    627 		return -1;
    628 
    629 	/* check log blocks per segment */
    630 	if (get_sb(log_blocks_per_seg) != 9)
    631 		return -1;
    632 
    633 	/* Currently, support 512/1024/2048/4096 bytes sector size */
    634 	if (get_sb(log_sectorsize) > F2FS_MAX_LOG_SECTOR_SIZE ||
    635 			get_sb(log_sectorsize) < F2FS_MIN_LOG_SECTOR_SIZE)
    636 		return -1;
    637 
    638 	if (get_sb(log_sectors_per_block) + get_sb(log_sectorsize) !=
    639 						F2FS_MAX_LOG_SECTOR_SIZE)
    640 		return -1;
    641 
    642 	/* check reserved ino info */
    643 	if (get_sb(node_ino) != 1 || get_sb(meta_ino) != 2 ||
    644 					get_sb(root_ino) != 3)
    645 		return -1;
    646 
    647 	/* Check zoned block device feature */
    648 	if (c.devices[0].zoned_model == F2FS_ZONED_HM &&
    649 			!(sb->feature & cpu_to_le32(F2FS_FEATURE_BLKZONED))) {
    650 		MSG(0, "\tMissing zoned block device feature\n");
    651 		return -1;
    652 	}
    653 
    654 	if (get_sb(segment_count) > F2FS_MAX_SEGMENT)
    655 		return -1;
    656 
    657 	if (sanity_check_area_boundary(sb, sb_addr))
    658 		return -1;
    659 	return 0;
    660 }
    661 
    662 int validate_super_block(struct f2fs_sb_info *sbi, enum SB_ADDR sb_addr)
    663 {
    664 	char buf[F2FS_BLKSIZE];
    665 
    666 	sbi->raw_super = malloc(sizeof(struct f2fs_super_block));
    667 	if (!sbi->raw_super)
    668 		return -ENOMEM;
    669 
    670 	if (dev_read_block(buf, sb_addr))
    671 		return -1;
    672 
    673 	memcpy(sbi->raw_super, buf + F2FS_SUPER_OFFSET,
    674 					sizeof(struct f2fs_super_block));
    675 
    676 	if (!sanity_check_raw_super(sbi->raw_super, sb_addr)) {
    677 		/* get kernel version */
    678 		if (c.kd >= 0) {
    679 			dev_read_version(c.version, 0, VERSION_LEN);
    680 			get_kernel_version(c.version);
    681 		} else {
    682 			get_kernel_uname_version(c.version);
    683 		}
    684 
    685 		/* build sb version */
    686 		memcpy(c.sb_version, sbi->raw_super->version, VERSION_LEN);
    687 		get_kernel_version(c.sb_version);
    688 		memcpy(c.init_version, sbi->raw_super->init_version, VERSION_LEN);
    689 		get_kernel_version(c.init_version);
    690 
    691 		MSG(0, "Info: MKFS version\n  \"%s\"\n", c.init_version);
    692 		MSG(0, "Info: FSCK version\n  from \"%s\"\n    to \"%s\"\n",
    693 					c.sb_version, c.version);
    694 		if (memcmp(c.sb_version, c.version, VERSION_LEN)) {
    695 			memcpy(sbi->raw_super->version,
    696 						c.version, VERSION_LEN);
    697 			update_superblock(sbi->raw_super, SB_MASK(sb_addr));
    698 
    699 			c.auto_fix = 0;
    700 			c.fix_on = 1;
    701 		}
    702 		print_sb_state(sbi->raw_super);
    703 		return 0;
    704 	}
    705 
    706 	free(sbi->raw_super);
    707 	sbi->raw_super = NULL;
    708 	MSG(0, "\tCan't find a valid F2FS superblock at 0x%x\n", sb_addr);
    709 
    710 	return -EINVAL;
    711 }
    712 
    713 int init_sb_info(struct f2fs_sb_info *sbi)
    714 {
    715 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
    716 	u64 total_sectors;
    717 	int i;
    718 
    719 	sbi->log_sectors_per_block = get_sb(log_sectors_per_block);
    720 	sbi->log_blocksize = get_sb(log_blocksize);
    721 	sbi->blocksize = 1 << sbi->log_blocksize;
    722 	sbi->log_blocks_per_seg = get_sb(log_blocks_per_seg);
    723 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
    724 	sbi->segs_per_sec = get_sb(segs_per_sec);
    725 	sbi->secs_per_zone = get_sb(secs_per_zone);
    726 	sbi->total_sections = get_sb(section_count);
    727 	sbi->total_node_count = (get_sb(segment_count_nat) / 2) *
    728 				sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
    729 	sbi->root_ino_num = get_sb(root_ino);
    730 	sbi->node_ino_num = get_sb(node_ino);
    731 	sbi->meta_ino_num = get_sb(meta_ino);
    732 	sbi->cur_victim_sec = NULL_SEGNO;
    733 
    734 	for (i = 0; i < MAX_DEVICES; i++) {
    735 		if (!sb->devs[i].path[0])
    736 			break;
    737 
    738 		if (i) {
    739 			c.devices[i].path = strdup((char *)sb->devs[i].path);
    740 			if (get_device_info(i))
    741 				ASSERT(0);
    742 		} else {
    743 			ASSERT(!strcmp((char *)sb->devs[i].path,
    744 						(char *)c.devices[i].path));
    745 		}
    746 
    747 		c.devices[i].total_segments =
    748 			le32_to_cpu(sb->devs[i].total_segments);
    749 		if (i)
    750 			c.devices[i].start_blkaddr =
    751 				c.devices[i - 1].end_blkaddr + 1;
    752 		c.devices[i].end_blkaddr = c.devices[i].start_blkaddr +
    753 			c.devices[i].total_segments *
    754 			c.blks_per_seg - 1;
    755 		if (i == 0)
    756 			c.devices[i].end_blkaddr += get_sb(segment0_blkaddr);
    757 
    758 		c.ndevs = i + 1;
    759 		MSG(0, "Info: Device[%d] : %s blkaddr = %"PRIx64"--%"PRIx64"\n",
    760 				i, c.devices[i].path,
    761 				c.devices[i].start_blkaddr,
    762 				c.devices[i].end_blkaddr);
    763 	}
    764 
    765 	total_sectors = get_sb(block_count) << sbi->log_sectors_per_block;
    766 	MSG(0, "Info: total FS sectors = %"PRIu64" (%"PRIu64" MB)\n",
    767 				total_sectors, total_sectors >>
    768 						(20 - get_sb(log_sectorsize)));
    769 	return 0;
    770 }
    771 
    772 void *validate_checkpoint(struct f2fs_sb_info *sbi, block_t cp_addr,
    773 				unsigned long long *version)
    774 {
    775 	void *cp_page_1, *cp_page_2;
    776 	struct f2fs_checkpoint *cp;
    777 	unsigned long blk_size = sbi->blocksize;
    778 	unsigned long long cur_version = 0, pre_version = 0;
    779 	unsigned int crc = 0;
    780 	size_t crc_offset;
    781 
    782 	/* Read the 1st cp block in this CP pack */
    783 	cp_page_1 = malloc(PAGE_SIZE);
    784 	ASSERT(cp_page_1);
    785 
    786 	if (dev_read_block(cp_page_1, cp_addr) < 0)
    787 		goto invalid_cp1;
    788 
    789 	cp = (struct f2fs_checkpoint *)cp_page_1;
    790 	crc_offset = get_cp(checksum_offset);
    791 	if (crc_offset > (blk_size - sizeof(__le32)))
    792 		goto invalid_cp1;
    793 
    794 	crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + crc_offset));
    795 	if (f2fs_crc_valid(crc, cp, crc_offset))
    796 		goto invalid_cp1;
    797 
    798 	if (get_cp(cp_pack_total_block_count) > sbi->blocks_per_seg)
    799 		goto invalid_cp1;
    800 
    801 	pre_version = get_cp(checkpoint_ver);
    802 
    803 	/* Read the 2nd cp block in this CP pack */
    804 	cp_page_2 = malloc(PAGE_SIZE);
    805 	ASSERT(cp_page_2);
    806 
    807 	cp_addr += get_cp(cp_pack_total_block_count) - 1;
    808 
    809 	if (dev_read_block(cp_page_2, cp_addr) < 0)
    810 		goto invalid_cp2;
    811 
    812 	cp = (struct f2fs_checkpoint *)cp_page_2;
    813 	crc_offset = get_cp(checksum_offset);
    814 	if (crc_offset > (blk_size - sizeof(__le32)))
    815 		goto invalid_cp2;
    816 
    817 	crc = le32_to_cpu(*(__le32 *)((unsigned char *)cp + crc_offset));
    818 	if (f2fs_crc_valid(crc, cp, crc_offset))
    819 		goto invalid_cp2;
    820 
    821 	cur_version = get_cp(checkpoint_ver);
    822 
    823 	if (cur_version == pre_version) {
    824 		*version = cur_version;
    825 		free(cp_page_2);
    826 		return cp_page_1;
    827 	}
    828 
    829 invalid_cp2:
    830 	free(cp_page_2);
    831 invalid_cp1:
    832 	free(cp_page_1);
    833 	return NULL;
    834 }
    835 
    836 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
    837 {
    838 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
    839 	void *cp1, *cp2, *cur_page;
    840 	unsigned long blk_size = sbi->blocksize;
    841 	unsigned long long cp1_version = 0, cp2_version = 0, version;
    842 	unsigned long long cp_start_blk_no;
    843 	unsigned int cp_payload, cp_blks;
    844 	int ret;
    845 
    846 	cp_payload = get_sb(cp_payload);
    847 	if (cp_payload > F2FS_BLK_ALIGN(MAX_SIT_BITMAP_SIZE))
    848 		return -EINVAL;
    849 
    850 	cp_blks = 1 + cp_payload;
    851 	sbi->ckpt = malloc(cp_blks * blk_size);
    852 	if (!sbi->ckpt)
    853 		return -ENOMEM;
    854 	/*
    855 	 * Finding out valid cp block involves read both
    856 	 * sets( cp pack1 and cp pack 2)
    857 	 */
    858 	cp_start_blk_no = get_sb(cp_blkaddr);
    859 	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
    860 
    861 	/* The second checkpoint pack should start at the next segment */
    862 	cp_start_blk_no += 1 << get_sb(log_blocks_per_seg);
    863 	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
    864 
    865 	if (cp1 && cp2) {
    866 		if (ver_after(cp2_version, cp1_version)) {
    867 			cur_page = cp2;
    868 			sbi->cur_cp = 2;
    869 			version = cp2_version;
    870 		} else {
    871 			cur_page = cp1;
    872 			sbi->cur_cp = 1;
    873 			version = cp1_version;
    874 		}
    875 	} else if (cp1) {
    876 		cur_page = cp1;
    877 		sbi->cur_cp = 1;
    878 		version = cp1_version;
    879 	} else if (cp2) {
    880 		cur_page = cp2;
    881 		sbi->cur_cp = 2;
    882 		version = cp2_version;
    883 	} else
    884 		goto fail_no_cp;
    885 
    886 	MSG(0, "Info: CKPT version = %llx\n", version);
    887 
    888 	memcpy(sbi->ckpt, cur_page, blk_size);
    889 
    890 	if (cp_blks > 1) {
    891 		unsigned int i;
    892 		unsigned long long cp_blk_no;
    893 
    894 		cp_blk_no = get_sb(cp_blkaddr);
    895 		if (cur_page == cp2)
    896 			cp_blk_no += 1 << get_sb(log_blocks_per_seg);
    897 
    898 		/* copy sit bitmap */
    899 		for (i = 1; i < cp_blks; i++) {
    900 			unsigned char *ckpt = (unsigned char *)sbi->ckpt;
    901 			ret = dev_read_block(cur_page, cp_blk_no + i);
    902 			ASSERT(ret >= 0);
    903 			memcpy(ckpt + i * blk_size, cur_page, blk_size);
    904 		}
    905 	}
    906 	if (cp1)
    907 		free(cp1);
    908 	if (cp2)
    909 		free(cp2);
    910 	return 0;
    911 
    912 fail_no_cp:
    913 	free(sbi->ckpt);
    914 	sbi->ckpt = NULL;
    915 	return -EINVAL;
    916 }
    917 
    918 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
    919 {
    920 	unsigned int total, fsmeta;
    921 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
    922 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
    923 	unsigned int ovp_segments, reserved_segments;
    924 	unsigned int main_segs, blocks_per_seg;
    925 	unsigned int sit_segs, nat_segs;
    926 	unsigned int sit_bitmap_size, nat_bitmap_size;
    927 	unsigned int log_blocks_per_seg;
    928 	unsigned int segment_count_main;
    929 	unsigned int cp_pack_start_sum, cp_payload;
    930 	block_t user_block_count;
    931 	int i;
    932 
    933 	total = get_sb(segment_count);
    934 	fsmeta = get_sb(segment_count_ckpt);
    935 	sit_segs = get_sb(segment_count_sit);
    936 	fsmeta += sit_segs;
    937 	nat_segs = get_sb(segment_count_nat);
    938 	fsmeta += nat_segs;
    939 	fsmeta += get_cp(rsvd_segment_count);
    940 	fsmeta += get_sb(segment_count_ssa);
    941 
    942 	if (fsmeta >= total)
    943 		return 1;
    944 
    945 	ovp_segments = get_cp(overprov_segment_count);
    946 	reserved_segments = get_cp(rsvd_segment_count);
    947 
    948 	if (fsmeta < F2FS_MIN_SEGMENT || ovp_segments == 0 ||
    949 					reserved_segments == 0) {
    950 		MSG(0, "\tWrong layout: check mkfs.f2fs version\n");
    951 		return 1;
    952 	}
    953 
    954 	user_block_count = get_cp(user_block_count);
    955 	segment_count_main = get_sb(segment_count_main);
    956 	log_blocks_per_seg = get_sb(log_blocks_per_seg);
    957 	if (!user_block_count || user_block_count >=
    958 			segment_count_main << log_blocks_per_seg) {
    959 		MSG(0, "\tWrong user_block_count(%u)\n", user_block_count);
    960 		return 1;
    961 	}
    962 
    963 	main_segs = get_sb(segment_count_main);
    964 	blocks_per_seg = sbi->blocks_per_seg;
    965 
    966 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
    967 		if (get_cp(cur_node_segno[i]) >= main_segs ||
    968 			get_cp(cur_node_blkoff[i]) >= blocks_per_seg)
    969 			return 1;
    970 	}
    971 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
    972 		if (get_cp(cur_data_segno[i]) >= main_segs ||
    973 			get_cp(cur_data_blkoff[i]) >= blocks_per_seg)
    974 			return 1;
    975 	}
    976 
    977 	sit_bitmap_size = get_cp(sit_ver_bitmap_bytesize);
    978 	nat_bitmap_size = get_cp(nat_ver_bitmap_bytesize);
    979 
    980 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
    981 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
    982 		MSG(0, "\tWrong bitmap size: sit(%u), nat(%u)\n",
    983 				sit_bitmap_size, nat_bitmap_size);
    984 		return 1;
    985 	}
    986 
    987 	cp_pack_start_sum = __start_sum_addr(sbi);
    988 	cp_payload = __cp_payload(sbi);
    989 	if (cp_pack_start_sum < cp_payload + 1 ||
    990 		cp_pack_start_sum > blocks_per_seg - 1 -
    991 			NR_CURSEG_TYPE) {
    992 		MSG(0, "\tWrong cp_pack_start_sum(%u) or cp_payload(%u)\n",
    993 			cp_pack_start_sum, cp_payload);
    994 		if ((get_sb(feature) & F2FS_FEATURE_SB_CHKSUM))
    995 			return 1;
    996 		set_sb(cp_payload, cp_pack_start_sum - 1);
    997 		update_superblock(sb, SB_MASK_ALL);
    998 	}
    999 
   1000 	return 0;
   1001 }
   1002 
   1003 pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start, int *pack)
   1004 {
   1005 	struct f2fs_nm_info *nm_i = NM_I(sbi);
   1006 	pgoff_t block_off;
   1007 	pgoff_t block_addr;
   1008 	int seg_off;
   1009 
   1010 	block_off = NAT_BLOCK_OFFSET(start);
   1011 	seg_off = block_off >> sbi->log_blocks_per_seg;
   1012 
   1013 	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
   1014 			(seg_off << sbi->log_blocks_per_seg << 1) +
   1015 			(block_off & ((1 << sbi->log_blocks_per_seg) -1)));
   1016 	if (pack)
   1017 		*pack = 1;
   1018 
   1019 	if (f2fs_test_bit(block_off, nm_i->nat_bitmap)) {
   1020 		block_addr += sbi->blocks_per_seg;
   1021 		if (pack)
   1022 			*pack = 2;
   1023 	}
   1024 
   1025 	return block_addr;
   1026 }
   1027 
   1028 static int f2fs_init_nid_bitmap(struct f2fs_sb_info *sbi)
   1029 {
   1030 	struct f2fs_nm_info *nm_i = NM_I(sbi);
   1031 	int nid_bitmap_size = (nm_i->max_nid + BITS_PER_BYTE - 1) / BITS_PER_BYTE;
   1032 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
   1033 	struct f2fs_summary_block *sum = curseg->sum_blk;
   1034 	struct f2fs_journal *journal = &sum->journal;
   1035 	struct f2fs_nat_block *nat_block;
   1036 	block_t start_blk;
   1037 	nid_t nid;
   1038 	int i;
   1039 
   1040 	if (!(c.func == SLOAD || c.func == FSCK))
   1041 		return 0;
   1042 
   1043 	nm_i->nid_bitmap = (char *)calloc(nid_bitmap_size, 1);
   1044 	if (!nm_i->nid_bitmap)
   1045 		return -ENOMEM;
   1046 
   1047 	/* arbitrarily set 0 bit */
   1048 	f2fs_set_bit(0, nm_i->nid_bitmap);
   1049 
   1050 	nat_block = malloc(F2FS_BLKSIZE);
   1051 	if (!nat_block) {
   1052 		free(nm_i->nid_bitmap);
   1053 		return -ENOMEM;
   1054 	}
   1055 
   1056 	for (nid = 0; nid < nm_i->max_nid; nid++) {
   1057 		if (!(nid % NAT_ENTRY_PER_BLOCK)) {
   1058 			int ret;
   1059 
   1060 			start_blk = current_nat_addr(sbi, nid, NULL);
   1061 			ret = dev_read_block(nat_block, start_blk);
   1062 			ASSERT(ret >= 0);
   1063 		}
   1064 
   1065 		if (nat_block->entries[nid % NAT_ENTRY_PER_BLOCK].block_addr)
   1066 			f2fs_set_bit(nid, nm_i->nid_bitmap);
   1067 	}
   1068 
   1069 	if (nats_in_cursum(journal) > NAT_JOURNAL_ENTRIES) {
   1070 		MSG(0, "\tError: f2fs_init_nid_bitmap truncate n_nats(%u) to "
   1071 			"NAT_JOURNAL_ENTRIES(%lu)\n",
   1072 			nats_in_cursum(journal), NAT_JOURNAL_ENTRIES);
   1073 		journal->n_nats = cpu_to_le16(NAT_JOURNAL_ENTRIES);
   1074 	}
   1075 
   1076 	for (i = 0; i < nats_in_cursum(journal); i++) {
   1077 		block_t addr;
   1078 
   1079 		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
   1080 		if (!IS_VALID_BLK_ADDR(sbi, addr)) {
   1081 			MSG(0, "\tError: f2fs_init_nid_bitmap: addr(%u) is invalid!!!\n", addr);
   1082 			journal->n_nats = cpu_to_le16(i);
   1083 			continue;
   1084 		}
   1085 
   1086 		nid = le32_to_cpu(nid_in_journal(journal, i));
   1087 		if (!IS_VALID_NID(sbi, nid)) {
   1088 			MSG(0, "\tError: f2fs_init_nid_bitmap: nid(%u) is invalid!!!\n", nid);
   1089 			journal->n_nats = cpu_to_le16(i);
   1090 			continue;
   1091 		}
   1092 		if (addr != NULL_ADDR)
   1093 			f2fs_set_bit(nid, nm_i->nid_bitmap);
   1094 	}
   1095 	free(nat_block);
   1096 	return 0;
   1097 }
   1098 
   1099 u32 update_nat_bits_flags(struct f2fs_super_block *sb,
   1100 				struct f2fs_checkpoint *cp, u32 flags)
   1101 {
   1102 	u_int32_t nat_bits_bytes, nat_bits_blocks;
   1103 
   1104 	nat_bits_bytes = get_sb(segment_count_nat) << 5;
   1105 	nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
   1106 						F2FS_BLKSIZE - 1);
   1107 	if (get_cp(cp_pack_total_block_count) <=
   1108 			(1 << get_sb(log_blocks_per_seg)) - nat_bits_blocks)
   1109 		flags |= CP_NAT_BITS_FLAG;
   1110 	else
   1111 		flags &= (~CP_NAT_BITS_FLAG);
   1112 
   1113 	return flags;
   1114 }
   1115 
   1116 /* should call flush_journal_entries() bfore this */
   1117 void write_nat_bits(struct f2fs_sb_info *sbi,
   1118 	struct f2fs_super_block *sb, struct f2fs_checkpoint *cp, int set)
   1119 {
   1120 	struct f2fs_nm_info *nm_i = NM_I(sbi);
   1121 	u_int32_t nat_blocks = get_sb(segment_count_nat) <<
   1122 				(get_sb(log_blocks_per_seg) - 1);
   1123 	u_int32_t nat_bits_bytes = nat_blocks >> 3;
   1124 	u_int32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) +
   1125 					8 + F2FS_BLKSIZE - 1);
   1126 	unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits;
   1127 	struct f2fs_nat_block *nat_block;
   1128 	u_int32_t i, j;
   1129 	block_t blkaddr;
   1130 	int ret;
   1131 
   1132 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
   1133 	ASSERT(nat_bits);
   1134 
   1135 	nat_block = malloc(F2FS_BLKSIZE);
   1136 	ASSERT(nat_block);
   1137 
   1138 	full_nat_bits = nat_bits + 8;
   1139 	empty_nat_bits = full_nat_bits + nat_bits_bytes;
   1140 
   1141 	memset(full_nat_bits, 0, nat_bits_bytes);
   1142 	memset(empty_nat_bits, 0, nat_bits_bytes);
   1143 
   1144 	for (i = 0; i < nat_blocks; i++) {
   1145 		int seg_off = i >> get_sb(log_blocks_per_seg);
   1146 		int valid = 0;
   1147 
   1148 		blkaddr = (pgoff_t)(get_sb(nat_blkaddr) +
   1149 				(seg_off << get_sb(log_blocks_per_seg) << 1) +
   1150 				(i & ((1 << get_sb(log_blocks_per_seg)) - 1)));
   1151 
   1152 		/*
   1153 		 * Should consider new nat_blocks is larger than old
   1154 		 * nm_i->nat_blocks, since nm_i->nat_bitmap is based on
   1155 		 * old one.
   1156 		 */
   1157 		if (i < nm_i->nat_blocks && f2fs_test_bit(i, nm_i->nat_bitmap))
   1158 			blkaddr += (1 << get_sb(log_blocks_per_seg));
   1159 
   1160 		ret = dev_read_block(nat_block, blkaddr);
   1161 		ASSERT(ret >= 0);
   1162 
   1163 		for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) {
   1164 			if ((i == 0 && j == 0) ||
   1165 				nat_block->entries[j].block_addr != NULL_ADDR)
   1166 				valid++;
   1167 		}
   1168 		if (valid == 0)
   1169 			test_and_set_bit_le(i, empty_nat_bits);
   1170 		else if (valid == NAT_ENTRY_PER_BLOCK)
   1171 			test_and_set_bit_le(i, full_nat_bits);
   1172 	}
   1173 	*(__le64 *)nat_bits = get_cp_crc(cp);
   1174 	free(nat_block);
   1175 
   1176 	blkaddr = get_sb(segment0_blkaddr) + (set <<
   1177 				get_sb(log_blocks_per_seg)) - nat_bits_blocks;
   1178 
   1179 	DBG(1, "\tWriting NAT bits pages, at offset 0x%08x\n", blkaddr);
   1180 
   1181 	for (i = 0; i < nat_bits_blocks; i++) {
   1182 		if (dev_write_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i))
   1183 			ASSERT_MSG("\tError: write NAT bits to disk!!!\n");
   1184 	}
   1185 	MSG(0, "Info: Write valid nat_bits in checkpoint\n");
   1186 
   1187 	free(nat_bits);
   1188 }
   1189 
   1190 static int check_nat_bits(struct f2fs_sb_info *sbi,
   1191 	struct f2fs_super_block *sb, struct f2fs_checkpoint *cp)
   1192 {
   1193 	struct f2fs_nm_info *nm_i = NM_I(sbi);
   1194 	u_int32_t nat_blocks = get_sb(segment_count_nat) <<
   1195 				(get_sb(log_blocks_per_seg) - 1);
   1196 	u_int32_t nat_bits_bytes = nat_blocks >> 3;
   1197 	u_int32_t nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) +
   1198 					8 + F2FS_BLKSIZE - 1);
   1199 	unsigned char *nat_bits, *full_nat_bits, *empty_nat_bits;
   1200 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
   1201 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
   1202 	u_int32_t i, j;
   1203 	block_t blkaddr;
   1204 	int err = 0;
   1205 
   1206 	nat_bits = calloc(F2FS_BLKSIZE, nat_bits_blocks);
   1207 	ASSERT(nat_bits);
   1208 
   1209 	full_nat_bits = nat_bits + 8;
   1210 	empty_nat_bits = full_nat_bits + nat_bits_bytes;
   1211 
   1212 	blkaddr = get_sb(segment0_blkaddr) + (sbi->cur_cp <<
   1213 				get_sb(log_blocks_per_seg)) - nat_bits_blocks;
   1214 
   1215 	for (i = 0; i < nat_bits_blocks; i++) {
   1216 		if (dev_read_block(nat_bits + i * F2FS_BLKSIZE, blkaddr + i))
   1217 			ASSERT_MSG("\tError: read NAT bits to disk!!!\n");
   1218 	}
   1219 
   1220 	if (*(__le64 *)nat_bits != get_cp_crc(cp) || nats_in_cursum(journal)) {
   1221 		/*
   1222 		 * if there is a journal, f2fs was not shutdown cleanly. Let's
   1223 		 * flush them with nat_bits.
   1224 		 */
   1225 		if (c.fix_on)
   1226 			err = -1;
   1227 		/* Otherwise, kernel will disable nat_bits */
   1228 		goto out;
   1229 	}
   1230 
   1231 	for (i = 0; i < nat_blocks; i++) {
   1232 		u_int32_t start_nid = i * NAT_ENTRY_PER_BLOCK;
   1233 		u_int32_t valid = 0;
   1234 		int empty = test_bit_le(i, empty_nat_bits);
   1235 		int full = test_bit_le(i, full_nat_bits);
   1236 
   1237 		for (j = 0; j < NAT_ENTRY_PER_BLOCK; j++) {
   1238 			if (f2fs_test_bit(start_nid + j, nm_i->nid_bitmap))
   1239 				valid++;
   1240 		}
   1241 		if (valid == 0) {
   1242 			if (!empty || full) {
   1243 				err = -1;
   1244 				goto out;
   1245 			}
   1246 		} else if (valid == NAT_ENTRY_PER_BLOCK) {
   1247 			if (empty || !full) {
   1248 				err = -1;
   1249 				goto out;
   1250 			}
   1251 		} else {
   1252 			if (empty || full) {
   1253 				err = -1;
   1254 				goto out;
   1255 			}
   1256 		}
   1257 	}
   1258 out:
   1259 	free(nat_bits);
   1260 	if (!err) {
   1261 		MSG(0, "Info: Checked valid nat_bits in checkpoint\n");
   1262 	} else {
   1263 		c.bug_nat_bits = 1;
   1264 		MSG(0, "Info: Corrupted valid nat_bits in checkpoint\n");
   1265 	}
   1266 	return err;
   1267 }
   1268 
   1269 int init_node_manager(struct f2fs_sb_info *sbi)
   1270 {
   1271 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
   1272 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
   1273 	struct f2fs_nm_info *nm_i = NM_I(sbi);
   1274 	unsigned char *version_bitmap;
   1275 	unsigned int nat_segs;
   1276 
   1277 	nm_i->nat_blkaddr = get_sb(nat_blkaddr);
   1278 
   1279 	/* segment_count_nat includes pair segment so divide to 2. */
   1280 	nat_segs = get_sb(segment_count_nat) >> 1;
   1281 	nm_i->nat_blocks = nat_segs << get_sb(log_blocks_per_seg);
   1282 	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
   1283 	nm_i->fcnt = 0;
   1284 	nm_i->nat_cnt = 0;
   1285 	nm_i->init_scan_nid = get_cp(next_free_nid);
   1286 	nm_i->next_scan_nid = get_cp(next_free_nid);
   1287 
   1288 	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
   1289 
   1290 	nm_i->nat_bitmap = malloc(nm_i->bitmap_size);
   1291 	if (!nm_i->nat_bitmap)
   1292 		return -ENOMEM;
   1293 	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
   1294 	if (!version_bitmap)
   1295 		return -EFAULT;
   1296 
   1297 	/* copy version bitmap */
   1298 	memcpy(nm_i->nat_bitmap, version_bitmap, nm_i->bitmap_size);
   1299 	return f2fs_init_nid_bitmap(sbi);
   1300 }
   1301 
   1302 int build_node_manager(struct f2fs_sb_info *sbi)
   1303 {
   1304 	int err;
   1305 	sbi->nm_info = malloc(sizeof(struct f2fs_nm_info));
   1306 	if (!sbi->nm_info)
   1307 		return -ENOMEM;
   1308 
   1309 	err = init_node_manager(sbi);
   1310 	if (err)
   1311 		return err;
   1312 
   1313 	return 0;
   1314 }
   1315 
   1316 int build_sit_info(struct f2fs_sb_info *sbi)
   1317 {
   1318 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
   1319 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
   1320 	struct sit_info *sit_i;
   1321 	unsigned int sit_segs, start;
   1322 	char *src_bitmap, *dst_bitmap;
   1323 	unsigned int bitmap_size;
   1324 
   1325 	sit_i = malloc(sizeof(struct sit_info));
   1326 	if (!sit_i) {
   1327 		MSG(1, "\tError: Malloc failed for build_sit_info!\n");
   1328 		return -ENOMEM;
   1329 	}
   1330 
   1331 	SM_I(sbi)->sit_info = sit_i;
   1332 
   1333 	sit_i->sentries = calloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry), 1);
   1334 	if (!sit_i->sentries) {
   1335 		MSG(1, "\tError: Calloc failed for build_sit_info!\n");
   1336 		goto free_sit_info;
   1337 	}
   1338 
   1339 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
   1340 		sit_i->sentries[start].cur_valid_map
   1341 			= calloc(SIT_VBLOCK_MAP_SIZE, 1);
   1342 		if (!sit_i->sentries[start].cur_valid_map) {
   1343 			MSG(1, "\tError: Calloc failed for build_sit_info!!\n");
   1344 			goto free_validity_maps;
   1345 		}
   1346 	}
   1347 
   1348 	sit_segs = get_sb(segment_count_sit) >> 1;
   1349 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
   1350 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
   1351 
   1352 	dst_bitmap = malloc(bitmap_size);
   1353 	if (!dst_bitmap) {
   1354 		MSG(1, "\tError: Malloc failed for build_sit_info!!\n");
   1355 		goto free_validity_maps;
   1356 	}
   1357 
   1358 	memcpy(dst_bitmap, src_bitmap, bitmap_size);
   1359 
   1360 	sit_i->sit_base_addr = get_sb(sit_blkaddr);
   1361 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
   1362 	sit_i->written_valid_blocks = get_cp(valid_block_count);
   1363 	sit_i->sit_bitmap = dst_bitmap;
   1364 	sit_i->bitmap_size = bitmap_size;
   1365 	sit_i->dirty_sentries = 0;
   1366 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
   1367 	sit_i->elapsed_time = get_cp(elapsed_time);
   1368 	return 0;
   1369 
   1370 free_validity_maps:
   1371 	for (--start ; start >= 0; --start)
   1372 		free(sit_i->sentries[start].cur_valid_map);
   1373 	free(sit_i->sentries);
   1374 
   1375 free_sit_info:
   1376 	free(sit_i);
   1377 
   1378 	return -ENOMEM;
   1379 }
   1380 
   1381 void reset_curseg(struct f2fs_sb_info *sbi, int type)
   1382 {
   1383 	struct curseg_info *curseg = CURSEG_I(sbi, type);
   1384 	struct summary_footer *sum_footer;
   1385 	struct seg_entry *se;
   1386 
   1387 	sum_footer = &(curseg->sum_blk->footer);
   1388 	memset(sum_footer, 0, sizeof(struct summary_footer));
   1389 	if (IS_DATASEG(type))
   1390 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
   1391 	if (IS_NODESEG(type))
   1392 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
   1393 	se = get_seg_entry(sbi, curseg->segno);
   1394 	se->type = type;
   1395 	se->dirty = 1;
   1396 }
   1397 
   1398 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
   1399 {
   1400 	struct curseg_info *curseg;
   1401 	unsigned int i, j, offset;
   1402 	block_t start;
   1403 	char *kaddr;
   1404 	int ret;
   1405 
   1406 	start = start_sum_block(sbi);
   1407 
   1408 	kaddr = (char *)malloc(PAGE_SIZE);
   1409 	ASSERT(kaddr);
   1410 
   1411 	ret = dev_read_block(kaddr, start++);
   1412 	ASSERT(ret >= 0);
   1413 
   1414 	curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
   1415 	memcpy(&curseg->sum_blk->journal.n_nats, kaddr, SUM_JOURNAL_SIZE);
   1416 
   1417 	curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
   1418 	memcpy(&curseg->sum_blk->journal.n_sits, kaddr + SUM_JOURNAL_SIZE,
   1419 						SUM_JOURNAL_SIZE);
   1420 
   1421 	offset = 2 * SUM_JOURNAL_SIZE;
   1422 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
   1423 		unsigned short blk_off;
   1424 		struct curseg_info *curseg = CURSEG_I(sbi, i);
   1425 
   1426 		reset_curseg(sbi, i);
   1427 
   1428 		if (curseg->alloc_type == SSR)
   1429 			blk_off = sbi->blocks_per_seg;
   1430 		else
   1431 			blk_off = curseg->next_blkoff;
   1432 
   1433 		ASSERT(blk_off <= ENTRIES_IN_SUM);
   1434 
   1435 		for (j = 0; j < blk_off; j++) {
   1436 			struct f2fs_summary *s;
   1437 			s = (struct f2fs_summary *)(kaddr + offset);
   1438 			curseg->sum_blk->entries[j] = *s;
   1439 			offset += SUMMARY_SIZE;
   1440 			if (offset + SUMMARY_SIZE <=
   1441 					PAGE_CACHE_SIZE - SUM_FOOTER_SIZE)
   1442 				continue;
   1443 			memset(kaddr, 0, PAGE_SIZE);
   1444 			ret = dev_read_block(kaddr, start++);
   1445 			ASSERT(ret >= 0);
   1446 			offset = 0;
   1447 		}
   1448 	}
   1449 	free(kaddr);
   1450 }
   1451 
   1452 static void restore_node_summary(struct f2fs_sb_info *sbi,
   1453 		unsigned int segno, struct f2fs_summary_block *sum_blk)
   1454 {
   1455 	struct f2fs_node *node_blk;
   1456 	struct f2fs_summary *sum_entry;
   1457 	block_t addr;
   1458 	unsigned int i;
   1459 	int ret;
   1460 
   1461 	node_blk = malloc(F2FS_BLKSIZE);
   1462 	ASSERT(node_blk);
   1463 
   1464 	/* scan the node segment */
   1465 	addr = START_BLOCK(sbi, segno);
   1466 	sum_entry = &sum_blk->entries[0];
   1467 
   1468 	for (i = 0; i < sbi->blocks_per_seg; i++, sum_entry++) {
   1469 		ret = dev_read_block(node_blk, addr);
   1470 		ASSERT(ret >= 0);
   1471 		sum_entry->nid = node_blk->footer.nid;
   1472 		addr++;
   1473 	}
   1474 	free(node_blk);
   1475 }
   1476 
   1477 static void read_normal_summaries(struct f2fs_sb_info *sbi, int type)
   1478 {
   1479 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
   1480 	struct f2fs_summary_block *sum_blk;
   1481 	struct curseg_info *curseg;
   1482 	unsigned int segno = 0;
   1483 	block_t blk_addr = 0;
   1484 	int ret;
   1485 
   1486 	if (IS_DATASEG(type)) {
   1487 		segno = get_cp(cur_data_segno[type]);
   1488 		if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
   1489 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
   1490 		else
   1491 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
   1492 	} else {
   1493 		segno = get_cp(cur_node_segno[type - CURSEG_HOT_NODE]);
   1494 		if (is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
   1495 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
   1496 							type - CURSEG_HOT_NODE);
   1497 		else
   1498 			blk_addr = GET_SUM_BLKADDR(sbi, segno);
   1499 	}
   1500 
   1501 	sum_blk = (struct f2fs_summary_block *)malloc(PAGE_SIZE);
   1502 	ASSERT(sum_blk);
   1503 
   1504 	ret = dev_read_block(sum_blk, blk_addr);
   1505 	ASSERT(ret >= 0);
   1506 
   1507 	if (IS_NODESEG(type) && !is_set_ckpt_flags(cp, CP_UMOUNT_FLAG))
   1508 		restore_node_summary(sbi, segno, sum_blk);
   1509 
   1510 	curseg = CURSEG_I(sbi, type);
   1511 	memcpy(curseg->sum_blk, sum_blk, PAGE_CACHE_SIZE);
   1512 	reset_curseg(sbi, type);
   1513 	free(sum_blk);
   1514 }
   1515 
   1516 void update_sum_entry(struct f2fs_sb_info *sbi, block_t blk_addr,
   1517 					struct f2fs_summary *sum)
   1518 {
   1519 	struct f2fs_summary_block *sum_blk;
   1520 	u32 segno, offset;
   1521 	int type, ret;
   1522 	struct seg_entry *se;
   1523 
   1524 	segno = GET_SEGNO(sbi, blk_addr);
   1525 	offset = OFFSET_IN_SEG(sbi, blk_addr);
   1526 
   1527 	se = get_seg_entry(sbi, segno);
   1528 
   1529 	sum_blk = get_sum_block(sbi, segno, &type);
   1530 	memcpy(&sum_blk->entries[offset], sum, sizeof(*sum));
   1531 	sum_blk->footer.entry_type = IS_NODESEG(se->type) ? SUM_TYPE_NODE :
   1532 							SUM_TYPE_DATA;
   1533 
   1534 	/* write SSA all the time */
   1535 	ret = dev_write_block(sum_blk, GET_SUM_BLKADDR(sbi, segno));
   1536 	ASSERT(ret >= 0);
   1537 
   1538 	if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
   1539 					type == SEG_TYPE_MAX)
   1540 		free(sum_blk);
   1541 }
   1542 
   1543 static void restore_curseg_summaries(struct f2fs_sb_info *sbi)
   1544 {
   1545 	int type = CURSEG_HOT_DATA;
   1546 
   1547 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
   1548 		read_compacted_summaries(sbi);
   1549 		type = CURSEG_HOT_NODE;
   1550 	}
   1551 
   1552 	for (; type <= CURSEG_COLD_NODE; type++)
   1553 		read_normal_summaries(sbi, type);
   1554 }
   1555 
   1556 static int build_curseg(struct f2fs_sb_info *sbi)
   1557 {
   1558 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
   1559 	struct curseg_info *array;
   1560 	unsigned short blk_off;
   1561 	unsigned int segno;
   1562 	int i;
   1563 
   1564 	array = malloc(sizeof(*array) * NR_CURSEG_TYPE);
   1565 	if (!array) {
   1566 		MSG(1, "\tError: Malloc failed for build_curseg!\n");
   1567 		return -ENOMEM;
   1568 	}
   1569 
   1570 	SM_I(sbi)->curseg_array = array;
   1571 
   1572 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
   1573 		array[i].sum_blk = malloc(PAGE_CACHE_SIZE);
   1574 		if (!array[i].sum_blk) {
   1575 			MSG(1, "\tError: Malloc failed for build_curseg!!\n");
   1576 			goto seg_cleanup;
   1577 		}
   1578 
   1579 		if (i <= CURSEG_COLD_DATA) {
   1580 			blk_off = get_cp(cur_data_blkoff[i]);
   1581 			segno = get_cp(cur_data_segno[i]);
   1582 		}
   1583 		if (i > CURSEG_COLD_DATA) {
   1584 			blk_off = get_cp(cur_node_blkoff[i - CURSEG_HOT_NODE]);
   1585 			segno = get_cp(cur_node_segno[i - CURSEG_HOT_NODE]);
   1586 		}
   1587 		ASSERT(segno < TOTAL_SEGS(sbi));
   1588 		ASSERT(blk_off < DEFAULT_BLOCKS_PER_SEGMENT);
   1589 
   1590 		array[i].segno = segno;
   1591 		array[i].zone = GET_ZONENO_FROM_SEGNO(sbi, segno);
   1592 		array[i].next_segno = NULL_SEGNO;
   1593 		array[i].next_blkoff = blk_off;
   1594 		array[i].alloc_type = cp->alloc_type[i];
   1595 	}
   1596 	restore_curseg_summaries(sbi);
   1597 	return 0;
   1598 
   1599 seg_cleanup:
   1600 	for(--i ; i >=0; --i)
   1601 		free(array[i].sum_blk);
   1602 	free(array);
   1603 
   1604 	return -ENOMEM;
   1605 }
   1606 
   1607 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
   1608 {
   1609 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
   1610 	ASSERT(segno <= end_segno);
   1611 }
   1612 
   1613 void get_current_sit_page(struct f2fs_sb_info *sbi,
   1614 			unsigned int segno, struct f2fs_sit_block *sit_blk)
   1615 {
   1616 	struct sit_info *sit_i = SIT_I(sbi);
   1617 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
   1618 	block_t blk_addr = sit_i->sit_base_addr + offset;
   1619 	int ret;
   1620 
   1621 	check_seg_range(sbi, segno);
   1622 
   1623 	/* calculate sit block address */
   1624 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
   1625 		blk_addr += sit_i->sit_blocks;
   1626 
   1627 	ret = dev_read_block(sit_blk, blk_addr);
   1628 	ASSERT(ret >= 0);
   1629 }
   1630 
   1631 void rewrite_current_sit_page(struct f2fs_sb_info *sbi,
   1632 			unsigned int segno, struct f2fs_sit_block *sit_blk)
   1633 {
   1634 	struct sit_info *sit_i = SIT_I(sbi);
   1635 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
   1636 	block_t blk_addr = sit_i->sit_base_addr + offset;
   1637 	int ret;
   1638 
   1639 	/* calculate sit block address */
   1640 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
   1641 		blk_addr += sit_i->sit_blocks;
   1642 
   1643 	ret = dev_write_block(sit_blk, blk_addr);
   1644 	ASSERT(ret >= 0);
   1645 }
   1646 
   1647 void check_block_count(struct f2fs_sb_info *sbi,
   1648 		unsigned int segno, struct f2fs_sit_entry *raw_sit)
   1649 {
   1650 	struct f2fs_sm_info *sm_info = SM_I(sbi);
   1651 	unsigned int end_segno = sm_info->segment_count - 1;
   1652 	int valid_blocks = 0;
   1653 	unsigned int i;
   1654 
   1655 	/* check segment usage */
   1656 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
   1657 		ASSERT_MSG("Invalid SIT vblocks: segno=0x%x, %u",
   1658 				segno, GET_SIT_VBLOCKS(raw_sit));
   1659 
   1660 	/* check boundary of a given segment number */
   1661 	if (segno > end_segno)
   1662 		ASSERT_MSG("Invalid SEGNO: 0x%x", segno);
   1663 
   1664 	/* check bitmap with valid block count */
   1665 	for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
   1666 		valid_blocks += get_bits_in_byte(raw_sit->valid_map[i]);
   1667 
   1668 	if (GET_SIT_VBLOCKS(raw_sit) != valid_blocks)
   1669 		ASSERT_MSG("Wrong SIT valid blocks: segno=0x%x, %u vs. %u",
   1670 				segno, GET_SIT_VBLOCKS(raw_sit), valid_blocks);
   1671 
   1672 	if (GET_SIT_TYPE(raw_sit) >= NO_CHECK_TYPE)
   1673 		ASSERT_MSG("Wrong SIT type: segno=0x%x, %u",
   1674 				segno, GET_SIT_TYPE(raw_sit));
   1675 }
   1676 
   1677 void seg_info_from_raw_sit(struct seg_entry *se,
   1678 		struct f2fs_sit_entry *raw_sit)
   1679 {
   1680 	se->valid_blocks = GET_SIT_VBLOCKS(raw_sit);
   1681 	memcpy(se->cur_valid_map, raw_sit->valid_map, SIT_VBLOCK_MAP_SIZE);
   1682 	se->type = GET_SIT_TYPE(raw_sit);
   1683 	se->orig_type = GET_SIT_TYPE(raw_sit);
   1684 	se->mtime = le64_to_cpu(raw_sit->mtime);
   1685 }
   1686 
   1687 struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
   1688 		unsigned int segno)
   1689 {
   1690 	struct sit_info *sit_i = SIT_I(sbi);
   1691 	return &sit_i->sentries[segno];
   1692 }
   1693 
   1694 struct f2fs_summary_block *get_sum_block(struct f2fs_sb_info *sbi,
   1695 				unsigned int segno, int *ret_type)
   1696 {
   1697 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
   1698 	struct f2fs_summary_block *sum_blk;
   1699 	struct curseg_info *curseg;
   1700 	int type, ret;
   1701 	u64 ssa_blk;
   1702 
   1703 	*ret_type= SEG_TYPE_MAX;
   1704 
   1705 	ssa_blk = GET_SUM_BLKADDR(sbi, segno);
   1706 	for (type = 0; type < NR_CURSEG_NODE_TYPE; type++) {
   1707 		if (segno == get_cp(cur_node_segno[type])) {
   1708 			curseg = CURSEG_I(sbi, CURSEG_HOT_NODE + type);
   1709 			if (!IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
   1710 				ASSERT_MSG("segno [0x%x] indicates a data "
   1711 						"segment, but should be node",
   1712 						segno);
   1713 				*ret_type = -SEG_TYPE_CUR_NODE;
   1714 			} else {
   1715 				*ret_type = SEG_TYPE_CUR_NODE;
   1716 			}
   1717 			return curseg->sum_blk;
   1718 		}
   1719 	}
   1720 
   1721 	for (type = 0; type < NR_CURSEG_DATA_TYPE; type++) {
   1722 		if (segno == get_cp(cur_data_segno[type])) {
   1723 			curseg = CURSEG_I(sbi, type);
   1724 			if (IS_SUM_NODE_SEG(curseg->sum_blk->footer)) {
   1725 				ASSERT_MSG("segno [0x%x] indicates a node "
   1726 						"segment, but should be data",
   1727 						segno);
   1728 				*ret_type = -SEG_TYPE_CUR_DATA;
   1729 			} else {
   1730 				*ret_type = SEG_TYPE_CUR_DATA;
   1731 			}
   1732 			return curseg->sum_blk;
   1733 		}
   1734 	}
   1735 
   1736 	sum_blk = calloc(BLOCK_SZ, 1);
   1737 	ASSERT(sum_blk);
   1738 
   1739 	ret = dev_read_block(sum_blk, ssa_blk);
   1740 	ASSERT(ret >= 0);
   1741 
   1742 	if (IS_SUM_NODE_SEG(sum_blk->footer))
   1743 		*ret_type = SEG_TYPE_NODE;
   1744 	else if (IS_SUM_DATA_SEG(sum_blk->footer))
   1745 		*ret_type = SEG_TYPE_DATA;
   1746 
   1747 	return sum_blk;
   1748 }
   1749 
   1750 int get_sum_entry(struct f2fs_sb_info *sbi, u32 blk_addr,
   1751 				struct f2fs_summary *sum_entry)
   1752 {
   1753 	struct f2fs_summary_block *sum_blk;
   1754 	u32 segno, offset;
   1755 	int type;
   1756 
   1757 	segno = GET_SEGNO(sbi, blk_addr);
   1758 	offset = OFFSET_IN_SEG(sbi, blk_addr);
   1759 
   1760 	sum_blk = get_sum_block(sbi, segno, &type);
   1761 	memcpy(sum_entry, &(sum_blk->entries[offset]),
   1762 				sizeof(struct f2fs_summary));
   1763 	if (type == SEG_TYPE_NODE || type == SEG_TYPE_DATA ||
   1764 					type == SEG_TYPE_MAX)
   1765 		free(sum_blk);
   1766 	return type;
   1767 }
   1768 
   1769 static void get_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
   1770 				struct f2fs_nat_entry *raw_nat)
   1771 {
   1772 	struct f2fs_nat_block *nat_block;
   1773 	pgoff_t block_addr;
   1774 	int entry_off;
   1775 	int ret;
   1776 
   1777 	if (lookup_nat_in_journal(sbi, nid, raw_nat) >= 0)
   1778 		return;
   1779 
   1780 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
   1781 	ASSERT(nat_block);
   1782 
   1783 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
   1784 	block_addr = current_nat_addr(sbi, nid, NULL);
   1785 
   1786 	ret = dev_read_block(nat_block, block_addr);
   1787 	ASSERT(ret >= 0);
   1788 
   1789 	memcpy(raw_nat, &nat_block->entries[entry_off],
   1790 					sizeof(struct f2fs_nat_entry));
   1791 	free(nat_block);
   1792 }
   1793 
   1794 void update_data_blkaddr(struct f2fs_sb_info *sbi, nid_t nid,
   1795 				u16 ofs_in_node, block_t newaddr)
   1796 {
   1797 	struct f2fs_node *node_blk = NULL;
   1798 	struct node_info ni;
   1799 	block_t oldaddr, startaddr, endaddr;
   1800 	int ret;
   1801 
   1802 	node_blk = (struct f2fs_node *)calloc(BLOCK_SZ, 1);
   1803 	ASSERT(node_blk);
   1804 
   1805 	get_node_info(sbi, nid, &ni);
   1806 
   1807 	/* read node_block */
   1808 	ret = dev_read_block(node_blk, ni.blk_addr);
   1809 	ASSERT(ret >= 0);
   1810 
   1811 	/* check its block address */
   1812 	if (node_blk->footer.nid == node_blk->footer.ino) {
   1813 		int ofs = get_extra_isize(node_blk);
   1814 
   1815 		oldaddr = le32_to_cpu(node_blk->i.i_addr[ofs + ofs_in_node]);
   1816 		node_blk->i.i_addr[ofs + ofs_in_node] = cpu_to_le32(newaddr);
   1817 	} else {
   1818 		oldaddr = le32_to_cpu(node_blk->dn.addr[ofs_in_node]);
   1819 		node_blk->dn.addr[ofs_in_node] = cpu_to_le32(newaddr);
   1820 	}
   1821 
   1822 	ret = dev_write_block(node_blk, ni.blk_addr);
   1823 	ASSERT(ret >= 0);
   1824 
   1825 	/* check extent cache entry */
   1826 	if (node_blk->footer.nid != node_blk->footer.ino) {
   1827 		get_node_info(sbi, le32_to_cpu(node_blk->footer.ino), &ni);
   1828 
   1829 		/* read inode block */
   1830 		ret = dev_read_block(node_blk, ni.blk_addr);
   1831 		ASSERT(ret >= 0);
   1832 	}
   1833 
   1834 	startaddr = le32_to_cpu(node_blk->i.i_ext.blk_addr);
   1835 	endaddr = startaddr + le32_to_cpu(node_blk->i.i_ext.len);
   1836 	if (oldaddr >= startaddr && oldaddr < endaddr) {
   1837 		node_blk->i.i_ext.len = 0;
   1838 
   1839 		/* update inode block */
   1840 		ret = dev_write_block(node_blk, ni.blk_addr);
   1841 		ASSERT(ret >= 0);
   1842 	}
   1843 	free(node_blk);
   1844 }
   1845 
   1846 void update_nat_blkaddr(struct f2fs_sb_info *sbi, nid_t ino,
   1847 					nid_t nid, block_t newaddr)
   1848 {
   1849 	struct f2fs_nat_block *nat_block;
   1850 	pgoff_t block_addr;
   1851 	int entry_off;
   1852 	int ret;
   1853 
   1854 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
   1855 	ASSERT(nat_block);
   1856 
   1857 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
   1858 	block_addr = current_nat_addr(sbi, nid, NULL);
   1859 
   1860 	ret = dev_read_block(nat_block, block_addr);
   1861 	ASSERT(ret >= 0);
   1862 
   1863 	if (ino)
   1864 		nat_block->entries[entry_off].ino = cpu_to_le32(ino);
   1865 	nat_block->entries[entry_off].block_addr = cpu_to_le32(newaddr);
   1866 	if (c.func == FSCK)
   1867 		F2FS_FSCK(sbi)->entries[nid] = nat_block->entries[entry_off];
   1868 
   1869 	ret = dev_write_block(nat_block, block_addr);
   1870 	ASSERT(ret >= 0);
   1871 	free(nat_block);
   1872 }
   1873 
   1874 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
   1875 {
   1876 	struct f2fs_nat_entry raw_nat;
   1877 
   1878 	ni->nid = nid;
   1879 	if (c.func == FSCK) {
   1880 		node_info_from_raw_nat(ni, &(F2FS_FSCK(sbi)->entries[nid]));
   1881 		if (ni->blk_addr)
   1882 			return;
   1883 		/* nat entry is not cached, read it */
   1884 	}
   1885 
   1886 	get_nat_entry(sbi, nid, &raw_nat);
   1887 	node_info_from_raw_nat(ni, &raw_nat);
   1888 }
   1889 
   1890 static int build_sit_entries(struct f2fs_sb_info *sbi)
   1891 {
   1892 	struct sit_info *sit_i = SIT_I(sbi);
   1893 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
   1894 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
   1895 	struct f2fs_sit_block *sit_blk;
   1896 	struct seg_entry *se;
   1897 	struct f2fs_sit_entry sit;
   1898 	unsigned int i, segno;
   1899 
   1900 	sit_blk = calloc(BLOCK_SZ, 1);
   1901 	if (!sit_blk) {
   1902 		MSG(1, "\tError: Calloc failed for build_sit_entries!\n");
   1903 		return -ENOMEM;
   1904 	}
   1905 
   1906 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
   1907 		se = &sit_i->sentries[segno];
   1908 
   1909 		get_current_sit_page(sbi, segno, sit_blk);
   1910 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
   1911 
   1912 		check_block_count(sbi, segno, &sit);
   1913 		seg_info_from_raw_sit(se, &sit);
   1914 	}
   1915 
   1916 	free(sit_blk);
   1917 	for (i = 0; i < sits_in_cursum(journal); i++) {
   1918 		segno = le32_to_cpu(segno_in_journal(journal, i));
   1919 		se = &sit_i->sentries[segno];
   1920 		sit = sit_in_journal(journal, i);
   1921 
   1922 		check_block_count(sbi, segno, &sit);
   1923 		seg_info_from_raw_sit(se, &sit);
   1924 	}
   1925 	return 0;
   1926 }
   1927 
   1928 static int build_segment_manager(struct f2fs_sb_info *sbi)
   1929 {
   1930 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
   1931 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
   1932 	struct f2fs_sm_info *sm_info;
   1933 
   1934 	sm_info = malloc(sizeof(struct f2fs_sm_info));
   1935 	if (!sm_info) {
   1936 		MSG(1, "\tError: Malloc failed for build_segment_manager!\n");
   1937 		return -ENOMEM;
   1938 	}
   1939 
   1940 	/* init sm info */
   1941 	sbi->sm_info = sm_info;
   1942 	sm_info->seg0_blkaddr = get_sb(segment0_blkaddr);
   1943 	sm_info->main_blkaddr = get_sb(main_blkaddr);
   1944 	sm_info->segment_count = get_sb(segment_count);
   1945 	sm_info->reserved_segments = get_cp(rsvd_segment_count);
   1946 	sm_info->ovp_segments = get_cp(overprov_segment_count);
   1947 	sm_info->main_segments = get_sb(segment_count_main);
   1948 	sm_info->ssa_blkaddr = get_sb(ssa_blkaddr);
   1949 
   1950 	if (build_sit_info(sbi) || build_curseg(sbi) || build_sit_entries(sbi)) {
   1951 		free(sm_info);
   1952 		return -ENOMEM;
   1953 	}
   1954 
   1955 	return 0;
   1956 }
   1957 
   1958 void build_sit_area_bitmap(struct f2fs_sb_info *sbi)
   1959 {
   1960 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
   1961 	struct f2fs_sm_info *sm_i = SM_I(sbi);
   1962 	unsigned int segno = 0;
   1963 	char *ptr = NULL;
   1964 	u32 sum_vblocks = 0;
   1965 	u32 free_segs = 0;
   1966 	struct seg_entry *se;
   1967 
   1968 	fsck->sit_area_bitmap_sz = sm_i->main_segments * SIT_VBLOCK_MAP_SIZE;
   1969 	fsck->sit_area_bitmap = calloc(1, fsck->sit_area_bitmap_sz);
   1970 	ASSERT(fsck->sit_area_bitmap);
   1971 	ptr = fsck->sit_area_bitmap;
   1972 
   1973 	ASSERT(fsck->sit_area_bitmap_sz == fsck->main_area_bitmap_sz);
   1974 
   1975 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
   1976 		se = get_seg_entry(sbi, segno);
   1977 
   1978 		memcpy(ptr, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
   1979 		ptr += SIT_VBLOCK_MAP_SIZE;
   1980 
   1981 		if (se->valid_blocks == 0x0) {
   1982 			if (le32_to_cpu(sbi->ckpt->cur_node_segno[0]) == segno ||
   1983 				le32_to_cpu(sbi->ckpt->cur_data_segno[0]) == segno ||
   1984 				le32_to_cpu(sbi->ckpt->cur_node_segno[1]) == segno ||
   1985 				le32_to_cpu(sbi->ckpt->cur_data_segno[1]) == segno ||
   1986 				le32_to_cpu(sbi->ckpt->cur_node_segno[2]) == segno ||
   1987 				le32_to_cpu(sbi->ckpt->cur_data_segno[2]) == segno) {
   1988 				continue;
   1989 			} else {
   1990 				free_segs++;
   1991 			}
   1992 		} else {
   1993 			sum_vblocks += se->valid_blocks;
   1994 		}
   1995 	}
   1996 	fsck->chk.sit_valid_blocks = sum_vblocks;
   1997 	fsck->chk.sit_free_segs = free_segs;
   1998 
   1999 	DBG(1, "Blocks [0x%x : %d] Free Segs [0x%x : %d]\n\n",
   2000 			sum_vblocks, sum_vblocks,
   2001 			free_segs, free_segs);
   2002 }
   2003 
   2004 void rewrite_sit_area_bitmap(struct f2fs_sb_info *sbi)
   2005 {
   2006 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
   2007 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
   2008 	struct sit_info *sit_i = SIT_I(sbi);
   2009 	struct f2fs_sit_block *sit_blk;
   2010 	unsigned int segno = 0;
   2011 	struct f2fs_summary_block *sum = curseg->sum_blk;
   2012 	char *ptr = NULL;
   2013 
   2014 	sit_blk = calloc(BLOCK_SZ, 1);
   2015 	ASSERT(sit_blk);
   2016 	/* remove sit journal */
   2017 	sum->journal.n_sits = 0;
   2018 
   2019 	ptr = fsck->main_area_bitmap;
   2020 
   2021 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
   2022 		struct f2fs_sit_entry *sit;
   2023 		struct seg_entry *se;
   2024 		u16 valid_blocks = 0;
   2025 		u16 type;
   2026 		int i;
   2027 
   2028 		get_current_sit_page(sbi, segno, sit_blk);
   2029 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
   2030 		memcpy(sit->valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
   2031 
   2032 		/* update valid block count */
   2033 		for (i = 0; i < SIT_VBLOCK_MAP_SIZE; i++)
   2034 			valid_blocks += get_bits_in_byte(sit->valid_map[i]);
   2035 
   2036 		se = get_seg_entry(sbi, segno);
   2037 		memcpy(se->cur_valid_map, ptr, SIT_VBLOCK_MAP_SIZE);
   2038 		se->valid_blocks = valid_blocks;
   2039 		type = se->type;
   2040 		if (type >= NO_CHECK_TYPE) {
   2041 			ASSERT_MSG("Invalide type and valid blocks=%x,%x",
   2042 					segno, valid_blocks);
   2043 			type = 0;
   2044 		}
   2045 		sit->vblocks = cpu_to_le16((type << SIT_VBLOCKS_SHIFT) |
   2046 								valid_blocks);
   2047 		rewrite_current_sit_page(sbi, segno, sit_blk);
   2048 
   2049 		ptr += SIT_VBLOCK_MAP_SIZE;
   2050 	}
   2051 
   2052 	free(sit_blk);
   2053 }
   2054 
   2055 static int flush_sit_journal_entries(struct f2fs_sb_info *sbi)
   2056 {
   2057 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
   2058 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
   2059 	struct sit_info *sit_i = SIT_I(sbi);
   2060 	struct f2fs_sit_block *sit_blk;
   2061 	unsigned int segno;
   2062 	int i;
   2063 
   2064 	sit_blk = calloc(BLOCK_SZ, 1);
   2065 	ASSERT(sit_blk);
   2066 	for (i = 0; i < sits_in_cursum(journal); i++) {
   2067 		struct f2fs_sit_entry *sit;
   2068 		struct seg_entry *se;
   2069 
   2070 		segno = segno_in_journal(journal, i);
   2071 		se = get_seg_entry(sbi, segno);
   2072 
   2073 		get_current_sit_page(sbi, segno, sit_blk);
   2074 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
   2075 
   2076 		memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
   2077 		sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
   2078 							se->valid_blocks);
   2079 		sit->mtime = cpu_to_le64(se->mtime);
   2080 
   2081 		rewrite_current_sit_page(sbi, segno, sit_blk);
   2082 	}
   2083 
   2084 	free(sit_blk);
   2085 	journal->n_sits = 0;
   2086 	return i;
   2087 }
   2088 
   2089 static int flush_nat_journal_entries(struct f2fs_sb_info *sbi)
   2090 {
   2091 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
   2092 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
   2093 	struct f2fs_nat_block *nat_block;
   2094 	pgoff_t block_addr;
   2095 	int entry_off;
   2096 	nid_t nid;
   2097 	int ret;
   2098 	int i = 0;
   2099 
   2100 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
   2101 	ASSERT(nat_block);
   2102 next:
   2103 	if (i >= nats_in_cursum(journal)) {
   2104 		free(nat_block);
   2105 		journal->n_nats = 0;
   2106 		return i;
   2107 	}
   2108 
   2109 	nid = le32_to_cpu(nid_in_journal(journal, i));
   2110 
   2111 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
   2112 	block_addr = current_nat_addr(sbi, nid, NULL);
   2113 
   2114 	ret = dev_read_block(nat_block, block_addr);
   2115 	ASSERT(ret >= 0);
   2116 
   2117 	memcpy(&nat_block->entries[entry_off], &nat_in_journal(journal, i),
   2118 					sizeof(struct f2fs_nat_entry));
   2119 
   2120 	ret = dev_write_block(nat_block, block_addr);
   2121 	ASSERT(ret >= 0);
   2122 	i++;
   2123 	goto next;
   2124 }
   2125 
   2126 void flush_journal_entries(struct f2fs_sb_info *sbi)
   2127 {
   2128 	int n_nats = flush_nat_journal_entries(sbi);
   2129 	int n_sits = flush_sit_journal_entries(sbi);
   2130 
   2131 	if (n_nats || n_sits)
   2132 		write_checkpoint(sbi);
   2133 }
   2134 
   2135 void flush_sit_entries(struct f2fs_sb_info *sbi)
   2136 {
   2137 	struct sit_info *sit_i = SIT_I(sbi);
   2138 	struct f2fs_sit_block *sit_blk;
   2139 	unsigned int segno = 0;
   2140 
   2141 	sit_blk = calloc(BLOCK_SZ, 1);
   2142 	ASSERT(sit_blk);
   2143 	/* update free segments */
   2144 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno++) {
   2145 		struct f2fs_sit_entry *sit;
   2146 		struct seg_entry *se;
   2147 
   2148 		se = get_seg_entry(sbi, segno);
   2149 
   2150 		if (!se->dirty)
   2151 			continue;
   2152 
   2153 		get_current_sit_page(sbi, segno, sit_blk);
   2154 		sit = &sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, segno)];
   2155 		memcpy(sit->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
   2156 		sit->vblocks = cpu_to_le16((se->type << SIT_VBLOCKS_SHIFT) |
   2157 							se->valid_blocks);
   2158 		rewrite_current_sit_page(sbi, segno, sit_blk);
   2159 	}
   2160 
   2161 	free(sit_blk);
   2162 }
   2163 
   2164 int find_next_free_block(struct f2fs_sb_info *sbi, u64 *to, int left, int type)
   2165 {
   2166 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
   2167 	struct seg_entry *se;
   2168 	u32 segno;
   2169 	u32 offset;
   2170 	int not_enough = 0;
   2171 	u64 end_blkaddr = (get_sb(segment_count_main) <<
   2172 			get_sb(log_blocks_per_seg)) + get_sb(main_blkaddr);
   2173 
   2174 	if (*to > 0)
   2175 		*to -= left;
   2176 	if (get_free_segments(sbi) <= SM_I(sbi)->reserved_segments + 1)
   2177 		not_enough = 1;
   2178 
   2179 	while (*to >= SM_I(sbi)->main_blkaddr && *to < end_blkaddr) {
   2180 		segno = GET_SEGNO(sbi, *to);
   2181 		offset = OFFSET_IN_SEG(sbi, *to);
   2182 
   2183 		se = get_seg_entry(sbi, segno);
   2184 
   2185 		if (se->valid_blocks == sbi->blocks_per_seg ||
   2186 				IS_CUR_SEGNO(sbi, segno)) {
   2187 			*to = left ? START_BLOCK(sbi, segno) - 1:
   2188 						START_BLOCK(sbi, segno + 1);
   2189 			continue;
   2190 		}
   2191 
   2192 		if (se->valid_blocks == 0 && not_enough) {
   2193 			*to = left ? START_BLOCK(sbi, segno) - 1:
   2194 						START_BLOCK(sbi, segno + 1);
   2195 			continue;
   2196 		}
   2197 
   2198 		if (se->valid_blocks == 0 && !(segno % sbi->segs_per_sec)) {
   2199 			struct seg_entry *se2;
   2200 			unsigned int i;
   2201 
   2202 			for (i = 1; i < sbi->segs_per_sec; i++) {
   2203 				se2 = get_seg_entry(sbi, segno + i);
   2204 				if (se2->valid_blocks)
   2205 					break;
   2206 			}
   2207 			if (i == sbi->segs_per_sec)
   2208 				return 0;
   2209 		}
   2210 
   2211 		if (se->type == type &&
   2212 			!f2fs_test_bit(offset, (const char *)se->cur_valid_map))
   2213 			return 0;
   2214 
   2215 		*to = left ? *to - 1: *to + 1;
   2216 	}
   2217 	return -1;
   2218 }
   2219 
   2220 void move_curseg_info(struct f2fs_sb_info *sbi, u64 from, int left)
   2221 {
   2222 	int i, ret;
   2223 
   2224 	/* update summary blocks having nullified journal entries */
   2225 	for (i = 0; i < NO_CHECK_TYPE; i++) {
   2226 		struct curseg_info *curseg = CURSEG_I(sbi, i);
   2227 		struct f2fs_summary_block buf;
   2228 		u32 old_segno;
   2229 		u64 ssa_blk, to;
   2230 
   2231 		/* update original SSA too */
   2232 		ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
   2233 		ret = dev_write_block(curseg->sum_blk, ssa_blk);
   2234 		ASSERT(ret >= 0);
   2235 
   2236 		to = from;
   2237 		ret = find_next_free_block(sbi, &to, left, i);
   2238 		ASSERT(ret == 0);
   2239 
   2240 		old_segno = curseg->segno;
   2241 		curseg->segno = GET_SEGNO(sbi, to);
   2242 		curseg->next_blkoff = OFFSET_IN_SEG(sbi, to);
   2243 		curseg->alloc_type = SSR;
   2244 
   2245 		/* update new segno */
   2246 		ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
   2247 		ret = dev_read_block(&buf, ssa_blk);
   2248 		ASSERT(ret >= 0);
   2249 
   2250 		memcpy(curseg->sum_blk, &buf, SUM_ENTRIES_SIZE);
   2251 
   2252 		/* update se->types */
   2253 		reset_curseg(sbi, i);
   2254 
   2255 		DBG(1, "Move curseg[%d] %x -> %x after %"PRIx64"\n",
   2256 				i, old_segno, curseg->segno, from);
   2257 	}
   2258 }
   2259 
   2260 void zero_journal_entries(struct f2fs_sb_info *sbi)
   2261 {
   2262 	int i;
   2263 
   2264 	for (i = 0; i < NO_CHECK_TYPE; i++)
   2265 		CURSEG_I(sbi, i)->sum_blk->journal.n_nats = 0;
   2266 }
   2267 
   2268 void write_curseg_info(struct f2fs_sb_info *sbi)
   2269 {
   2270 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
   2271 	int i;
   2272 
   2273 	for (i = 0; i < NO_CHECK_TYPE; i++) {
   2274 		cp->alloc_type[i] = CURSEG_I(sbi, i)->alloc_type;
   2275 		if (i < CURSEG_HOT_NODE) {
   2276 			set_cp(cur_data_segno[i], CURSEG_I(sbi, i)->segno);
   2277 			set_cp(cur_data_blkoff[i],
   2278 					CURSEG_I(sbi, i)->next_blkoff);
   2279 		} else {
   2280 			int n = i - CURSEG_HOT_NODE;
   2281 
   2282 			set_cp(cur_node_segno[n], CURSEG_I(sbi, i)->segno);
   2283 			set_cp(cur_node_blkoff[n],
   2284 					CURSEG_I(sbi, i)->next_blkoff);
   2285 		}
   2286 	}
   2287 }
   2288 
   2289 int lookup_nat_in_journal(struct f2fs_sb_info *sbi, u32 nid,
   2290 					struct f2fs_nat_entry *raw_nat)
   2291 {
   2292 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
   2293 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
   2294 	int i = 0;
   2295 
   2296 	for (i = 0; i < nats_in_cursum(journal); i++) {
   2297 		if (le32_to_cpu(nid_in_journal(journal, i)) == nid) {
   2298 			memcpy(raw_nat, &nat_in_journal(journal, i),
   2299 						sizeof(struct f2fs_nat_entry));
   2300 			DBG(3, "==> Found nid [0x%x] in nat cache\n", nid);
   2301 			return i;
   2302 		}
   2303 	}
   2304 	return -1;
   2305 }
   2306 
   2307 void nullify_nat_entry(struct f2fs_sb_info *sbi, u32 nid)
   2308 {
   2309 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
   2310 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
   2311 	struct f2fs_nat_block *nat_block;
   2312 	pgoff_t block_addr;
   2313 	int entry_off;
   2314 	int ret;
   2315 	int i = 0;
   2316 
   2317 	/* check in journal */
   2318 	for (i = 0; i < nats_in_cursum(journal); i++) {
   2319 		if (le32_to_cpu(nid_in_journal(journal, i)) == nid) {
   2320 			memset(&nat_in_journal(journal, i), 0,
   2321 					sizeof(struct f2fs_nat_entry));
   2322 			FIX_MSG("Remove nid [0x%x] in nat journal", nid);
   2323 			return;
   2324 		}
   2325 	}
   2326 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
   2327 	ASSERT(nat_block);
   2328 
   2329 	entry_off = nid % NAT_ENTRY_PER_BLOCK;
   2330 	block_addr = current_nat_addr(sbi, nid, NULL);
   2331 
   2332 	ret = dev_read_block(nat_block, block_addr);
   2333 	ASSERT(ret >= 0);
   2334 
   2335 	if (nid == F2FS_NODE_INO(sbi) || nid == F2FS_META_INO(sbi)) {
   2336 		FIX_MSG("nid [0x%x] block_addr= 0x%x -> 0x1", nid,
   2337 			le32_to_cpu(nat_block->entries[entry_off].block_addr));
   2338 		nat_block->entries[entry_off].block_addr = cpu_to_le32(0x1);
   2339 	} else {
   2340 		memset(&nat_block->entries[entry_off], 0,
   2341 					sizeof(struct f2fs_nat_entry));
   2342 		FIX_MSG("Remove nid [0x%x] in NAT", nid);
   2343 	}
   2344 
   2345 	ret = dev_write_block(nat_block, block_addr);
   2346 	ASSERT(ret >= 0);
   2347 	free(nat_block);
   2348 }
   2349 
   2350 void write_checkpoint(struct f2fs_sb_info *sbi)
   2351 {
   2352 	struct f2fs_checkpoint *cp = F2FS_CKPT(sbi);
   2353 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
   2354 	block_t orphan_blks = 0;
   2355 	unsigned long long cp_blk_no;
   2356 	u32 flags = CP_UMOUNT_FLAG;
   2357 	int i, ret;
   2358 	u_int32_t crc = 0;
   2359 
   2360 	if (is_set_ckpt_flags(cp, CP_ORPHAN_PRESENT_FLAG)) {
   2361 		orphan_blks = __start_sum_addr(sbi) - 1;
   2362 		flags |= CP_ORPHAN_PRESENT_FLAG;
   2363 	}
   2364 	if (is_set_ckpt_flags(cp, CP_TRIMMED_FLAG))
   2365 		flags |= CP_TRIMMED_FLAG;
   2366 	if (is_set_ckpt_flags(cp, CP_DISABLED_FLAG))
   2367 		flags |= CP_DISABLED_FLAG;
   2368 
   2369 	set_cp(free_segment_count, get_free_segments(sbi));
   2370 	set_cp(valid_block_count, sbi->total_valid_block_count);
   2371 	set_cp(cp_pack_total_block_count, 8 + orphan_blks + get_sb(cp_payload));
   2372 
   2373 	flags = update_nat_bits_flags(sb, cp, flags);
   2374 	set_cp(ckpt_flags, flags);
   2375 
   2376 	crc = f2fs_cal_crc32(F2FS_SUPER_MAGIC, cp, CP_CHKSUM_OFFSET);
   2377 	*((__le32 *)((unsigned char *)cp + CP_CHKSUM_OFFSET)) = cpu_to_le32(crc);
   2378 
   2379 	cp_blk_no = get_sb(cp_blkaddr);
   2380 	if (sbi->cur_cp == 2)
   2381 		cp_blk_no += 1 << get_sb(log_blocks_per_seg);
   2382 
   2383 	/* write the first cp */
   2384 	ret = dev_write_block(cp, cp_blk_no++);
   2385 	ASSERT(ret >= 0);
   2386 
   2387 	/* skip payload */
   2388 	cp_blk_no += get_sb(cp_payload);
   2389 	/* skip orphan blocks */
   2390 	cp_blk_no += orphan_blks;
   2391 
   2392 	/* update summary blocks having nullified journal entries */
   2393 	for (i = 0; i < NO_CHECK_TYPE; i++) {
   2394 		struct curseg_info *curseg = CURSEG_I(sbi, i);
   2395 		u64 ssa_blk;
   2396 
   2397 		ret = dev_write_block(curseg->sum_blk, cp_blk_no++);
   2398 		ASSERT(ret >= 0);
   2399 
   2400 		/* update original SSA too */
   2401 		ssa_blk = GET_SUM_BLKADDR(sbi, curseg->segno);
   2402 		ret = dev_write_block(curseg->sum_blk, ssa_blk);
   2403 		ASSERT(ret >= 0);
   2404 	}
   2405 
   2406 	/* Write nat bits */
   2407 	if (flags & CP_NAT_BITS_FLAG)
   2408 		write_nat_bits(sbi, sb, cp, sbi->cur_cp);
   2409 
   2410 	/* in case of sudden power off */
   2411 	ret = f2fs_fsync_device();
   2412 	ASSERT(ret >= 0);
   2413 
   2414 	/* write the last cp */
   2415 	ret = dev_write_block(cp, cp_blk_no++);
   2416 	ASSERT(ret >= 0);
   2417 }
   2418 
   2419 void build_nat_area_bitmap(struct f2fs_sb_info *sbi)
   2420 {
   2421 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
   2422 	struct f2fs_journal *journal = &curseg->sum_blk->journal;
   2423 	struct f2fs_fsck *fsck = F2FS_FSCK(sbi);
   2424 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
   2425 	struct f2fs_nm_info *nm_i = NM_I(sbi);
   2426 	struct f2fs_nat_block *nat_block;
   2427 	struct node_info ni;
   2428 	u32 nid, nr_nat_blks;
   2429 	pgoff_t block_off;
   2430 	pgoff_t block_addr;
   2431 	int seg_off;
   2432 	int ret;
   2433 	unsigned int i;
   2434 
   2435 	nat_block = (struct f2fs_nat_block *)calloc(BLOCK_SZ, 1);
   2436 	ASSERT(nat_block);
   2437 
   2438 	/* Alloc & build nat entry bitmap */
   2439 	nr_nat_blks = (get_sb(segment_count_nat) / 2) <<
   2440 					sbi->log_blocks_per_seg;
   2441 
   2442 	fsck->nr_nat_entries = nr_nat_blks * NAT_ENTRY_PER_BLOCK;
   2443 	fsck->nat_area_bitmap_sz = (fsck->nr_nat_entries + 7) / 8;
   2444 	fsck->nat_area_bitmap = calloc(fsck->nat_area_bitmap_sz, 1);
   2445 	ASSERT(fsck->nat_area_bitmap);
   2446 
   2447 	fsck->entries = calloc(sizeof(struct f2fs_nat_entry),
   2448 					fsck->nr_nat_entries);
   2449 	ASSERT(fsck->entries);
   2450 
   2451 	for (block_off = 0; block_off < nr_nat_blks; block_off++) {
   2452 
   2453 		seg_off = block_off >> sbi->log_blocks_per_seg;
   2454 		block_addr = (pgoff_t)(nm_i->nat_blkaddr +
   2455 			(seg_off << sbi->log_blocks_per_seg << 1) +
   2456 			(block_off & ((1 << sbi->log_blocks_per_seg) - 1)));
   2457 
   2458 		if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
   2459 			block_addr += sbi->blocks_per_seg;
   2460 
   2461 		ret = dev_read_block(nat_block, block_addr);
   2462 		ASSERT(ret >= 0);
   2463 
   2464 		nid = block_off * NAT_ENTRY_PER_BLOCK;
   2465 		for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
   2466 			ni.nid = nid + i;
   2467 
   2468 			if ((nid + i) == F2FS_NODE_INO(sbi) ||
   2469 					(nid + i) == F2FS_META_INO(sbi)) {
   2470 				/*
   2471 				 * block_addr of node/meta inode should be 0x1.
   2472 				 * Set this bit, and fsck_verify will fix it.
   2473 				 */
   2474 				if (le32_to_cpu(nat_block->entries[i].block_addr) != 0x1) {
   2475 					ASSERT_MSG("\tError: ino[0x%x] block_addr[0x%x] is invalid\n",
   2476 							nid + i, le32_to_cpu(nat_block->entries[i].block_addr));
   2477 					f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
   2478 				}
   2479 				continue;
   2480 			}
   2481 
   2482 			node_info_from_raw_nat(&ni, &nat_block->entries[i]);
   2483 			if (ni.blk_addr == 0x0)
   2484 				continue;
   2485 			if (ni.ino == 0x0) {
   2486 				ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]"
   2487 					" is invalid\n", ni.ino, ni.blk_addr);
   2488 			}
   2489 			if (ni.ino == (nid + i)) {
   2490 				fsck->nat_valid_inode_cnt++;
   2491 				DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino);
   2492 			}
   2493 			if (nid + i == 0) {
   2494 				/*
   2495 				 * nat entry [0] must be null.  If
   2496 				 * it is corrupted, set its bit in
   2497 				 * nat_area_bitmap, fsck_verify will
   2498 				 * nullify it
   2499 				 */
   2500 				ASSERT_MSG("Invalid nat entry[0]: "
   2501 					"blk_addr[0x%x]\n", ni.blk_addr);
   2502 				fsck->chk.valid_nat_entry_cnt--;
   2503 			}
   2504 
   2505 			DBG(3, "nid[0x%8x] addr[0x%16x] ino[0x%8x]\n",
   2506 				nid + i, ni.blk_addr, ni.ino);
   2507 			f2fs_set_bit(nid + i, fsck->nat_area_bitmap);
   2508 			fsck->chk.valid_nat_entry_cnt++;
   2509 
   2510 			fsck->entries[nid + i] = nat_block->entries[i];
   2511 		}
   2512 	}
   2513 
   2514 	/* Traverse nat journal, update the corresponding entries */
   2515 	for (i = 0; i < nats_in_cursum(journal); i++) {
   2516 		struct f2fs_nat_entry raw_nat;
   2517 		nid = le32_to_cpu(nid_in_journal(journal, i));
   2518 		ni.nid = nid;
   2519 
   2520 		DBG(3, "==> Found nid [0x%x] in nat cache, update it\n", nid);
   2521 
   2522 		/* Clear the original bit and count */
   2523 		if (fsck->entries[nid].block_addr != 0x0) {
   2524 			fsck->chk.valid_nat_entry_cnt--;
   2525 			f2fs_clear_bit(nid, fsck->nat_area_bitmap);
   2526 			if (fsck->entries[nid].ino == nid)
   2527 				fsck->nat_valid_inode_cnt--;
   2528 		}
   2529 
   2530 		/* Use nat entries in journal */
   2531 		memcpy(&raw_nat, &nat_in_journal(journal, i),
   2532 					sizeof(struct f2fs_nat_entry));
   2533 		node_info_from_raw_nat(&ni, &raw_nat);
   2534 		if (ni.blk_addr != 0x0) {
   2535 			if (ni.ino == 0x0)
   2536 				ASSERT_MSG("\tError: ino[0x%8x] or blk_addr[0x%16x]"
   2537 					" is invalid\n", ni.ino, ni.blk_addr);
   2538 			if (ni.ino == nid) {
   2539 				fsck->nat_valid_inode_cnt++;
   2540 				DBG(3, "ino[0x%8x] maybe is inode\n", ni.ino);
   2541 			}
   2542 			f2fs_set_bit(nid, fsck->nat_area_bitmap);
   2543 			fsck->chk.valid_nat_entry_cnt++;
   2544 			DBG(3, "nid[0x%x] in nat cache\n", nid);
   2545 		}
   2546 		fsck->entries[nid] = raw_nat;
   2547 	}
   2548 	free(nat_block);
   2549 
   2550 	DBG(1, "valid nat entries (block_addr != 0x0) [0x%8x : %u]\n",
   2551 			fsck->chk.valid_nat_entry_cnt,
   2552 			fsck->chk.valid_nat_entry_cnt);
   2553 }
   2554 
   2555 static int check_sector_size(struct f2fs_super_block *sb)
   2556 {
   2557 	u_int32_t log_sectorsize, log_sectors_per_block;
   2558 
   2559 	log_sectorsize = log_base_2(c.sector_size);
   2560 	log_sectors_per_block = log_base_2(c.sectors_per_blk);
   2561 
   2562 	if (log_sectorsize == get_sb(log_sectorsize) &&
   2563 			log_sectors_per_block == get_sb(log_sectors_per_block))
   2564 		return 0;
   2565 
   2566 	set_sb(log_sectorsize, log_sectorsize);
   2567 	set_sb(log_sectors_per_block, log_sectors_per_block);
   2568 
   2569 	update_superblock(sb, SB_MASK_ALL);
   2570 	return 0;
   2571 }
   2572 
   2573 static void tune_sb_features(struct f2fs_sb_info *sbi)
   2574 {
   2575 	int sb_changed = 0;
   2576 	struct f2fs_super_block *sb = F2FS_RAW_SUPER(sbi);
   2577 
   2578 	if (!(sb->feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) &&
   2579 			c.feature & cpu_to_le32(F2FS_FEATURE_ENCRYPT)) {
   2580 		sb->feature |= cpu_to_le32(F2FS_FEATURE_ENCRYPT);
   2581 		MSG(0, "Info: Set Encryption feature\n");
   2582 		sb_changed = 1;
   2583 	}
   2584 	/* TODO: quota needs to allocate inode numbers */
   2585 
   2586 	c.feature = sb->feature;
   2587 	if (!sb_changed)
   2588 		return;
   2589 
   2590 	update_superblock(sb, SB_MASK_ALL);
   2591 }
   2592 
   2593 int f2fs_do_mount(struct f2fs_sb_info *sbi)
   2594 {
   2595 	struct f2fs_checkpoint *cp = NULL;
   2596 	struct f2fs_super_block *sb = NULL;
   2597 	int ret;
   2598 
   2599 	sbi->active_logs = NR_CURSEG_TYPE;
   2600 	ret = validate_super_block(sbi, SB0_ADDR);
   2601 	if (ret) {
   2602 		ret = validate_super_block(sbi, SB1_ADDR);
   2603 		if (ret)
   2604 			return -1;
   2605 	}
   2606 	sb = F2FS_RAW_SUPER(sbi);
   2607 
   2608 	ret = check_sector_size(sb);
   2609 	if (ret)
   2610 		return -1;
   2611 
   2612 	print_raw_sb_info(sb);
   2613 
   2614 	init_sb_info(sbi);
   2615 
   2616 	ret = get_valid_checkpoint(sbi);
   2617 	if (ret) {
   2618 		ERR_MSG("Can't find valid checkpoint\n");
   2619 		return -1;
   2620 	}
   2621 
   2622 	if (sanity_check_ckpt(sbi)) {
   2623 		ERR_MSG("Checkpoint is polluted\n");
   2624 		return -1;
   2625 	}
   2626 	cp = F2FS_CKPT(sbi);
   2627 
   2628 	print_ckpt_info(sbi);
   2629 
   2630 	if (c.quota_fix) {
   2631 		if (get_cp(ckpt_flags) & CP_QUOTA_NEED_FSCK_FLAG)
   2632 			c.fix_on = 1;
   2633 	}
   2634 
   2635 	if (c.auto_fix || c.preen_mode) {
   2636 		u32 flag = get_cp(ckpt_flags);
   2637 
   2638 		if (flag & CP_FSCK_FLAG ||
   2639 			flag & CP_QUOTA_NEED_FSCK_FLAG ||
   2640 			(exist_qf_ino(sb) && (flag & CP_ERROR_FLAG))) {
   2641 			c.fix_on = 1;
   2642 		} else if (!c.preen_mode) {
   2643 			print_cp_state(flag);
   2644 			return 1;
   2645 		}
   2646 	}
   2647 
   2648 	c.bug_on = 0;
   2649 
   2650 	tune_sb_features(sbi);
   2651 
   2652 	/* precompute checksum seed for metadata */
   2653 	if (c.feature & cpu_to_le32(F2FS_FEATURE_INODE_CHKSUM))
   2654 		c.chksum_seed = f2fs_cal_crc32(~0, sb->uuid, sizeof(sb->uuid));
   2655 
   2656 	sbi->total_valid_node_count = get_cp(valid_node_count);
   2657 	sbi->total_valid_inode_count = get_cp(valid_inode_count);
   2658 	sbi->user_block_count = get_cp(user_block_count);
   2659 	sbi->total_valid_block_count = get_cp(valid_block_count);
   2660 	sbi->last_valid_block_count = sbi->total_valid_block_count;
   2661 	sbi->alloc_valid_block_count = 0;
   2662 
   2663 	if (build_segment_manager(sbi)) {
   2664 		ERR_MSG("build_segment_manager failed\n");
   2665 		return -1;
   2666 	}
   2667 
   2668 	if (build_node_manager(sbi)) {
   2669 		ERR_MSG("build_node_manager failed\n");
   2670 		return -1;
   2671 	}
   2672 
   2673 	/* Check nat_bits */
   2674 	if (c.func == FSCK && is_set_ckpt_flags(cp, CP_NAT_BITS_FLAG)) {
   2675 		if (check_nat_bits(sbi, sb, cp) && c.fix_on)
   2676 			write_nat_bits(sbi, sb, cp, sbi->cur_cp);
   2677 	}
   2678 	return 0;
   2679 }
   2680 
   2681 void f2fs_do_umount(struct f2fs_sb_info *sbi)
   2682 {
   2683 	struct sit_info *sit_i = SIT_I(sbi);
   2684 	struct f2fs_sm_info *sm_i = SM_I(sbi);
   2685 	struct f2fs_nm_info *nm_i = NM_I(sbi);
   2686 	unsigned int i;
   2687 
   2688 	/* free nm_info */
   2689 	if (c.func == SLOAD || c.func == FSCK)
   2690 		free(nm_i->nid_bitmap);
   2691 	free(nm_i->nat_bitmap);
   2692 	free(sbi->nm_info);
   2693 
   2694 	/* free sit_info */
   2695 	for (i = 0; i < TOTAL_SEGS(sbi); i++)
   2696 		free(sit_i->sentries[i].cur_valid_map);
   2697 
   2698 	free(sit_i->sit_bitmap);
   2699 	free(sm_i->sit_info);
   2700 
   2701 	/* free sm_info */
   2702 	for (i = 0; i < NR_CURSEG_TYPE; i++)
   2703 		free(sm_i->curseg_array[i].sum_blk);
   2704 
   2705 	free(sm_i->curseg_array);
   2706 	free(sbi->sm_info);
   2707 
   2708 	free(sbi->ckpt);
   2709 	free(sbi->raw_super);
   2710 }
   2711