Home | History | Annotate | Download | only in internal
      1 #ifndef JEMALLOC_INTERNAL_SIZE_H
      2 #define JEMALLOC_INTERNAL_SIZE_H
      3 
      4 #include "jemalloc/internal/bit_util.h"
      5 #include "jemalloc/internal/pages.h"
      6 #include "jemalloc/internal/size_classes.h"
      7 #include "jemalloc/internal/util.h"
      8 
      9 /*
     10  * sz module: Size computations.
     11  *
     12  * Some abbreviations used here:
     13  *   p: Page
     14  *   ind: Index
     15  *   s, sz: Size
     16  *   u: Usable size
     17  *   a: Aligned
     18  *
     19  * These are not always used completely consistently, but should be enough to
     20  * interpret function names.  E.g. sz_psz2ind converts page size to page size
     21  * index; sz_sa2u converts a (size, alignment) allocation request to the usable
     22  * size that would result from such an allocation.
     23  */
     24 
     25 /*
     26  * sz_pind2sz_tab encodes the same information as could be computed by
     27  * sz_pind2sz_compute().
     28  */
     29 extern size_t const sz_pind2sz_tab[NPSIZES+1];
     30 /*
     31  * sz_index2size_tab encodes the same information as could be computed (at
     32  * unacceptable cost in some code paths) by sz_index2size_compute().
     33  */
     34 extern size_t const sz_index2size_tab[NSIZES];
     35 /*
     36  * sz_size2index_tab is a compact lookup table that rounds request sizes up to
     37  * size classes.  In order to reduce cache footprint, the table is compressed,
     38  * and all accesses are via sz_size2index().
     39  */
     40 extern uint8_t const sz_size2index_tab[];
     41 
     42 static const size_t sz_large_pad =
     43 #ifdef JEMALLOC_CACHE_OBLIVIOUS
     44     PAGE
     45 #else
     46     0
     47 #endif
     48     ;
     49 
     50 JEMALLOC_ALWAYS_INLINE pszind_t
     51 sz_psz2ind(size_t psz) {
     52 	if (unlikely(psz > LARGE_MAXCLASS)) {
     53 		return NPSIZES;
     54 	}
     55 	{
     56 		pszind_t x = lg_floor((psz<<1)-1);
     57 		pszind_t shift = (x < LG_SIZE_CLASS_GROUP + LG_PAGE) ? 0 : x -
     58 		    (LG_SIZE_CLASS_GROUP + LG_PAGE);
     59 		pszind_t grp = shift << LG_SIZE_CLASS_GROUP;
     60 
     61 		pszind_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_PAGE + 1) ?
     62 		    LG_PAGE : x - LG_SIZE_CLASS_GROUP - 1;
     63 
     64 		size_t delta_inverse_mask = ZU(-1) << lg_delta;
     65 		pszind_t mod = ((((psz-1) & delta_inverse_mask) >> lg_delta)) &
     66 		    ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1);
     67 
     68 		pszind_t ind = grp + mod;
     69 		return ind;
     70 	}
     71 }
     72 
     73 static inline size_t
     74 sz_pind2sz_compute(pszind_t pind) {
     75 	if (unlikely(pind == NPSIZES)) {
     76 		return LARGE_MAXCLASS + PAGE;
     77 	}
     78 	{
     79 		size_t grp = pind >> LG_SIZE_CLASS_GROUP;
     80 		size_t mod = pind & ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1);
     81 
     82 		size_t grp_size_mask = ~((!!grp)-1);
     83 		size_t grp_size = ((ZU(1) << (LG_PAGE +
     84 		    (LG_SIZE_CLASS_GROUP-1))) << grp) & grp_size_mask;
     85 
     86 		size_t shift = (grp == 0) ? 1 : grp;
     87 		size_t lg_delta = shift + (LG_PAGE-1);
     88 		size_t mod_size = (mod+1) << lg_delta;
     89 
     90 		size_t sz = grp_size + mod_size;
     91 		return sz;
     92 	}
     93 }
     94 
     95 static inline size_t
     96 sz_pind2sz_lookup(pszind_t pind) {
     97 	size_t ret = (size_t)sz_pind2sz_tab[pind];
     98 	assert(ret == sz_pind2sz_compute(pind));
     99 	return ret;
    100 }
    101 
    102 static inline size_t
    103 sz_pind2sz(pszind_t pind) {
    104 	assert(pind < NPSIZES+1);
    105 	return sz_pind2sz_lookup(pind);
    106 }
    107 
    108 static inline size_t
    109 sz_psz2u(size_t psz) {
    110 	if (unlikely(psz > LARGE_MAXCLASS)) {
    111 		return LARGE_MAXCLASS + PAGE;
    112 	}
    113 	{
    114 		size_t x = lg_floor((psz<<1)-1);
    115 		size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_PAGE + 1) ?
    116 		    LG_PAGE : x - LG_SIZE_CLASS_GROUP - 1;
    117 		size_t delta = ZU(1) << lg_delta;
    118 		size_t delta_mask = delta - 1;
    119 		size_t usize = (psz + delta_mask) & ~delta_mask;
    120 		return usize;
    121 	}
    122 }
    123 
    124 static inline szind_t
    125 sz_size2index_compute(size_t size) {
    126 	if (unlikely(size > LARGE_MAXCLASS)) {
    127 		return NSIZES;
    128 	}
    129 #if (NTBINS != 0)
    130 	if (size <= (ZU(1) << LG_TINY_MAXCLASS)) {
    131 		szind_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1;
    132 		szind_t lg_ceil = lg_floor(pow2_ceil_zu(size));
    133 		return (lg_ceil < lg_tmin ? 0 : lg_ceil - lg_tmin);
    134 	}
    135 #endif
    136 	{
    137 		szind_t x = lg_floor((size<<1)-1);
    138 		szind_t shift = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM) ? 0 :
    139 		    x - (LG_SIZE_CLASS_GROUP + LG_QUANTUM);
    140 		szind_t grp = shift << LG_SIZE_CLASS_GROUP;
    141 
    142 		szind_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1)
    143 		    ? LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1;
    144 
    145 		size_t delta_inverse_mask = ZU(-1) << lg_delta;
    146 		szind_t mod = ((((size-1) & delta_inverse_mask) >> lg_delta)) &
    147 		    ((ZU(1) << LG_SIZE_CLASS_GROUP) - 1);
    148 
    149 		szind_t index = NTBINS + grp + mod;
    150 		return index;
    151 	}
    152 }
    153 
    154 JEMALLOC_ALWAYS_INLINE szind_t
    155 sz_size2index_lookup(size_t size) {
    156 	assert(size <= LOOKUP_MAXCLASS);
    157 	{
    158 		szind_t ret = (sz_size2index_tab[(size-1) >> LG_TINY_MIN]);
    159 		assert(ret == sz_size2index_compute(size));
    160 		return ret;
    161 	}
    162 }
    163 
    164 JEMALLOC_ALWAYS_INLINE szind_t
    165 sz_size2index(size_t size) {
    166 	assert(size > 0);
    167 	if (likely(size <= LOOKUP_MAXCLASS)) {
    168 		return sz_size2index_lookup(size);
    169 	}
    170 	return sz_size2index_compute(size);
    171 }
    172 
    173 static inline size_t
    174 sz_index2size_compute(szind_t index) {
    175 #if (NTBINS > 0)
    176 	if (index < NTBINS) {
    177 		return (ZU(1) << (LG_TINY_MAXCLASS - NTBINS + 1 + index));
    178 	}
    179 #endif
    180 	{
    181 		size_t reduced_index = index - NTBINS;
    182 		size_t grp = reduced_index >> LG_SIZE_CLASS_GROUP;
    183 		size_t mod = reduced_index & ((ZU(1) << LG_SIZE_CLASS_GROUP) -
    184 		    1);
    185 
    186 		size_t grp_size_mask = ~((!!grp)-1);
    187 		size_t grp_size = ((ZU(1) << (LG_QUANTUM +
    188 		    (LG_SIZE_CLASS_GROUP-1))) << grp) & grp_size_mask;
    189 
    190 		size_t shift = (grp == 0) ? 1 : grp;
    191 		size_t lg_delta = shift + (LG_QUANTUM-1);
    192 		size_t mod_size = (mod+1) << lg_delta;
    193 
    194 		size_t usize = grp_size + mod_size;
    195 		return usize;
    196 	}
    197 }
    198 
    199 JEMALLOC_ALWAYS_INLINE size_t
    200 sz_index2size_lookup(szind_t index) {
    201 	size_t ret = (size_t)sz_index2size_tab[index];
    202 	assert(ret == sz_index2size_compute(index));
    203 	return ret;
    204 }
    205 
    206 JEMALLOC_ALWAYS_INLINE size_t
    207 sz_index2size(szind_t index) {
    208 	assert(index < NSIZES);
    209 	return sz_index2size_lookup(index);
    210 }
    211 
    212 JEMALLOC_ALWAYS_INLINE size_t
    213 sz_s2u_compute(size_t size) {
    214 	if (unlikely(size > LARGE_MAXCLASS)) {
    215 		return 0;
    216 	}
    217 #if (NTBINS > 0)
    218 	if (size <= (ZU(1) << LG_TINY_MAXCLASS)) {
    219 		size_t lg_tmin = LG_TINY_MAXCLASS - NTBINS + 1;
    220 		size_t lg_ceil = lg_floor(pow2_ceil_zu(size));
    221 		return (lg_ceil < lg_tmin ? (ZU(1) << lg_tmin) :
    222 		    (ZU(1) << lg_ceil));
    223 	}
    224 #endif
    225 	{
    226 		size_t x = lg_floor((size<<1)-1);
    227 		size_t lg_delta = (x < LG_SIZE_CLASS_GROUP + LG_QUANTUM + 1)
    228 		    ?  LG_QUANTUM : x - LG_SIZE_CLASS_GROUP - 1;
    229 		size_t delta = ZU(1) << lg_delta;
    230 		size_t delta_mask = delta - 1;
    231 		size_t usize = (size + delta_mask) & ~delta_mask;
    232 		return usize;
    233 	}
    234 }
    235 
    236 JEMALLOC_ALWAYS_INLINE size_t
    237 sz_s2u_lookup(size_t size) {
    238 	size_t ret = sz_index2size_lookup(sz_size2index_lookup(size));
    239 
    240 	assert(ret == sz_s2u_compute(size));
    241 	return ret;
    242 }
    243 
    244 /*
    245  * Compute usable size that would result from allocating an object with the
    246  * specified size.
    247  */
    248 JEMALLOC_ALWAYS_INLINE size_t
    249 sz_s2u(size_t size) {
    250 	assert(size > 0);
    251 	if (likely(size <= LOOKUP_MAXCLASS)) {
    252 		return sz_s2u_lookup(size);
    253 	}
    254 	return sz_s2u_compute(size);
    255 }
    256 
    257 /*
    258  * Compute usable size that would result from allocating an object with the
    259  * specified size and alignment.
    260  */
    261 JEMALLOC_ALWAYS_INLINE size_t
    262 sz_sa2u(size_t size, size_t alignment) {
    263 	size_t usize;
    264 
    265 	assert(alignment != 0 && ((alignment - 1) & alignment) == 0);
    266 
    267 	/* Try for a small size class. */
    268 	if (size <= SMALL_MAXCLASS && alignment < PAGE) {
    269 		/*
    270 		 * Round size up to the nearest multiple of alignment.
    271 		 *
    272 		 * This done, we can take advantage of the fact that for each
    273 		 * small size class, every object is aligned at the smallest
    274 		 * power of two that is non-zero in the base two representation
    275 		 * of the size.  For example:
    276 		 *
    277 		 *   Size |   Base 2 | Minimum alignment
    278 		 *   -----+----------+------------------
    279 		 *     96 |  1100000 |  32
    280 		 *    144 | 10100000 |  32
    281 		 *    192 | 11000000 |  64
    282 		 */
    283 		usize = sz_s2u(ALIGNMENT_CEILING(size, alignment));
    284 		if (usize < LARGE_MINCLASS) {
    285 			return usize;
    286 		}
    287 	}
    288 
    289 	/* Large size class.  Beware of overflow. */
    290 
    291 	if (unlikely(alignment > LARGE_MAXCLASS)) {
    292 		return 0;
    293 	}
    294 
    295 	/* Make sure result is a large size class. */
    296 	if (size <= LARGE_MINCLASS) {
    297 		usize = LARGE_MINCLASS;
    298 	} else {
    299 		usize = sz_s2u(size);
    300 		if (usize < size) {
    301 			/* size_t overflow. */
    302 			return 0;
    303 		}
    304 	}
    305 
    306 	/*
    307 	 * Calculate the multi-page mapping that large_palloc() would need in
    308 	 * order to guarantee the alignment.
    309 	 */
    310 	if (usize + sz_large_pad + PAGE_CEILING(alignment) - PAGE < usize) {
    311 		/* size_t overflow. */
    312 		return 0;
    313 	}
    314 	return usize;
    315 }
    316 
    317 #endif /* JEMALLOC_INTERNAL_SIZE_H */
    318