Home | History | Annotate | Download | only in common
      1 //  2016 and later: Unicode, Inc. and others.
      2 // License & terms of use: http://www.unicode.org/copyright.html
      3 /*
      4 *******************************************************************************
      5 *
      6 *   Copyright (C) 2008-2011, International Business Machines
      7 *   Corporation, Google and others.  All Rights Reserved.
      8 *
      9 *******************************************************************************
     10 */
     11 // Author : eldawy (at) google.com (Mohamed Eldawy)
     12 // ucnvsel.cpp
     13 //
     14 // Purpose: To generate a list of encodings capable of handling
     15 // a given Unicode text
     16 //
     17 // Started 09-April-2008
     18 
     19 /**
     20  * \file
     21  *
     22  * This is an implementation of an encoding selector.
     23  * The goal is, given a unicode string, find the encodings
     24  * this string can be mapped to. To make processing faster
     25  * a trie is built when you call ucnvsel_open() that
     26  * stores all encodings a codepoint can map to
     27  */
     28 
     29 #include "unicode/ucnvsel.h"
     30 
     31 #if !UCONFIG_NO_CONVERSION
     32 
     33 #include <string.h>
     34 
     35 #include "unicode/uchar.h"
     36 #include "unicode/uniset.h"
     37 #include "unicode/ucnv.h"
     38 #include "unicode/ustring.h"
     39 #include "unicode/uchriter.h"
     40 #include "utrie2.h"
     41 #include "propsvec.h"
     42 #include "uassert.h"
     43 #include "ucmndata.h"
     44 #include "udataswp.h"
     45 #include "uenumimp.h"
     46 #include "cmemory.h"
     47 #include "cstring.h"
     48 
     49 U_NAMESPACE_USE
     50 
     51 struct UConverterSelector {
     52   UTrie2 *trie;              // 16 bit trie containing offsets into pv
     53   uint32_t* pv;              // table of bits!
     54   int32_t pvCount;
     55   char** encodings;          // which encodings did user ask to use?
     56   int32_t encodingsCount;
     57   int32_t encodingStrLength;
     58   uint8_t* swapped;
     59   UBool ownPv, ownEncodingStrings;
     60 };
     61 
     62 static void generateSelectorData(UConverterSelector* result,
     63                                  UPropsVectors *upvec,
     64                                  const USet* excludedCodePoints,
     65                                  const UConverterUnicodeSet whichSet,
     66                                  UErrorCode* status) {
     67   if (U_FAILURE(*status)) {
     68     return;
     69   }
     70 
     71   int32_t columns = (result->encodingsCount+31)/32;
     72 
     73   // set errorValue to all-ones
     74   for (int32_t col = 0; col < columns; col++) {
     75     upvec_setValue(upvec, UPVEC_ERROR_VALUE_CP, UPVEC_ERROR_VALUE_CP,
     76                    col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0), status);
     77   }
     78 
     79   for (int32_t i = 0; i < result->encodingsCount; ++i) {
     80     uint32_t mask;
     81     uint32_t column;
     82     int32_t item_count;
     83     int32_t j;
     84     UConverter* test_converter = ucnv_open(result->encodings[i], status);
     85     if (U_FAILURE(*status)) {
     86       return;
     87     }
     88     USet* unicode_point_set;
     89     unicode_point_set = uset_open(1, 0);  // empty set
     90 
     91     ucnv_getUnicodeSet(test_converter, unicode_point_set,
     92                        whichSet, status);
     93     if (U_FAILURE(*status)) {
     94       ucnv_close(test_converter);
     95       return;
     96     }
     97 
     98     column = i / 32;
     99     mask = 1 << (i%32);
    100     // now iterate over intervals on set i!
    101     item_count = uset_getItemCount(unicode_point_set);
    102 
    103     for (j = 0; j < item_count; ++j) {
    104       UChar32 start_char;
    105       UChar32 end_char;
    106       UErrorCode smallStatus = U_ZERO_ERROR;
    107       uset_getItem(unicode_point_set, j, &start_char, &end_char, NULL, 0,
    108                    &smallStatus);
    109       if (U_FAILURE(smallStatus)) {
    110         // this will be reached for the converters that fill the set with
    111         // strings. Those should be ignored by our system
    112       } else {
    113         upvec_setValue(upvec, start_char, end_char, column, static_cast<uint32_t>(~0), mask,
    114                        status);
    115       }
    116     }
    117     ucnv_close(test_converter);
    118     uset_close(unicode_point_set);
    119     if (U_FAILURE(*status)) {
    120       return;
    121     }
    122   }
    123 
    124   // handle excluded encodings! Simply set their values to all 1's in the upvec
    125   if (excludedCodePoints) {
    126     int32_t item_count = uset_getItemCount(excludedCodePoints);
    127     for (int32_t j = 0; j < item_count; ++j) {
    128       UChar32 start_char;
    129       UChar32 end_char;
    130 
    131       uset_getItem(excludedCodePoints, j, &start_char, &end_char, NULL, 0,
    132                    status);
    133       for (int32_t col = 0; col < columns; col++) {
    134         upvec_setValue(upvec, start_char, end_char, col, static_cast<uint32_t>(~0), static_cast<uint32_t>(~0),
    135                       status);
    136       }
    137     }
    138   }
    139 
    140   // alright. Now, let's put things in the same exact form you'd get when you
    141   // unserialize things.
    142   result->trie = upvec_compactToUTrie2WithRowIndexes(upvec, status);
    143   result->pv = upvec_cloneArray(upvec, &result->pvCount, NULL, status);
    144   result->pvCount *= columns;  // number of uint32_t = rows * columns
    145   result->ownPv = TRUE;
    146 }
    147 
    148 /* open a selector. If converterListSize is 0, build for all converters.
    149    If excludedCodePoints is NULL, don't exclude any codepoints */
    150 U_CAPI UConverterSelector* U_EXPORT2
    151 ucnvsel_open(const char* const*  converterList, int32_t converterListSize,
    152              const USet* excludedCodePoints,
    153              const UConverterUnicodeSet whichSet, UErrorCode* status) {
    154   // check if already failed
    155   if (U_FAILURE(*status)) {
    156     return NULL;
    157   }
    158   // ensure args make sense!
    159   if (converterListSize < 0 || (converterList == NULL && converterListSize != 0)) {
    160     *status = U_ILLEGAL_ARGUMENT_ERROR;
    161     return NULL;
    162   }
    163 
    164   // allocate a new converter
    165   LocalUConverterSelectorPointer newSelector(
    166     (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector)));
    167   if (newSelector.isNull()) {
    168     *status = U_MEMORY_ALLOCATION_ERROR;
    169     return NULL;
    170   }
    171   uprv_memset(newSelector.getAlias(), 0, sizeof(UConverterSelector));
    172 
    173   if (converterListSize == 0) {
    174     converterList = NULL;
    175     converterListSize = ucnv_countAvailable();
    176   }
    177   newSelector->encodings =
    178     (char**)uprv_malloc(converterListSize * sizeof(char*));
    179   if (!newSelector->encodings) {
    180     *status = U_MEMORY_ALLOCATION_ERROR;
    181     return NULL;
    182   }
    183   newSelector->encodings[0] = NULL;  // now we can call ucnvsel_close()
    184 
    185   // make a backup copy of the list of converters
    186   int32_t totalSize = 0;
    187   int32_t i;
    188   for (i = 0; i < converterListSize; i++) {
    189     totalSize +=
    190       (int32_t)uprv_strlen(converterList != NULL ? converterList[i] : ucnv_getAvailableName(i)) + 1;
    191   }
    192   // 4-align the totalSize to 4-align the size of the serialized form
    193   int32_t encodingStrPadding = totalSize & 3;
    194   if (encodingStrPadding != 0) {
    195     encodingStrPadding = 4 - encodingStrPadding;
    196   }
    197   newSelector->encodingStrLength = totalSize += encodingStrPadding;
    198   char* allStrings = (char*) uprv_malloc(totalSize);
    199   if (!allStrings) {
    200     *status = U_MEMORY_ALLOCATION_ERROR;
    201     return NULL;
    202   }
    203 
    204   for (i = 0; i < converterListSize; i++) {
    205     newSelector->encodings[i] = allStrings;
    206     uprv_strcpy(newSelector->encodings[i],
    207                 converterList != NULL ? converterList[i] : ucnv_getAvailableName(i));
    208     allStrings += uprv_strlen(newSelector->encodings[i]) + 1;
    209   }
    210   while (encodingStrPadding > 0) {
    211     *allStrings++ = 0;
    212     --encodingStrPadding;
    213   }
    214 
    215   newSelector->ownEncodingStrings = TRUE;
    216   newSelector->encodingsCount = converterListSize;
    217   UPropsVectors *upvec = upvec_open((converterListSize+31)/32, status);
    218   generateSelectorData(newSelector.getAlias(), upvec, excludedCodePoints, whichSet, status);
    219   upvec_close(upvec);
    220 
    221   if (U_FAILURE(*status)) {
    222     return NULL;
    223   }
    224 
    225   return newSelector.orphan();
    226 }
    227 
    228 /* close opened selector */
    229 U_CAPI void U_EXPORT2
    230 ucnvsel_close(UConverterSelector *sel) {
    231   if (!sel) {
    232     return;
    233   }
    234   if (sel->ownEncodingStrings) {
    235     uprv_free(sel->encodings[0]);
    236   }
    237   uprv_free(sel->encodings);
    238   if (sel->ownPv) {
    239     uprv_free(sel->pv);
    240   }
    241   utrie2_close(sel->trie);
    242   uprv_free(sel->swapped);
    243   uprv_free(sel);
    244 }
    245 
    246 static const UDataInfo dataInfo = {
    247   sizeof(UDataInfo),
    248   0,
    249 
    250   U_IS_BIG_ENDIAN,
    251   U_CHARSET_FAMILY,
    252   U_SIZEOF_UCHAR,
    253   0,
    254 
    255   { 0x43, 0x53, 0x65, 0x6c },   /* dataFormat="CSel" */
    256   { 1, 0, 0, 0 },               /* formatVersion */
    257   { 0, 0, 0, 0 }                /* dataVersion */
    258 };
    259 
    260 enum {
    261   UCNVSEL_INDEX_TRIE_SIZE,      // trie size in bytes
    262   UCNVSEL_INDEX_PV_COUNT,       // number of uint32_t in the bit vectors
    263   UCNVSEL_INDEX_NAMES_COUNT,    // number of encoding names
    264   UCNVSEL_INDEX_NAMES_LENGTH,   // number of encoding name bytes including padding
    265   UCNVSEL_INDEX_SIZE = 15,      // bytes following the DataHeader
    266   UCNVSEL_INDEX_COUNT = 16
    267 };
    268 
    269 /*
    270  * Serialized form of a UConverterSelector, formatVersion 1:
    271  *
    272  * The serialized form begins with a standard ICU DataHeader with a UDataInfo
    273  * as the template above.
    274  * This is followed by:
    275  *   int32_t indexes[UCNVSEL_INDEX_COUNT];          // see index entry constants above
    276  *   serialized UTrie2;                             // indexes[UCNVSEL_INDEX_TRIE_SIZE] bytes
    277  *   uint32_t pv[indexes[UCNVSEL_INDEX_PV_COUNT]];  // bit vectors
    278  *   char* encodingNames[indexes[UCNVSEL_INDEX_NAMES_LENGTH]];  // NUL-terminated strings + padding
    279  */
    280 
    281 /* serialize a selector */
    282 U_CAPI int32_t U_EXPORT2
    283 ucnvsel_serialize(const UConverterSelector* sel,
    284                   void* buffer, int32_t bufferCapacity, UErrorCode* status) {
    285   // check if already failed
    286   if (U_FAILURE(*status)) {
    287     return 0;
    288   }
    289   // ensure args make sense!
    290   uint8_t *p = (uint8_t *)buffer;
    291   if (bufferCapacity < 0 ||
    292       (bufferCapacity > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
    293   ) {
    294     *status = U_ILLEGAL_ARGUMENT_ERROR;
    295     return 0;
    296   }
    297   // add up the size of the serialized form
    298   int32_t serializedTrieSize = utrie2_serialize(sel->trie, NULL, 0, status);
    299   if (*status != U_BUFFER_OVERFLOW_ERROR && U_FAILURE(*status)) {
    300     return 0;
    301   }
    302   *status = U_ZERO_ERROR;
    303 
    304   DataHeader header;
    305   uprv_memset(&header, 0, sizeof(header));
    306   header.dataHeader.headerSize = (uint16_t)((sizeof(header) + 15) & ~15);
    307   header.dataHeader.magic1 = 0xda;
    308   header.dataHeader.magic2 = 0x27;
    309   uprv_memcpy(&header.info, &dataInfo, sizeof(dataInfo));
    310 
    311   int32_t indexes[UCNVSEL_INDEX_COUNT] = {
    312     serializedTrieSize,
    313     sel->pvCount,
    314     sel->encodingsCount,
    315     sel->encodingStrLength
    316   };
    317 
    318   int32_t totalSize =
    319     header.dataHeader.headerSize +
    320     (int32_t)sizeof(indexes) +
    321     serializedTrieSize +
    322     sel->pvCount * 4 +
    323     sel->encodingStrLength;
    324   indexes[UCNVSEL_INDEX_SIZE] = totalSize - header.dataHeader.headerSize;
    325   if (totalSize > bufferCapacity) {
    326     *status = U_BUFFER_OVERFLOW_ERROR;
    327     return totalSize;
    328   }
    329   // ok, save!
    330   int32_t length = header.dataHeader.headerSize;
    331   uprv_memcpy(p, &header, sizeof(header));
    332   uprv_memset(p + sizeof(header), 0, length - sizeof(header));
    333   p += length;
    334 
    335   length = (int32_t)sizeof(indexes);
    336   uprv_memcpy(p, indexes, length);
    337   p += length;
    338 
    339   utrie2_serialize(sel->trie, p, serializedTrieSize, status);
    340   p += serializedTrieSize;
    341 
    342   length = sel->pvCount * 4;
    343   uprv_memcpy(p, sel->pv, length);
    344   p += length;
    345 
    346   uprv_memcpy(p, sel->encodings[0], sel->encodingStrLength);
    347   p += sel->encodingStrLength;
    348 
    349   return totalSize;
    350 }
    351 
    352 /**
    353  * swap a selector into the desired Endianness and Asciiness of
    354  * the system. Just as FYI, selectors are always saved in the format
    355  * of the system that created them. They are only converted if used
    356  * on another system. In other words, selectors created on different
    357  * system can be different even if the params are identical (endianness
    358  * and Asciiness differences only)
    359  *
    360  * @param ds pointer to data swapper containing swapping info
    361  * @param inData pointer to incoming data
    362  * @param length length of inData in bytes
    363  * @param outData pointer to output data. Capacity should
    364  *                be at least equal to capacity of inData
    365  * @param status an in/out ICU UErrorCode
    366  * @return 0 on failure, number of bytes swapped on success
    367  *         number of bytes swapped can be smaller than length
    368  */
    369 static int32_t
    370 ucnvsel_swap(const UDataSwapper *ds,
    371              const void *inData, int32_t length,
    372              void *outData, UErrorCode *status) {
    373   /* udata_swapDataHeader checks the arguments */
    374   int32_t headerSize = udata_swapDataHeader(ds, inData, length, outData, status);
    375   if(U_FAILURE(*status)) {
    376     return 0;
    377   }
    378 
    379   /* check data format and format version */
    380   const UDataInfo *pInfo = (const UDataInfo *)((const char *)inData + 4);
    381   if(!(
    382     pInfo->dataFormat[0] == 0x43 &&  /* dataFormat="CSel" */
    383     pInfo->dataFormat[1] == 0x53 &&
    384     pInfo->dataFormat[2] == 0x65 &&
    385     pInfo->dataFormat[3] == 0x6c
    386   )) {
    387     udata_printError(ds, "ucnvsel_swap(): data format %02x.%02x.%02x.%02x is not recognized as UConverterSelector data\n",
    388                      pInfo->dataFormat[0], pInfo->dataFormat[1],
    389                      pInfo->dataFormat[2], pInfo->dataFormat[3]);
    390     *status = U_INVALID_FORMAT_ERROR;
    391     return 0;
    392   }
    393   if(pInfo->formatVersion[0] != 1) {
    394     udata_printError(ds, "ucnvsel_swap(): format version %02x is not supported\n",
    395                      pInfo->formatVersion[0]);
    396     *status = U_UNSUPPORTED_ERROR;
    397     return 0;
    398   }
    399 
    400   if(length >= 0) {
    401     length -= headerSize;
    402     if(length < 16*4) {
    403       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for UConverterSelector data\n",
    404                        length);
    405       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    406       return 0;
    407     }
    408   }
    409 
    410   const uint8_t *inBytes = (const uint8_t *)inData + headerSize;
    411   uint8_t *outBytes = (uint8_t *)outData + headerSize;
    412 
    413   /* read the indexes */
    414   const int32_t *inIndexes = (const int32_t *)inBytes;
    415   int32_t indexes[16];
    416   int32_t i;
    417   for(i = 0; i < 16; ++i) {
    418     indexes[i] = udata_readInt32(ds, inIndexes[i]);
    419   }
    420 
    421   /* get the total length of the data */
    422   int32_t size = indexes[UCNVSEL_INDEX_SIZE];
    423   if(length >= 0) {
    424     if(length < size) {
    425       udata_printError(ds, "ucnvsel_swap(): too few bytes (%d after header) for all of UConverterSelector data\n",
    426                        length);
    427       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    428       return 0;
    429     }
    430 
    431     /* copy the data for inaccessible bytes */
    432     if(inBytes != outBytes) {
    433       uprv_memcpy(outBytes, inBytes, size);
    434     }
    435 
    436     int32_t offset = 0, count;
    437 
    438     /* swap the int32_t indexes[] */
    439     count = UCNVSEL_INDEX_COUNT*4;
    440     ds->swapArray32(ds, inBytes, count, outBytes, status);
    441     offset += count;
    442 
    443     /* swap the UTrie2 */
    444     count = indexes[UCNVSEL_INDEX_TRIE_SIZE];
    445     utrie2_swap(ds, inBytes + offset, count, outBytes + offset, status);
    446     offset += count;
    447 
    448     /* swap the uint32_t pv[] */
    449     count = indexes[UCNVSEL_INDEX_PV_COUNT]*4;
    450     ds->swapArray32(ds, inBytes + offset, count, outBytes + offset, status);
    451     offset += count;
    452 
    453     /* swap the encoding names */
    454     count = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    455     ds->swapInvChars(ds, inBytes + offset, count, outBytes + offset, status);
    456     offset += count;
    457 
    458     U_ASSERT(offset == size);
    459   }
    460 
    461   return headerSize + size;
    462 }
    463 
    464 /* unserialize a selector */
    465 U_CAPI UConverterSelector* U_EXPORT2
    466 ucnvsel_openFromSerialized(const void* buffer, int32_t length, UErrorCode* status) {
    467   // check if already failed
    468   if (U_FAILURE(*status)) {
    469     return NULL;
    470   }
    471   // ensure args make sense!
    472   const uint8_t *p = (const uint8_t *)buffer;
    473   if (length <= 0 ||
    474       (length > 0 && (p == NULL || (U_POINTER_MASK_LSB(p, 3) != 0)))
    475   ) {
    476     *status = U_ILLEGAL_ARGUMENT_ERROR;
    477     return NULL;
    478   }
    479   // header
    480   if (length < 32) {
    481     // not even enough space for a minimal header
    482     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    483     return NULL;
    484   }
    485   const DataHeader *pHeader = (const DataHeader *)p;
    486   if (!(
    487     pHeader->dataHeader.magic1==0xda &&
    488     pHeader->dataHeader.magic2==0x27 &&
    489     pHeader->info.dataFormat[0] == 0x43 &&
    490     pHeader->info.dataFormat[1] == 0x53 &&
    491     pHeader->info.dataFormat[2] == 0x65 &&
    492     pHeader->info.dataFormat[3] == 0x6c
    493   )) {
    494     /* header not valid or dataFormat not recognized */
    495     *status = U_INVALID_FORMAT_ERROR;
    496     return NULL;
    497   }
    498   if (pHeader->info.formatVersion[0] != 1) {
    499     *status = U_UNSUPPORTED_ERROR;
    500     return NULL;
    501   }
    502   uint8_t* swapped = NULL;
    503   if (pHeader->info.isBigEndian != U_IS_BIG_ENDIAN ||
    504       pHeader->info.charsetFamily != U_CHARSET_FAMILY
    505   ) {
    506     // swap the data
    507     UDataSwapper *ds =
    508       udata_openSwapperForInputData(p, length, U_IS_BIG_ENDIAN, U_CHARSET_FAMILY, status);
    509     int32_t totalSize = ucnvsel_swap(ds, p, -1, NULL, status);
    510     if (U_FAILURE(*status)) {
    511       udata_closeSwapper(ds);
    512       return NULL;
    513     }
    514     if (length < totalSize) {
    515       udata_closeSwapper(ds);
    516       *status = U_INDEX_OUTOFBOUNDS_ERROR;
    517       return NULL;
    518     }
    519     swapped = (uint8_t*)uprv_malloc(totalSize);
    520     if (swapped == NULL) {
    521       udata_closeSwapper(ds);
    522       *status = U_MEMORY_ALLOCATION_ERROR;
    523       return NULL;
    524     }
    525     ucnvsel_swap(ds, p, length, swapped, status);
    526     udata_closeSwapper(ds);
    527     if (U_FAILURE(*status)) {
    528       uprv_free(swapped);
    529       return NULL;
    530     }
    531     p = swapped;
    532     pHeader = (const DataHeader *)p;
    533   }
    534   if (length < (pHeader->dataHeader.headerSize + 16 * 4)) {
    535     // not even enough space for the header and the indexes
    536     uprv_free(swapped);
    537     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    538     return NULL;
    539   }
    540   p += pHeader->dataHeader.headerSize;
    541   length -= pHeader->dataHeader.headerSize;
    542   // indexes
    543   const int32_t *indexes = (const int32_t *)p;
    544   if (length < indexes[UCNVSEL_INDEX_SIZE]) {
    545     uprv_free(swapped);
    546     *status = U_INDEX_OUTOFBOUNDS_ERROR;
    547     return NULL;
    548   }
    549   p += UCNVSEL_INDEX_COUNT * 4;
    550   // create and populate the selector object
    551   UConverterSelector* sel = (UConverterSelector*)uprv_malloc(sizeof(UConverterSelector));
    552   char **encodings =
    553     (char **)uprv_malloc(
    554       indexes[UCNVSEL_INDEX_NAMES_COUNT] * sizeof(char *));
    555   if (sel == NULL || encodings == NULL) {
    556     uprv_free(swapped);
    557     uprv_free(sel);
    558     uprv_free(encodings);
    559     *status = U_MEMORY_ALLOCATION_ERROR;
    560     return NULL;
    561   }
    562   uprv_memset(sel, 0, sizeof(UConverterSelector));
    563   sel->pvCount = indexes[UCNVSEL_INDEX_PV_COUNT];
    564   sel->encodings = encodings;
    565   sel->encodingsCount = indexes[UCNVSEL_INDEX_NAMES_COUNT];
    566   sel->encodingStrLength = indexes[UCNVSEL_INDEX_NAMES_LENGTH];
    567   sel->swapped = swapped;
    568   // trie
    569   sel->trie = utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS,
    570                                         p, indexes[UCNVSEL_INDEX_TRIE_SIZE], NULL,
    571                                         status);
    572   p += indexes[UCNVSEL_INDEX_TRIE_SIZE];
    573   if (U_FAILURE(*status)) {
    574     ucnvsel_close(sel);
    575     return NULL;
    576   }
    577   // bit vectors
    578   sel->pv = (uint32_t *)p;
    579   p += sel->pvCount * 4;
    580   // encoding names
    581   char* s = (char*)p;
    582   for (int32_t i = 0; i < sel->encodingsCount; ++i) {
    583     sel->encodings[i] = s;
    584     s += uprv_strlen(s) + 1;
    585   }
    586   p += sel->encodingStrLength;
    587 
    588   return sel;
    589 }
    590 
    591 // a bunch of functions for the enumeration thingie! Nothing fancy here. Just
    592 // iterate over the selected encodings
    593 struct Enumerator {
    594   int16_t* index;
    595   int16_t length;
    596   int16_t cur;
    597   const UConverterSelector* sel;
    598 };
    599 
    600 U_CDECL_BEGIN
    601 
    602 static void U_CALLCONV
    603 ucnvsel_close_selector_iterator(UEnumeration *enumerator) {
    604   uprv_free(((Enumerator*)(enumerator->context))->index);
    605   uprv_free(enumerator->context);
    606   uprv_free(enumerator);
    607 }
    608 
    609 
    610 static int32_t U_CALLCONV
    611 ucnvsel_count_encodings(UEnumeration *enumerator, UErrorCode *status) {
    612   // check if already failed
    613   if (U_FAILURE(*status)) {
    614     return 0;
    615   }
    616   return ((Enumerator*)(enumerator->context))->length;
    617 }
    618 
    619 
    620 static const char* U_CALLCONV ucnvsel_next_encoding(UEnumeration* enumerator,
    621                                                  int32_t* resultLength,
    622                                                  UErrorCode* status) {
    623   // check if already failed
    624   if (U_FAILURE(*status)) {
    625     return NULL;
    626   }
    627 
    628   int16_t cur = ((Enumerator*)(enumerator->context))->cur;
    629   const UConverterSelector* sel;
    630   const char* result;
    631   if (cur >= ((Enumerator*)(enumerator->context))->length) {
    632     return NULL;
    633   }
    634   sel = ((Enumerator*)(enumerator->context))->sel;
    635   result = sel->encodings[((Enumerator*)(enumerator->context))->index[cur] ];
    636   ((Enumerator*)(enumerator->context))->cur++;
    637   if (resultLength) {
    638     *resultLength = (int32_t)uprv_strlen(result);
    639   }
    640   return result;
    641 }
    642 
    643 static void U_CALLCONV ucnvsel_reset_iterator(UEnumeration* enumerator,
    644                                            UErrorCode* status) {
    645   // check if already failed
    646   if (U_FAILURE(*status)) {
    647     return ;
    648   }
    649   ((Enumerator*)(enumerator->context))->cur = 0;
    650 }
    651 
    652 U_CDECL_END
    653 
    654 
    655 static const UEnumeration defaultEncodings = {
    656   NULL,
    657     NULL,
    658     ucnvsel_close_selector_iterator,
    659     ucnvsel_count_encodings,
    660     uenum_unextDefault,
    661     ucnvsel_next_encoding,
    662     ucnvsel_reset_iterator
    663 };
    664 
    665 
    666 // internal fn to intersect two sets of masks
    667 // returns whether the mask has reduced to all zeros
    668 static UBool intersectMasks(uint32_t* dest, const uint32_t* source1, int32_t len) {
    669   int32_t i;
    670   uint32_t oredDest = 0;
    671   for (i = 0 ; i < len ; ++i) {
    672     oredDest |= (dest[i] &= source1[i]);
    673   }
    674   return oredDest == 0;
    675 }
    676 
    677 // internal fn to count how many 1's are there in a mask
    678 // algorithm taken from  http://graphics.stanford.edu/~seander/bithacks.html
    679 static int16_t countOnes(uint32_t* mask, int32_t len) {
    680   int32_t i, totalOnes = 0;
    681   for (i = 0 ; i < len ; ++i) {
    682     uint32_t ent = mask[i];
    683     for (; ent; totalOnes++)
    684     {
    685       ent &= ent - 1; // clear the least significant bit set
    686     }
    687   }
    688   return static_cast<int16_t>(totalOnes);
    689 }
    690 
    691 
    692 /* internal function! */
    693 static UEnumeration *selectForMask(const UConverterSelector* sel,
    694                                    uint32_t *mask, UErrorCode *status) {
    695   // this is the context we will use. Store a table of indices to which
    696   // encodings are legit.
    697   struct Enumerator* result = (Enumerator*)uprv_malloc(sizeof(Enumerator));
    698   if (result == NULL) {
    699     uprv_free(mask);
    700     *status = U_MEMORY_ALLOCATION_ERROR;
    701     return NULL;
    702   }
    703   result->index = NULL;  // this will be allocated later!
    704   result->length = result->cur = 0;
    705   result->sel = sel;
    706 
    707   UEnumeration *en = (UEnumeration *)uprv_malloc(sizeof(UEnumeration));
    708   if (en == NULL) {
    709     // TODO(markus): Combine Enumerator and UEnumeration into one struct.
    710     uprv_free(mask);
    711     uprv_free(result);
    712     *status = U_MEMORY_ALLOCATION_ERROR;
    713     return NULL;
    714   }
    715   memcpy(en, &defaultEncodings, sizeof(UEnumeration));
    716   en->context = result;
    717 
    718   int32_t columns = (sel->encodingsCount+31)/32;
    719   int16_t numOnes = countOnes(mask, columns);
    720   // now, we know the exact space we need for index
    721   if (numOnes > 0) {
    722     result->index = (int16_t*) uprv_malloc(numOnes * sizeof(int16_t));
    723 
    724     int32_t i, j;
    725     int16_t k = 0;
    726     for (j = 0 ; j < columns; j++) {
    727       uint32_t v = mask[j];
    728       for (i = 0 ; i < 32 && k < sel->encodingsCount; i++, k++) {
    729         if ((v & 1) != 0) {
    730           result->index[result->length++] = k;
    731         }
    732         v >>= 1;
    733       }
    734     }
    735   } //otherwise, index will remain NULL (and will never be touched by
    736     //the enumerator code anyway)
    737   uprv_free(mask);
    738   return en;
    739 }
    740 
    741 /* check a string against the selector - UTF16 version */
    742 U_CAPI UEnumeration * U_EXPORT2
    743 ucnvsel_selectForString(const UConverterSelector* sel,
    744                         const UChar *s, int32_t length, UErrorCode *status) {
    745   // check if already failed
    746   if (U_FAILURE(*status)) {
    747     return NULL;
    748   }
    749   // ensure args make sense!
    750   if (sel == NULL || (s == NULL && length != 0)) {
    751     *status = U_ILLEGAL_ARGUMENT_ERROR;
    752     return NULL;
    753   }
    754 
    755   int32_t columns = (sel->encodingsCount+31)/32;
    756   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
    757   if (mask == NULL) {
    758     *status = U_MEMORY_ALLOCATION_ERROR;
    759     return NULL;
    760   }
    761   uprv_memset(mask, ~0, columns *4);
    762 
    763   if(s!=NULL) {
    764     const UChar *limit;
    765     if (length >= 0) {
    766       limit = s + length;
    767     } else {
    768       limit = NULL;
    769     }
    770 
    771     while (limit == NULL ? *s != 0 : s != limit) {
    772       UChar32 c;
    773       uint16_t pvIndex;
    774       UTRIE2_U16_NEXT16(sel->trie, s, limit, c, pvIndex);
    775       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
    776         break;
    777       }
    778     }
    779   }
    780   return selectForMask(sel, mask, status);
    781 }
    782 
    783 /* check a string against the selector - UTF8 version */
    784 U_CAPI UEnumeration * U_EXPORT2
    785 ucnvsel_selectForUTF8(const UConverterSelector* sel,
    786                       const char *s, int32_t length, UErrorCode *status) {
    787   // check if already failed
    788   if (U_FAILURE(*status)) {
    789     return NULL;
    790   }
    791   // ensure args make sense!
    792   if (sel == NULL || (s == NULL && length != 0)) {
    793     *status = U_ILLEGAL_ARGUMENT_ERROR;
    794     return NULL;
    795   }
    796 
    797   int32_t columns = (sel->encodingsCount+31)/32;
    798   uint32_t* mask = (uint32_t*) uprv_malloc(columns * 4);
    799   if (mask == NULL) {
    800     *status = U_MEMORY_ALLOCATION_ERROR;
    801     return NULL;
    802   }
    803   uprv_memset(mask, ~0, columns *4);
    804 
    805   if (length < 0) {
    806     length = (int32_t)uprv_strlen(s);
    807   }
    808 
    809   if(s!=NULL) {
    810     const char *limit = s + length;
    811 
    812     while (s != limit) {
    813       uint16_t pvIndex;
    814       UTRIE2_U8_NEXT16(sel->trie, s, limit, pvIndex);
    815       if (intersectMasks(mask, sel->pv+pvIndex, columns)) {
    816         break;
    817       }
    818     }
    819   }
    820   return selectForMask(sel, mask, status);
    821 }
    822 
    823 #endif  // !UCONFIG_NO_CONVERSION
    824