1 /***************************************************************************** 2 3 quantize.c - quantize a high resolution image into lower one 4 5 Based on: "Color Image Quantization for frame buffer Display", by 6 Paul Heckbert SIGGRAPH 1982 page 297-307. 7 8 This doesn't really belong in the core library, was undocumented, 9 and was removed in 4.2. Then it turned out some client apps were 10 actually using it, so it was restored in 5.0. 11 12 ******************************************************************************/ 13 14 #include <stdlib.h> 15 #include <stdio.h> 16 #include "gif_lib.h" 17 #include "gif_lib_private.h" 18 19 #define ABS(x) ((x) > 0 ? (x) : (-(x))) 20 21 #define COLOR_ARRAY_SIZE 32768 22 #define BITS_PER_PRIM_COLOR 5 23 #define MAX_PRIM_COLOR 0x1f 24 25 static int SortRGBAxis; 26 27 typedef struct QuantizedColorType { 28 GifByteType RGB[3]; 29 GifByteType NewColorIndex; 30 long Count; 31 struct QuantizedColorType *Pnext; 32 } QuantizedColorType; 33 34 typedef struct NewColorMapType { 35 GifByteType RGBMin[3], RGBWidth[3]; 36 unsigned int NumEntries; /* # of QuantizedColorType in linked list below */ 37 unsigned long Count; /* Total number of pixels in all the entries */ 38 QuantizedColorType *QuantizedColors; 39 } NewColorMapType; 40 41 static int SubdivColorMap(NewColorMapType * NewColorSubdiv, 42 unsigned int ColorMapSize, 43 unsigned int *NewColorMapSize); 44 static int SortCmpRtn(const void *Entry1, const void *Entry2); 45 46 /****************************************************************************** 47 Quantize high resolution image into lower one. Input image consists of a 48 2D array for each of the RGB colors with size Width by Height. There is no 49 Color map for the input. Output is a quantized image with 2D array of 50 indexes into the output color map. 51 Note input image can be 24 bits at the most (8 for red/green/blue) and 52 the output has 256 colors at the most (256 entries in the color map.). 53 ColorMapSize specifies size of color map up to 256 and will be updated to 54 real size before returning. 55 Also non of the parameter are allocated by this routine. 56 This function returns GIF_OK if successful, GIF_ERROR otherwise. 57 ******************************************************************************/ 58 int 59 GifQuantizeBuffer(unsigned int Width, 60 unsigned int Height, 61 int *ColorMapSize, 62 GifByteType * RedInput, 63 GifByteType * GreenInput, 64 GifByteType * BlueInput, 65 GifByteType * OutputBuffer, 66 GifColorType * OutputColorMap) { 67 68 unsigned int Index, NumOfEntries; 69 int i, j, MaxRGBError[3]; 70 unsigned int NewColorMapSize; 71 long Red, Green, Blue; 72 NewColorMapType NewColorSubdiv[256]; 73 QuantizedColorType *ColorArrayEntries, *QuantizedColor; 74 75 ColorArrayEntries = (QuantizedColorType *)malloc( 76 sizeof(QuantizedColorType) * COLOR_ARRAY_SIZE); 77 if (ColorArrayEntries == NULL) { 78 return GIF_ERROR; 79 } 80 81 for (i = 0; i < COLOR_ARRAY_SIZE; i++) { 82 ColorArrayEntries[i].RGB[0] = i >> (2 * BITS_PER_PRIM_COLOR); 83 ColorArrayEntries[i].RGB[1] = (i >> BITS_PER_PRIM_COLOR) & 84 MAX_PRIM_COLOR; 85 ColorArrayEntries[i].RGB[2] = i & MAX_PRIM_COLOR; 86 ColorArrayEntries[i].Count = 0; 87 } 88 89 /* Sample the colors and their distribution: */ 90 for (i = 0; i < (int)(Width * Height); i++) { 91 Index = ((RedInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << 92 (2 * BITS_PER_PRIM_COLOR)) + 93 ((GreenInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << 94 BITS_PER_PRIM_COLOR) + 95 (BlueInput[i] >> (8 - BITS_PER_PRIM_COLOR)); 96 ColorArrayEntries[Index].Count++; 97 } 98 99 /* Put all the colors in the first entry of the color map, and call the 100 * recursive subdivision process. */ 101 for (i = 0; i < 256; i++) { 102 NewColorSubdiv[i].QuantizedColors = NULL; 103 NewColorSubdiv[i].Count = NewColorSubdiv[i].NumEntries = 0; 104 for (j = 0; j < 3; j++) { 105 NewColorSubdiv[i].RGBMin[j] = 0; 106 NewColorSubdiv[i].RGBWidth[j] = 255; 107 } 108 } 109 110 /* Find the non empty entries in the color table and chain them: */ 111 for (i = 0; i < COLOR_ARRAY_SIZE; i++) 112 if (ColorArrayEntries[i].Count > 0) 113 break; 114 QuantizedColor = NewColorSubdiv[0].QuantizedColors = &ColorArrayEntries[i]; 115 NumOfEntries = 1; 116 while (++i < COLOR_ARRAY_SIZE) 117 if (ColorArrayEntries[i].Count > 0) { 118 QuantizedColor->Pnext = &ColorArrayEntries[i]; 119 QuantizedColor = &ColorArrayEntries[i]; 120 NumOfEntries++; 121 } 122 QuantizedColor->Pnext = NULL; 123 124 NewColorSubdiv[0].NumEntries = NumOfEntries; /* Different sampled colors */ 125 NewColorSubdiv[0].Count = ((long)Width) * Height; /* Pixels */ 126 NewColorMapSize = 1; 127 if (SubdivColorMap(NewColorSubdiv, *ColorMapSize, &NewColorMapSize) != 128 GIF_OK) { 129 free((char *)ColorArrayEntries); 130 return GIF_ERROR; 131 } 132 if (NewColorMapSize < *ColorMapSize) { 133 /* And clear rest of color map: */ 134 for (i = NewColorMapSize; i < *ColorMapSize; i++) 135 OutputColorMap[i].Red = OutputColorMap[i].Green = 136 OutputColorMap[i].Blue = 0; 137 } 138 139 /* Average the colors in each entry to be the color to be used in the 140 * output color map, and plug it into the output color map itself. */ 141 for (i = 0; i < NewColorMapSize; i++) { 142 if ((j = NewColorSubdiv[i].NumEntries) > 0) { 143 QuantizedColor = NewColorSubdiv[i].QuantizedColors; 144 Red = Green = Blue = 0; 145 while (QuantizedColor) { 146 QuantizedColor->NewColorIndex = i; 147 Red += QuantizedColor->RGB[0]; 148 Green += QuantizedColor->RGB[1]; 149 Blue += QuantizedColor->RGB[2]; 150 QuantizedColor = QuantizedColor->Pnext; 151 } 152 OutputColorMap[i].Red = (Red << (8 - BITS_PER_PRIM_COLOR)) / j; 153 OutputColorMap[i].Green = (Green << (8 - BITS_PER_PRIM_COLOR)) / j; 154 OutputColorMap[i].Blue = (Blue << (8 - BITS_PER_PRIM_COLOR)) / j; 155 } 156 } 157 158 /* Finally scan the input buffer again and put the mapped index in the 159 * output buffer. */ 160 MaxRGBError[0] = MaxRGBError[1] = MaxRGBError[2] = 0; 161 for (i = 0; i < (int)(Width * Height); i++) { 162 Index = ((RedInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << 163 (2 * BITS_PER_PRIM_COLOR)) + 164 ((GreenInput[i] >> (8 - BITS_PER_PRIM_COLOR)) << 165 BITS_PER_PRIM_COLOR) + 166 (BlueInput[i] >> (8 - BITS_PER_PRIM_COLOR)); 167 Index = ColorArrayEntries[Index].NewColorIndex; 168 OutputBuffer[i] = Index; 169 if (MaxRGBError[0] < ABS(OutputColorMap[Index].Red - RedInput[i])) 170 MaxRGBError[0] = ABS(OutputColorMap[Index].Red - RedInput[i]); 171 if (MaxRGBError[1] < ABS(OutputColorMap[Index].Green - GreenInput[i])) 172 MaxRGBError[1] = ABS(OutputColorMap[Index].Green - GreenInput[i]); 173 if (MaxRGBError[2] < ABS(OutputColorMap[Index].Blue - BlueInput[i])) 174 MaxRGBError[2] = ABS(OutputColorMap[Index].Blue - BlueInput[i]); 175 } 176 177 #ifdef DEBUG 178 fprintf(stderr, 179 "Quantization L(0) errors: Red = %d, Green = %d, Blue = %d.\n", 180 MaxRGBError[0], MaxRGBError[1], MaxRGBError[2]); 181 #endif /* DEBUG */ 182 183 free((char *)ColorArrayEntries); 184 185 *ColorMapSize = NewColorMapSize; 186 187 return GIF_OK; 188 } 189 190 /****************************************************************************** 191 Routine to subdivide the RGB space recursively using median cut in each 192 axes alternatingly until ColorMapSize different cubes exists. 193 The biggest cube in one dimension is subdivide unless it has only one entry. 194 Returns GIF_ERROR if failed, otherwise GIF_OK. 195 *******************************************************************************/ 196 static int 197 SubdivColorMap(NewColorMapType * NewColorSubdiv, 198 unsigned int ColorMapSize, 199 unsigned int *NewColorMapSize) { 200 201 int MaxSize; 202 unsigned int i, j, Index = 0, NumEntries, MinColor, MaxColor; 203 long Sum, Count; 204 QuantizedColorType *QuantizedColor, **SortArray; 205 206 while (ColorMapSize > *NewColorMapSize) { 207 /* Find candidate for subdivision: */ 208 MaxSize = -1; 209 for (i = 0; i < *NewColorMapSize; i++) { 210 for (j = 0; j < 3; j++) { 211 if ((((int)NewColorSubdiv[i].RGBWidth[j]) > MaxSize) && 212 (NewColorSubdiv[i].NumEntries > 1)) { 213 MaxSize = NewColorSubdiv[i].RGBWidth[j]; 214 Index = i; 215 SortRGBAxis = j; 216 } 217 } 218 } 219 220 if (MaxSize == -1) 221 return GIF_OK; 222 223 /* Split the entry Index into two along the axis SortRGBAxis: */ 224 225 /* Sort all elements in that entry along the given axis and split at 226 * the median. */ 227 SortArray = (QuantizedColorType **)malloc( 228 sizeof(QuantizedColorType *) * 229 NewColorSubdiv[Index].NumEntries); 230 if (SortArray == NULL) 231 return GIF_ERROR; 232 for (j = 0, QuantizedColor = NewColorSubdiv[Index].QuantizedColors; 233 j < NewColorSubdiv[Index].NumEntries && QuantizedColor != NULL; 234 j++, QuantizedColor = QuantizedColor->Pnext) 235 SortArray[j] = QuantizedColor; 236 237 /* 238 * Because qsort isn't stable, this can produce differing 239 * results for the order of tuples depending on platform 240 * details of how qsort() is implemented. 241 * 242 * We mitigate this problem by sorting on all three axes rather 243 * than only the one specied by SortRGBAxis; that way the instability 244 * can only become an issue if there are multiple color indices 245 * referring to identical RGB tuples. Older versions of this 246 * sorted on only the one axis. 247 */ 248 qsort(SortArray, NewColorSubdiv[Index].NumEntries, 249 sizeof(QuantizedColorType *), SortCmpRtn); 250 251 /* Relink the sorted list into one: */ 252 for (j = 0; j < NewColorSubdiv[Index].NumEntries - 1; j++) 253 SortArray[j]->Pnext = SortArray[j + 1]; 254 SortArray[NewColorSubdiv[Index].NumEntries - 1]->Pnext = NULL; 255 NewColorSubdiv[Index].QuantizedColors = QuantizedColor = SortArray[0]; 256 free((char *)SortArray); 257 258 /* Now simply add the Counts until we have half of the Count: */ 259 Sum = NewColorSubdiv[Index].Count / 2 - QuantizedColor->Count; 260 NumEntries = 1; 261 Count = QuantizedColor->Count; 262 while (QuantizedColor->Pnext != NULL && 263 (Sum -= QuantizedColor->Pnext->Count) >= 0 && 264 QuantizedColor->Pnext->Pnext != NULL) { 265 QuantizedColor = QuantizedColor->Pnext; 266 NumEntries++; 267 Count += QuantizedColor->Count; 268 } 269 /* Save the values of the last color of the first half, and first 270 * of the second half so we can update the Bounding Boxes later. 271 * Also as the colors are quantized and the BBoxes are full 0..255, 272 * they need to be rescaled. 273 */ 274 MaxColor = QuantizedColor->RGB[SortRGBAxis]; /* Max. of first half */ 275 /* coverity[var_deref_op] */ 276 MinColor = QuantizedColor->Pnext->RGB[SortRGBAxis]; /* of second */ 277 MaxColor <<= (8 - BITS_PER_PRIM_COLOR); 278 MinColor <<= (8 - BITS_PER_PRIM_COLOR); 279 280 /* Partition right here: */ 281 NewColorSubdiv[*NewColorMapSize].QuantizedColors = 282 QuantizedColor->Pnext; 283 QuantizedColor->Pnext = NULL; 284 NewColorSubdiv[*NewColorMapSize].Count = Count; 285 NewColorSubdiv[Index].Count -= Count; 286 NewColorSubdiv[*NewColorMapSize].NumEntries = 287 NewColorSubdiv[Index].NumEntries - NumEntries; 288 NewColorSubdiv[Index].NumEntries = NumEntries; 289 for (j = 0; j < 3; j++) { 290 NewColorSubdiv[*NewColorMapSize].RGBMin[j] = 291 NewColorSubdiv[Index].RGBMin[j]; 292 NewColorSubdiv[*NewColorMapSize].RGBWidth[j] = 293 NewColorSubdiv[Index].RGBWidth[j]; 294 } 295 NewColorSubdiv[*NewColorMapSize].RGBWidth[SortRGBAxis] = 296 NewColorSubdiv[*NewColorMapSize].RGBMin[SortRGBAxis] + 297 NewColorSubdiv[*NewColorMapSize].RGBWidth[SortRGBAxis] - MinColor; 298 NewColorSubdiv[*NewColorMapSize].RGBMin[SortRGBAxis] = MinColor; 299 300 NewColorSubdiv[Index].RGBWidth[SortRGBAxis] = 301 MaxColor - NewColorSubdiv[Index].RGBMin[SortRGBAxis]; 302 303 (*NewColorMapSize)++; 304 } 305 306 return GIF_OK; 307 } 308 309 /**************************************************************************** 310 Routine called by qsort to compare two entries. 311 *****************************************************************************/ 312 313 static int 314 SortCmpRtn(const void *Entry1, 315 const void *Entry2) { 316 QuantizedColorType *entry1 = (*((QuantizedColorType **) Entry1)); 317 QuantizedColorType *entry2 = (*((QuantizedColorType **) Entry2)); 318 319 /* sort on all axes of the color space! */ 320 int hash1 = entry1->RGB[SortRGBAxis] * 256 * 256 321 + entry1->RGB[(SortRGBAxis+1) % 3] * 256 322 + entry1->RGB[(SortRGBAxis+2) % 3]; 323 int hash2 = entry2->RGB[SortRGBAxis] * 256 * 256 324 + entry2->RGB[(SortRGBAxis+1) % 3] * 256 325 + entry2->RGB[(SortRGBAxis+2) % 3]; 326 327 return hash1 - hash2; 328 } 329 330 /* end */ 331