Home | History | Annotate | Download | only in src
      1 #define JEMALLOC_C_
      2 #include "jemalloc/internal/jemalloc_preamble.h"
      3 #include "jemalloc/internal/jemalloc_internal_includes.h"
      4 
      5 #include "jemalloc/internal/assert.h"
      6 #include "jemalloc/internal/atomic.h"
      7 #include "jemalloc/internal/ctl.h"
      8 #include "jemalloc/internal/extent_dss.h"
      9 #include "jemalloc/internal/extent_mmap.h"
     10 #include "jemalloc/internal/jemalloc_internal_types.h"
     11 #include "jemalloc/internal/log.h"
     12 #include "jemalloc/internal/malloc_io.h"
     13 #include "jemalloc/internal/mutex.h"
     14 #include "jemalloc/internal/rtree.h"
     15 #include "jemalloc/internal/size_classes.h"
     16 #include "jemalloc/internal/spin.h"
     17 #include "jemalloc/internal/sz.h"
     18 #include "jemalloc/internal/ticker.h"
     19 #include "jemalloc/internal/util.h"
     20 
     21 /******************************************************************************/
     22 /* Data. */
     23 
     24 /* Runtime configuration options. */
     25 const char	*je_malloc_conf
     26 #ifndef _WIN32
     27     JEMALLOC_ATTR(weak)
     28 #endif
     29     ;
     30 bool	opt_abort =
     31 #ifdef JEMALLOC_DEBUG
     32     true
     33 #else
     34     false
     35 #endif
     36     ;
     37 bool	opt_abort_conf =
     38 #ifdef JEMALLOC_DEBUG
     39     true
     40 #else
     41     false
     42 #endif
     43     ;
     44 const char	*opt_junk =
     45 #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
     46     "true"
     47 #else
     48     "false"
     49 #endif
     50     ;
     51 bool	opt_junk_alloc =
     52 #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
     53     true
     54 #else
     55     false
     56 #endif
     57     ;
     58 bool	opt_junk_free =
     59 #if (defined(JEMALLOC_DEBUG) && defined(JEMALLOC_FILL))
     60     true
     61 #else
     62     false
     63 #endif
     64     ;
     65 
     66 bool	opt_utrace = false;
     67 bool	opt_xmalloc = false;
     68 bool	opt_zero = false;
     69 unsigned	opt_narenas = 0;
     70 
     71 unsigned	ncpus;
     72 
     73 /* Protects arenas initialization. */
     74 malloc_mutex_t arenas_lock;
     75 /*
     76  * Arenas that are used to service external requests.  Not all elements of the
     77  * arenas array are necessarily used; arenas are created lazily as needed.
     78  *
     79  * arenas[0..narenas_auto) are used for automatic multiplexing of threads and
     80  * arenas.  arenas[narenas_auto..narenas_total) are only used if the application
     81  * takes some action to create them and allocate from them.
     82  *
     83  * Points to an arena_t.
     84  */
     85 JEMALLOC_ALIGNED(CACHELINE)
     86 atomic_p_t		arenas[MALLOCX_ARENA_LIMIT];
     87 static atomic_u_t	narenas_total; /* Use narenas_total_*(). */
     88 static arena_t		*a0; /* arenas[0]; read-only after initialization. */
     89 unsigned		narenas_auto; /* Read-only after initialization. */
     90 
     91 typedef enum {
     92 	malloc_init_uninitialized	= 3,
     93 	malloc_init_a0_initialized	= 2,
     94 	malloc_init_recursible		= 1,
     95 	malloc_init_initialized		= 0 /* Common case --> jnz. */
     96 } malloc_init_t;
     97 static malloc_init_t	malloc_init_state = malloc_init_uninitialized;
     98 
     99 /* False should be the common case.  Set to true to trigger initialization. */
    100 bool			malloc_slow = true;
    101 
    102 /* When malloc_slow is true, set the corresponding bits for sanity check. */
    103 enum {
    104 	flag_opt_junk_alloc	= (1U),
    105 	flag_opt_junk_free	= (1U << 1),
    106 	flag_opt_zero		= (1U << 2),
    107 	flag_opt_utrace		= (1U << 3),
    108 	flag_opt_xmalloc	= (1U << 4)
    109 };
    110 static uint8_t	malloc_slow_flags;
    111 
    112 #ifdef JEMALLOC_THREADED_INIT
    113 /* Used to let the initializing thread recursively allocate. */
    114 #  define NO_INITIALIZER	((unsigned long)0)
    115 #  define INITIALIZER		pthread_self()
    116 #  define IS_INITIALIZER	(malloc_initializer == pthread_self())
    117 static pthread_t		malloc_initializer = NO_INITIALIZER;
    118 #else
    119 #  define NO_INITIALIZER	false
    120 #  define INITIALIZER		true
    121 #  define IS_INITIALIZER	malloc_initializer
    122 static bool			malloc_initializer = NO_INITIALIZER;
    123 #endif
    124 
    125 /* Used to avoid initialization races. */
    126 #ifdef _WIN32
    127 #if _WIN32_WINNT >= 0x0600
    128 static malloc_mutex_t	init_lock = SRWLOCK_INIT;
    129 #else
    130 static malloc_mutex_t	init_lock;
    131 static bool init_lock_initialized = false;
    132 
    133 JEMALLOC_ATTR(constructor)
    134 static void WINAPI
    135 _init_init_lock(void) {
    136 	/*
    137 	 * If another constructor in the same binary is using mallctl to e.g.
    138 	 * set up extent hooks, it may end up running before this one, and
    139 	 * malloc_init_hard will crash trying to lock the uninitialized lock. So
    140 	 * we force an initialization of the lock in malloc_init_hard as well.
    141 	 * We don't try to care about atomicity of the accessed to the
    142 	 * init_lock_initialized boolean, since it really only matters early in
    143 	 * the process creation, before any separate thread normally starts
    144 	 * doing anything.
    145 	 */
    146 	if (!init_lock_initialized) {
    147 		malloc_mutex_init(&init_lock, "init", WITNESS_RANK_INIT,
    148 		    malloc_mutex_rank_exclusive);
    149 	}
    150 	init_lock_initialized = true;
    151 }
    152 
    153 #ifdef _MSC_VER
    154 #  pragma section(".CRT$XCU", read)
    155 JEMALLOC_SECTION(".CRT$XCU") JEMALLOC_ATTR(used)
    156 static const void (WINAPI *init_init_lock)(void) = _init_init_lock;
    157 #endif
    158 #endif
    159 #else
    160 static malloc_mutex_t	init_lock = MALLOC_MUTEX_INITIALIZER;
    161 #endif
    162 
    163 typedef struct {
    164 	void	*p;	/* Input pointer (as in realloc(p, s)). */
    165 	size_t	s;	/* Request size. */
    166 	void	*r;	/* Result pointer. */
    167 } malloc_utrace_t;
    168 
    169 #ifdef JEMALLOC_UTRACE
    170 #  define UTRACE(a, b, c) do {						\
    171 	if (unlikely(opt_utrace)) {					\
    172 		int utrace_serrno = errno;				\
    173 		malloc_utrace_t ut;					\
    174 		ut.p = (a);						\
    175 		ut.s = (b);						\
    176 		ut.r = (c);						\
    177 		utrace(&ut, sizeof(ut));				\
    178 		errno = utrace_serrno;					\
    179 	}								\
    180 } while (0)
    181 #else
    182 #  define UTRACE(a, b, c)
    183 #endif
    184 
    185 /* Whether encountered any invalid config options. */
    186 static bool had_conf_error = false;
    187 
    188 /******************************************************************************/
    189 /*
    190  * Function prototypes for static functions that are referenced prior to
    191  * definition.
    192  */
    193 
    194 static bool	malloc_init_hard_a0(void);
    195 static bool	malloc_init_hard(void);
    196 
    197 /******************************************************************************/
    198 /*
    199  * Begin miscellaneous support functions.
    200  */
    201 
    202 bool
    203 malloc_initialized(void) {
    204 	return (malloc_init_state == malloc_init_initialized);
    205 }
    206 
    207 JEMALLOC_ALWAYS_INLINE bool
    208 malloc_init_a0(void) {
    209 	if (unlikely(malloc_init_state == malloc_init_uninitialized)) {
    210 		return malloc_init_hard_a0();
    211 	}
    212 	return false;
    213 }
    214 
    215 JEMALLOC_ALWAYS_INLINE bool
    216 malloc_init(void) {
    217 	if (unlikely(!malloc_initialized()) && malloc_init_hard()) {
    218 		return true;
    219 	}
    220 	return false;
    221 }
    222 
    223 /*
    224  * The a0*() functions are used instead of i{d,}alloc() in situations that
    225  * cannot tolerate TLS variable access.
    226  */
    227 
    228 static void *
    229 a0ialloc(size_t size, bool zero, bool is_internal) {
    230 	if (unlikely(malloc_init_a0())) {
    231 		return NULL;
    232 	}
    233 
    234 	return iallocztm(TSDN_NULL, size, sz_size2index(size), zero, NULL,
    235 	    is_internal, arena_get(TSDN_NULL, 0, true), true);
    236 }
    237 
    238 static void
    239 a0idalloc(void *ptr, bool is_internal) {
    240 	idalloctm(TSDN_NULL, ptr, NULL, NULL, is_internal, true);
    241 }
    242 
    243 void *
    244 a0malloc(size_t size) {
    245 	return a0ialloc(size, false, true);
    246 }
    247 
    248 void
    249 a0dalloc(void *ptr) {
    250 	a0idalloc(ptr, true);
    251 }
    252 
    253 /*
    254  * FreeBSD's libc uses the bootstrap_*() functions in bootstrap-senstive
    255  * situations that cannot tolerate TLS variable access (TLS allocation and very
    256  * early internal data structure initialization).
    257  */
    258 
    259 void *
    260 bootstrap_malloc(size_t size) {
    261 	if (unlikely(size == 0)) {
    262 		size = 1;
    263 	}
    264 
    265 	return a0ialloc(size, false, false);
    266 }
    267 
    268 void *
    269 bootstrap_calloc(size_t num, size_t size) {
    270 	size_t num_size;
    271 
    272 	num_size = num * size;
    273 	if (unlikely(num_size == 0)) {
    274 		assert(num == 0 || size == 0);
    275 		num_size = 1;
    276 	}
    277 
    278 	return a0ialloc(num_size, true, false);
    279 }
    280 
    281 void
    282 bootstrap_free(void *ptr) {
    283 	if (unlikely(ptr == NULL)) {
    284 		return;
    285 	}
    286 
    287 	a0idalloc(ptr, false);
    288 }
    289 
    290 void
    291 arena_set(unsigned ind, arena_t *arena) {
    292 	atomic_store_p(&arenas[ind], arena, ATOMIC_RELEASE);
    293 }
    294 
    295 static void
    296 narenas_total_set(unsigned narenas) {
    297 	atomic_store_u(&narenas_total, narenas, ATOMIC_RELEASE);
    298 }
    299 
    300 static void
    301 narenas_total_inc(void) {
    302 	atomic_fetch_add_u(&narenas_total, 1, ATOMIC_RELEASE);
    303 }
    304 
    305 unsigned
    306 narenas_total_get(void) {
    307 	return atomic_load_u(&narenas_total, ATOMIC_ACQUIRE);
    308 }
    309 
    310 /* Create a new arena and insert it into the arenas array at index ind. */
    311 static arena_t *
    312 arena_init_locked(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) {
    313 	arena_t *arena;
    314 
    315 	assert(ind <= narenas_total_get());
    316 	if (ind >= MALLOCX_ARENA_LIMIT) {
    317 		return NULL;
    318 	}
    319 	if (ind == narenas_total_get()) {
    320 		narenas_total_inc();
    321 	}
    322 
    323 	/*
    324 	 * Another thread may have already initialized arenas[ind] if it's an
    325 	 * auto arena.
    326 	 */
    327 	arena = arena_get(tsdn, ind, false);
    328 	if (arena != NULL) {
    329 		assert(ind < narenas_auto);
    330 		return arena;
    331 	}
    332 
    333 	/* Actually initialize the arena. */
    334 	arena = arena_new(tsdn, ind, extent_hooks);
    335 
    336 	return arena;
    337 }
    338 
    339 static void
    340 arena_new_create_background_thread(tsdn_t *tsdn, unsigned ind) {
    341 	if (ind == 0) {
    342 		return;
    343 	}
    344 	if (have_background_thread) {
    345 		bool err;
    346 		malloc_mutex_lock(tsdn, &background_thread_lock);
    347 		err = background_thread_create(tsdn_tsd(tsdn), ind);
    348 		malloc_mutex_unlock(tsdn, &background_thread_lock);
    349 		if (err) {
    350 			malloc_printf("<jemalloc>: error in background thread "
    351 				      "creation for arena %u. Abort.\n", ind);
    352 			abort();
    353 		}
    354 	}
    355 }
    356 
    357 arena_t *
    358 arena_init(tsdn_t *tsdn, unsigned ind, extent_hooks_t *extent_hooks) {
    359 	arena_t *arena;
    360 
    361 	malloc_mutex_lock(tsdn, &arenas_lock);
    362 	arena = arena_init_locked(tsdn, ind, extent_hooks);
    363 	malloc_mutex_unlock(tsdn, &arenas_lock);
    364 
    365 	arena_new_create_background_thread(tsdn, ind);
    366 
    367 	return arena;
    368 }
    369 
    370 static void
    371 arena_bind(tsd_t *tsd, unsigned ind, bool internal) {
    372 	arena_t *arena = arena_get(tsd_tsdn(tsd), ind, false);
    373 	arena_nthreads_inc(arena, internal);
    374 
    375 	if (internal) {
    376 		tsd_iarena_set(tsd, arena);
    377 	} else {
    378 		tsd_arena_set(tsd, arena);
    379 	}
    380 }
    381 
    382 void
    383 arena_migrate(tsd_t *tsd, unsigned oldind, unsigned newind) {
    384 	arena_t *oldarena, *newarena;
    385 
    386 	oldarena = arena_get(tsd_tsdn(tsd), oldind, false);
    387 	newarena = arena_get(tsd_tsdn(tsd), newind, false);
    388 	arena_nthreads_dec(oldarena, false);
    389 	arena_nthreads_inc(newarena, false);
    390 	tsd_arena_set(tsd, newarena);
    391 }
    392 
    393 static void
    394 arena_unbind(tsd_t *tsd, unsigned ind, bool internal) {
    395 	arena_t *arena;
    396 
    397 	arena = arena_get(tsd_tsdn(tsd), ind, false);
    398 	arena_nthreads_dec(arena, internal);
    399 
    400 	if (internal) {
    401 		tsd_iarena_set(tsd, NULL);
    402 	} else {
    403 		tsd_arena_set(tsd, NULL);
    404 	}
    405 }
    406 
    407 arena_tdata_t *
    408 arena_tdata_get_hard(tsd_t *tsd, unsigned ind) {
    409 	arena_tdata_t *tdata, *arenas_tdata_old;
    410 	arena_tdata_t *arenas_tdata = tsd_arenas_tdata_get(tsd);
    411 	unsigned narenas_tdata_old, i;
    412 	unsigned narenas_tdata = tsd_narenas_tdata_get(tsd);
    413 	unsigned narenas_actual = narenas_total_get();
    414 
    415 	/*
    416 	 * Dissociate old tdata array (and set up for deallocation upon return)
    417 	 * if it's too small.
    418 	 */
    419 	if (arenas_tdata != NULL && narenas_tdata < narenas_actual) {
    420 		arenas_tdata_old = arenas_tdata;
    421 		narenas_tdata_old = narenas_tdata;
    422 		arenas_tdata = NULL;
    423 		narenas_tdata = 0;
    424 		tsd_arenas_tdata_set(tsd, arenas_tdata);
    425 		tsd_narenas_tdata_set(tsd, narenas_tdata);
    426 	} else {
    427 		arenas_tdata_old = NULL;
    428 		narenas_tdata_old = 0;
    429 	}
    430 
    431 	/* Allocate tdata array if it's missing. */
    432 	if (arenas_tdata == NULL) {
    433 		bool *arenas_tdata_bypassp = tsd_arenas_tdata_bypassp_get(tsd);
    434 		narenas_tdata = (ind < narenas_actual) ? narenas_actual : ind+1;
    435 
    436 		if (tsd_nominal(tsd) && !*arenas_tdata_bypassp) {
    437 			*arenas_tdata_bypassp = true;
    438 			arenas_tdata = (arena_tdata_t *)a0malloc(
    439 			    sizeof(arena_tdata_t) * narenas_tdata);
    440 			*arenas_tdata_bypassp = false;
    441 		}
    442 		if (arenas_tdata == NULL) {
    443 			tdata = NULL;
    444 			goto label_return;
    445 		}
    446 		assert(tsd_nominal(tsd) && !*arenas_tdata_bypassp);
    447 		tsd_arenas_tdata_set(tsd, arenas_tdata);
    448 		tsd_narenas_tdata_set(tsd, narenas_tdata);
    449 	}
    450 
    451 	/*
    452 	 * Copy to tdata array.  It's possible that the actual number of arenas
    453 	 * has increased since narenas_total_get() was called above, but that
    454 	 * causes no correctness issues unless two threads concurrently execute
    455 	 * the arenas.create mallctl, which we trust mallctl synchronization to
    456 	 * prevent.
    457 	 */
    458 
    459 	/* Copy/initialize tickers. */
    460 	for (i = 0; i < narenas_actual; i++) {
    461 		if (i < narenas_tdata_old) {
    462 			ticker_copy(&arenas_tdata[i].decay_ticker,
    463 			    &arenas_tdata_old[i].decay_ticker);
    464 		} else {
    465 			ticker_init(&arenas_tdata[i].decay_ticker,
    466 			    DECAY_NTICKS_PER_UPDATE);
    467 		}
    468 	}
    469 	if (narenas_tdata > narenas_actual) {
    470 		memset(&arenas_tdata[narenas_actual], 0, sizeof(arena_tdata_t)
    471 		    * (narenas_tdata - narenas_actual));
    472 	}
    473 
    474 	/* Read the refreshed tdata array. */
    475 	tdata = &arenas_tdata[ind];
    476 label_return:
    477 	if (arenas_tdata_old != NULL) {
    478 		a0dalloc(arenas_tdata_old);
    479 	}
    480 	return tdata;
    481 }
    482 
    483 /* Slow path, called only by arena_choose(). */
    484 arena_t *
    485 arena_choose_hard(tsd_t *tsd, bool internal) {
    486 	arena_t *ret JEMALLOC_CC_SILENCE_INIT(NULL);
    487 
    488 	if (have_percpu_arena && PERCPU_ARENA_ENABLED(opt_percpu_arena)) {
    489 		unsigned choose = percpu_arena_choose();
    490 		ret = arena_get(tsd_tsdn(tsd), choose, true);
    491 		assert(ret != NULL);
    492 		arena_bind(tsd, arena_ind_get(ret), false);
    493 		arena_bind(tsd, arena_ind_get(ret), true);
    494 
    495 		return ret;
    496 	}
    497 
    498 	if (narenas_auto > 1) {
    499 		unsigned i, j, choose[2], first_null;
    500 		bool is_new_arena[2];
    501 
    502 		/*
    503 		 * Determine binding for both non-internal and internal
    504 		 * allocation.
    505 		 *
    506 		 *   choose[0]: For application allocation.
    507 		 *   choose[1]: For internal metadata allocation.
    508 		 */
    509 
    510 		for (j = 0; j < 2; j++) {
    511 			choose[j] = 0;
    512 			is_new_arena[j] = false;
    513 		}
    514 
    515 		first_null = narenas_auto;
    516 		malloc_mutex_lock(tsd_tsdn(tsd), &arenas_lock);
    517 		assert(arena_get(tsd_tsdn(tsd), 0, false) != NULL);
    518 		for (i = 1; i < narenas_auto; i++) {
    519 			if (arena_get(tsd_tsdn(tsd), i, false) != NULL) {
    520 				/*
    521 				 * Choose the first arena that has the lowest
    522 				 * number of threads assigned to it.
    523 				 */
    524 				for (j = 0; j < 2; j++) {
    525 					if (arena_nthreads_get(arena_get(
    526 					    tsd_tsdn(tsd), i, false), !!j) <
    527 					    arena_nthreads_get(arena_get(
    528 					    tsd_tsdn(tsd), choose[j], false),
    529 					    !!j)) {
    530 						choose[j] = i;
    531 					}
    532 				}
    533 			} else if (first_null == narenas_auto) {
    534 				/*
    535 				 * Record the index of the first uninitialized
    536 				 * arena, in case all extant arenas are in use.
    537 				 *
    538 				 * NB: It is possible for there to be
    539 				 * discontinuities in terms of initialized
    540 				 * versus uninitialized arenas, due to the
    541 				 * "thread.arena" mallctl.
    542 				 */
    543 				first_null = i;
    544 			}
    545 		}
    546 
    547 		for (j = 0; j < 2; j++) {
    548 			if (arena_nthreads_get(arena_get(tsd_tsdn(tsd),
    549 			    choose[j], false), !!j) == 0 || first_null ==
    550 			    narenas_auto) {
    551 				/*
    552 				 * Use an unloaded arena, or the least loaded
    553 				 * arena if all arenas are already initialized.
    554 				 */
    555 				if (!!j == internal) {
    556 					ret = arena_get(tsd_tsdn(tsd),
    557 					    choose[j], false);
    558 				}
    559 			} else {
    560 				arena_t *arena;
    561 
    562 				/* Initialize a new arena. */
    563 				choose[j] = first_null;
    564 				arena = arena_init_locked(tsd_tsdn(tsd),
    565 				    choose[j],
    566 				    (extent_hooks_t *)&extent_hooks_default);
    567 				if (arena == NULL) {
    568 					malloc_mutex_unlock(tsd_tsdn(tsd),
    569 					    &arenas_lock);
    570 					return NULL;
    571 				}
    572 				is_new_arena[j] = true;
    573 				if (!!j == internal) {
    574 					ret = arena;
    575 				}
    576 			}
    577 			arena_bind(tsd, choose[j], !!j);
    578 		}
    579 		malloc_mutex_unlock(tsd_tsdn(tsd), &arenas_lock);
    580 
    581 		for (j = 0; j < 2; j++) {
    582 			if (is_new_arena[j]) {
    583 				assert(choose[j] > 0);
    584 				arena_new_create_background_thread(
    585 				    tsd_tsdn(tsd), choose[j]);
    586 			}
    587 		}
    588 
    589 	} else {
    590 		ret = arena_get(tsd_tsdn(tsd), 0, false);
    591 		arena_bind(tsd, 0, false);
    592 		arena_bind(tsd, 0, true);
    593 	}
    594 
    595 	return ret;
    596 }
    597 
    598 void
    599 iarena_cleanup(tsd_t *tsd) {
    600 	arena_t *iarena;
    601 
    602 	iarena = tsd_iarena_get(tsd);
    603 	if (iarena != NULL) {
    604 		arena_unbind(tsd, arena_ind_get(iarena), true);
    605 	}
    606 }
    607 
    608 void
    609 arena_cleanup(tsd_t *tsd) {
    610 	arena_t *arena;
    611 
    612 	arena = tsd_arena_get(tsd);
    613 	if (arena != NULL) {
    614 		arena_unbind(tsd, arena_ind_get(arena), false);
    615 	}
    616 }
    617 
    618 void
    619 arenas_tdata_cleanup(tsd_t *tsd) {
    620 	arena_tdata_t *arenas_tdata;
    621 
    622 	/* Prevent tsd->arenas_tdata from being (re)created. */
    623 	*tsd_arenas_tdata_bypassp_get(tsd) = true;
    624 
    625 	arenas_tdata = tsd_arenas_tdata_get(tsd);
    626 	if (arenas_tdata != NULL) {
    627 		tsd_arenas_tdata_set(tsd, NULL);
    628 		a0dalloc(arenas_tdata);
    629 	}
    630 }
    631 
    632 static void
    633 stats_print_atexit(void) {
    634 	if (config_stats) {
    635 		tsdn_t *tsdn;
    636 		unsigned narenas, i;
    637 
    638 		tsdn = tsdn_fetch();
    639 
    640 		/*
    641 		 * Merge stats from extant threads.  This is racy, since
    642 		 * individual threads do not lock when recording tcache stats
    643 		 * events.  As a consequence, the final stats may be slightly
    644 		 * out of date by the time they are reported, if other threads
    645 		 * continue to allocate.
    646 		 */
    647 		for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
    648 			arena_t *arena = arena_get(tsdn, i, false);
    649 			if (arena != NULL) {
    650 				tcache_t *tcache;
    651 
    652 				malloc_mutex_lock(tsdn, &arena->tcache_ql_mtx);
    653 				ql_foreach(tcache, &arena->tcache_ql, link) {
    654 					tcache_stats_merge(tsdn, tcache, arena);
    655 				}
    656 				malloc_mutex_unlock(tsdn,
    657 				    &arena->tcache_ql_mtx);
    658 			}
    659 		}
    660 	}
    661 	je_malloc_stats_print(NULL, NULL, opt_stats_print_opts);
    662 }
    663 
    664 /*
    665  * Ensure that we don't hold any locks upon entry to or exit from allocator
    666  * code (in a "broad" sense that doesn't count a reentrant allocation as an
    667  * entrance or exit).
    668  */
    669 JEMALLOC_ALWAYS_INLINE void
    670 check_entry_exit_locking(tsdn_t *tsdn) {
    671 	if (!config_debug) {
    672 		return;
    673 	}
    674 	if (tsdn_null(tsdn)) {
    675 		return;
    676 	}
    677 	tsd_t *tsd = tsdn_tsd(tsdn);
    678 	/*
    679 	 * It's possible we hold locks at entry/exit if we're in a nested
    680 	 * allocation.
    681 	 */
    682 	int8_t reentrancy_level = tsd_reentrancy_level_get(tsd);
    683 	if (reentrancy_level != 0) {
    684 		return;
    685 	}
    686 	witness_assert_lockless(tsdn_witness_tsdp_get(tsdn));
    687 }
    688 
    689 /*
    690  * End miscellaneous support functions.
    691  */
    692 /******************************************************************************/
    693 /*
    694  * Begin initialization functions.
    695  */
    696 
    697 static char *
    698 jemalloc_secure_getenv(const char *name) {
    699 #ifdef JEMALLOC_HAVE_SECURE_GETENV
    700 	return secure_getenv(name);
    701 #else
    702 #  ifdef JEMALLOC_HAVE_ISSETUGID
    703 	if (issetugid() != 0) {
    704 		return NULL;
    705 	}
    706 #  endif
    707 	return getenv(name);
    708 #endif
    709 }
    710 
    711 static unsigned
    712 malloc_ncpus(void) {
    713 	long result;
    714 
    715 #ifdef _WIN32
    716 	SYSTEM_INFO si;
    717 	GetSystemInfo(&si);
    718 	result = si.dwNumberOfProcessors;
    719 #elif defined(JEMALLOC_GLIBC_MALLOC_HOOK) && defined(CPU_COUNT)
    720 	/*
    721 	 * glibc >= 2.6 has the CPU_COUNT macro.
    722 	 *
    723 	 * glibc's sysconf() uses isspace().  glibc allocates for the first time
    724 	 * *before* setting up the isspace tables.  Therefore we need a
    725 	 * different method to get the number of CPUs.
    726 	 */
    727 	{
    728 		cpu_set_t set;
    729 
    730 		pthread_getaffinity_np(pthread_self(), sizeof(set), &set);
    731 		result = CPU_COUNT(&set);
    732 	}
    733 #else
    734 	result = sysconf(_SC_NPROCESSORS_ONLN);
    735 #endif
    736 	return ((result == -1) ? 1 : (unsigned)result);
    737 }
    738 
    739 static void
    740 init_opt_stats_print_opts(const char *v, size_t vlen) {
    741 	size_t opts_len = strlen(opt_stats_print_opts);
    742 	assert(opts_len <= stats_print_tot_num_options);
    743 
    744 	for (size_t i = 0; i < vlen; i++) {
    745 		switch (v[i]) {
    746 #define OPTION(o, v, d, s) case o: break;
    747 			STATS_PRINT_OPTIONS
    748 #undef OPTION
    749 		default: continue;
    750 		}
    751 
    752 		if (strchr(opt_stats_print_opts, v[i]) != NULL) {
    753 			/* Ignore repeated. */
    754 			continue;
    755 		}
    756 
    757 		opt_stats_print_opts[opts_len++] = v[i];
    758 		opt_stats_print_opts[opts_len] = '\0';
    759 		assert(opts_len <= stats_print_tot_num_options);
    760 	}
    761 	assert(opts_len == strlen(opt_stats_print_opts));
    762 }
    763 
    764 static bool
    765 malloc_conf_next(char const **opts_p, char const **k_p, size_t *klen_p,
    766     char const **v_p, size_t *vlen_p) {
    767 	bool accept;
    768 	const char *opts = *opts_p;
    769 
    770 	*k_p = opts;
    771 
    772 	for (accept = false; !accept;) {
    773 		switch (*opts) {
    774 		case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
    775 		case 'G': case 'H': case 'I': case 'J': case 'K': case 'L':
    776 		case 'M': case 'N': case 'O': case 'P': case 'Q': case 'R':
    777 		case 'S': case 'T': case 'U': case 'V': case 'W': case 'X':
    778 		case 'Y': case 'Z':
    779 		case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
    780 		case 'g': case 'h': case 'i': case 'j': case 'k': case 'l':
    781 		case 'm': case 'n': case 'o': case 'p': case 'q': case 'r':
    782 		case 's': case 't': case 'u': case 'v': case 'w': case 'x':
    783 		case 'y': case 'z':
    784 		case '0': case '1': case '2': case '3': case '4': case '5':
    785 		case '6': case '7': case '8': case '9':
    786 		case '_':
    787 			opts++;
    788 			break;
    789 		case ':':
    790 			opts++;
    791 			*klen_p = (uintptr_t)opts - 1 - (uintptr_t)*k_p;
    792 			*v_p = opts;
    793 			accept = true;
    794 			break;
    795 		case '\0':
    796 			if (opts != *opts_p) {
    797 				malloc_write("<jemalloc>: Conf string ends "
    798 				    "with key\n");
    799 			}
    800 			return true;
    801 		default:
    802 			malloc_write("<jemalloc>: Malformed conf string\n");
    803 			return true;
    804 		}
    805 	}
    806 
    807 	for (accept = false; !accept;) {
    808 		switch (*opts) {
    809 		case ',':
    810 			opts++;
    811 			/*
    812 			 * Look ahead one character here, because the next time
    813 			 * this function is called, it will assume that end of
    814 			 * input has been cleanly reached if no input remains,
    815 			 * but we have optimistically already consumed the
    816 			 * comma if one exists.
    817 			 */
    818 			if (*opts == '\0') {
    819 				malloc_write("<jemalloc>: Conf string ends "
    820 				    "with comma\n");
    821 			}
    822 			*vlen_p = (uintptr_t)opts - 1 - (uintptr_t)*v_p;
    823 			accept = true;
    824 			break;
    825 		case '\0':
    826 			*vlen_p = (uintptr_t)opts - (uintptr_t)*v_p;
    827 			accept = true;
    828 			break;
    829 		default:
    830 			opts++;
    831 			break;
    832 		}
    833 	}
    834 
    835 	*opts_p = opts;
    836 	return false;
    837 }
    838 
    839 static void
    840 malloc_abort_invalid_conf(void) {
    841 	assert(opt_abort_conf);
    842 	malloc_printf("<jemalloc>: Abort (abort_conf:true) on invalid conf "
    843 	    "value (see above).\n");
    844 	abort();
    845 }
    846 
    847 static void
    848 malloc_conf_error(const char *msg, const char *k, size_t klen, const char *v,
    849     size_t vlen) {
    850 	malloc_printf("<jemalloc>: %s: %.*s:%.*s\n", msg, (int)klen, k,
    851 	    (int)vlen, v);
    852 	/* If abort_conf is set, error out after processing all options. */
    853 	had_conf_error = true;
    854 }
    855 
    856 static void
    857 malloc_slow_flag_init(void) {
    858 	/*
    859 	 * Combine the runtime options into malloc_slow for fast path.  Called
    860 	 * after processing all the options.
    861 	 */
    862 	malloc_slow_flags |= (opt_junk_alloc ? flag_opt_junk_alloc : 0)
    863 	    | (opt_junk_free ? flag_opt_junk_free : 0)
    864 	    | (opt_zero ? flag_opt_zero : 0)
    865 	    | (opt_utrace ? flag_opt_utrace : 0)
    866 	    | (opt_xmalloc ? flag_opt_xmalloc : 0);
    867 
    868 	malloc_slow = (malloc_slow_flags != 0);
    869 }
    870 
    871 static void
    872 malloc_conf_init(void) {
    873 	unsigned i;
    874 	char buf[PATH_MAX + 1];
    875 	const char *opts, *k, *v;
    876 	size_t klen, vlen;
    877 
    878 #if defined(__BIONIC__)
    879 	/* For Android, do not look at files nor environment variables for
    880 	 * config data.
    881 	 */
    882 	for (i = 0; i < 2; i++) {
    883 #else
    884 	for (i = 0; i < 4; i++) {
    885 #endif
    886 		/* Get runtime configuration. */
    887 		switch (i) {
    888 		case 0:
    889 			opts = config_malloc_conf;
    890 			break;
    891 		case 1:
    892 			if (je_malloc_conf != NULL) {
    893 				/*
    894 				 * Use options that were compiled into the
    895 				 * program.
    896 				 */
    897 				opts = je_malloc_conf;
    898 			} else {
    899 				/* No configuration specified. */
    900 				buf[0] = '\0';
    901 				opts = buf;
    902 			}
    903 			break;
    904 		case 2: {
    905 			ssize_t linklen = 0;
    906 #ifndef _WIN32
    907 			int saved_errno = errno;
    908 			const char *linkname =
    909 #  ifdef JEMALLOC_PREFIX
    910 			    "/etc/"JEMALLOC_PREFIX"malloc.conf"
    911 #  else
    912 			    "/etc/malloc.conf"
    913 #  endif
    914 			    ;
    915 
    916 			/*
    917 			 * Try to use the contents of the "/etc/malloc.conf"
    918 			 * symbolic link's name.
    919 			 */
    920 			linklen = readlink(linkname, buf, sizeof(buf) - 1);
    921 			if (linklen == -1) {
    922 				/* No configuration specified. */
    923 				linklen = 0;
    924 				/* Restore errno. */
    925 				set_errno(saved_errno);
    926 			}
    927 #endif
    928 			buf[linklen] = '\0';
    929 			opts = buf;
    930 			break;
    931 		} case 3: {
    932 			const char *envname =
    933 #ifdef JEMALLOC_PREFIX
    934 			    JEMALLOC_CPREFIX"MALLOC_CONF"
    935 #else
    936 			    "MALLOC_CONF"
    937 #endif
    938 			    ;
    939 
    940 			if ((opts = jemalloc_secure_getenv(envname)) != NULL) {
    941 				/*
    942 				 * Do nothing; opts is already initialized to
    943 				 * the value of the MALLOC_CONF environment
    944 				 * variable.
    945 				 */
    946 			} else {
    947 				/* No configuration specified. */
    948 				buf[0] = '\0';
    949 				opts = buf;
    950 			}
    951 			break;
    952 		} default:
    953 			not_reached();
    954 			buf[0] = '\0';
    955 			opts = buf;
    956 		}
    957 
    958 		while (*opts != '\0' && !malloc_conf_next(&opts, &k, &klen, &v,
    959 		    &vlen)) {
    960 #define CONF_MATCH(n)							\
    961 	(sizeof(n)-1 == klen && strncmp(n, k, klen) == 0)
    962 #define CONF_MATCH_VALUE(n)						\
    963 	(sizeof(n)-1 == vlen && strncmp(n, v, vlen) == 0)
    964 #define CONF_HANDLE_BOOL(o, n)						\
    965 			if (CONF_MATCH(n)) {				\
    966 				if (CONF_MATCH_VALUE("true")) {		\
    967 					o = true;			\
    968 				} else if (CONF_MATCH_VALUE("false")) {	\
    969 					o = false;			\
    970 				} else {				\
    971 					malloc_conf_error(		\
    972 					    "Invalid conf value",	\
    973 					    k, klen, v, vlen);		\
    974 				}					\
    975 				continue;				\
    976 			}
    977 #define CONF_MIN_no(um, min)	false
    978 #define CONF_MIN_yes(um, min)	((um) < (min))
    979 #define CONF_MAX_no(um, max)	false
    980 #define CONF_MAX_yes(um, max)	((um) > (max))
    981 #define CONF_HANDLE_T_U(t, o, n, min, max, check_min, check_max, clip)	\
    982 			if (CONF_MATCH(n)) {				\
    983 				uintmax_t um;				\
    984 				char *end;				\
    985 									\
    986 				set_errno(0);				\
    987 				um = malloc_strtoumax(v, &end, 0);	\
    988 				if (get_errno() != 0 || (uintptr_t)end -\
    989 				    (uintptr_t)v != vlen) {		\
    990 					malloc_conf_error(		\
    991 					    "Invalid conf value",	\
    992 					    k, klen, v, vlen);		\
    993 				} else if (clip) {			\
    994 					if (CONF_MIN_##check_min(um,	\
    995 					    (t)(min))) {		\
    996 						o = (t)(min);		\
    997 					} else if (			\
    998 					    CONF_MAX_##check_max(um,	\
    999 					    (t)(max))) {		\
   1000 						o = (t)(max);		\
   1001 					} else {			\
   1002 						o = (t)um;		\
   1003 					}				\
   1004 				} else {				\
   1005 					if (CONF_MIN_##check_min(um,	\
   1006 					    (t)(min)) ||		\
   1007 					    CONF_MAX_##check_max(um,	\
   1008 					    (t)(max))) {		\
   1009 						malloc_conf_error(	\
   1010 						    "Out-of-range "	\
   1011 						    "conf value",	\
   1012 						    k, klen, v, vlen);	\
   1013 					} else {			\
   1014 						o = (t)um;		\
   1015 					}				\
   1016 				}					\
   1017 				continue;				\
   1018 			}
   1019 #define CONF_HANDLE_UNSIGNED(o, n, min, max, check_min, check_max,	\
   1020     clip)								\
   1021 			CONF_HANDLE_T_U(unsigned, o, n, min, max,	\
   1022 			    check_min, check_max, clip)
   1023 #define CONF_HANDLE_SIZE_T(o, n, min, max, check_min, check_max, clip)	\
   1024 			CONF_HANDLE_T_U(size_t, o, n, min, max,		\
   1025 			    check_min, check_max, clip)
   1026 #define CONF_HANDLE_SSIZE_T(o, n, min, max)				\
   1027 			if (CONF_MATCH(n)) {				\
   1028 				long l;					\
   1029 				char *end;				\
   1030 									\
   1031 				set_errno(0);				\
   1032 				l = strtol(v, &end, 0);			\
   1033 				if (get_errno() != 0 || (uintptr_t)end -\
   1034 				    (uintptr_t)v != vlen) {		\
   1035 					malloc_conf_error(		\
   1036 					    "Invalid conf value",	\
   1037 					    k, klen, v, vlen);		\
   1038 				} else if (l < (ssize_t)(min) || l >	\
   1039 				    (ssize_t)(max)) {			\
   1040 					malloc_conf_error(		\
   1041 					    "Out-of-range conf value",	\
   1042 					    k, klen, v, vlen);		\
   1043 				} else {				\
   1044 					o = l;				\
   1045 				}					\
   1046 				continue;				\
   1047 			}
   1048 #define CONF_HANDLE_CHAR_P(o, n, d)					\
   1049 			if (CONF_MATCH(n)) {				\
   1050 				size_t cpylen = (vlen <=		\
   1051 				    sizeof(o)-1) ? vlen :		\
   1052 				    sizeof(o)-1;			\
   1053 				strncpy(o, v, cpylen);			\
   1054 				o[cpylen] = '\0';			\
   1055 				continue;				\
   1056 			}
   1057 
   1058 			CONF_HANDLE_BOOL(opt_abort, "abort")
   1059 			CONF_HANDLE_BOOL(opt_abort_conf, "abort_conf")
   1060 			if (strncmp("metadata_thp", k, klen) == 0) {
   1061 				int i;
   1062 				bool match = false;
   1063 				for (i = 0; i < metadata_thp_mode_limit; i++) {
   1064 					if (strncmp(metadata_thp_mode_names[i],
   1065 					    v, vlen) == 0) {
   1066 						opt_metadata_thp = i;
   1067 						match = true;
   1068 						break;
   1069 					}
   1070 				}
   1071 				if (!match) {
   1072 					malloc_conf_error("Invalid conf value",
   1073 					    k, klen, v, vlen);
   1074 				}
   1075 				continue;
   1076 			}
   1077 			CONF_HANDLE_BOOL(opt_retain, "retain")
   1078 			if (strncmp("dss", k, klen) == 0) {
   1079 				int i;
   1080 				bool match = false;
   1081 				for (i = 0; i < dss_prec_limit; i++) {
   1082 					if (strncmp(dss_prec_names[i], v, vlen)
   1083 					    == 0) {
   1084 						if (extent_dss_prec_set(i)) {
   1085 							malloc_conf_error(
   1086 							    "Error setting dss",
   1087 							    k, klen, v, vlen);
   1088 						} else {
   1089 							opt_dss =
   1090 							    dss_prec_names[i];
   1091 							match = true;
   1092 							break;
   1093 						}
   1094 					}
   1095 				}
   1096 				if (!match) {
   1097 					malloc_conf_error("Invalid conf value",
   1098 					    k, klen, v, vlen);
   1099 				}
   1100 				continue;
   1101 			}
   1102 			CONF_HANDLE_UNSIGNED(opt_narenas, "narenas", 1,
   1103 			    UINT_MAX, yes, no, false)
   1104 			CONF_HANDLE_SSIZE_T(opt_dirty_decay_ms,
   1105 			    "dirty_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) <
   1106 			    QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) :
   1107 			    SSIZE_MAX);
   1108 			CONF_HANDLE_SSIZE_T(opt_muzzy_decay_ms,
   1109 			    "muzzy_decay_ms", -1, NSTIME_SEC_MAX * KQU(1000) <
   1110 			    QU(SSIZE_MAX) ? NSTIME_SEC_MAX * KQU(1000) :
   1111 			    SSIZE_MAX);
   1112 			CONF_HANDLE_BOOL(opt_stats_print, "stats_print")
   1113 			if (CONF_MATCH("stats_print_opts")) {
   1114 				init_opt_stats_print_opts(v, vlen);
   1115 				continue;
   1116 			}
   1117 			if (config_fill) {
   1118 				if (CONF_MATCH("junk")) {
   1119 					if (CONF_MATCH_VALUE("true")) {
   1120 						opt_junk = "true";
   1121 						opt_junk_alloc = opt_junk_free =
   1122 						    true;
   1123 					} else if (CONF_MATCH_VALUE("false")) {
   1124 						opt_junk = "false";
   1125 						opt_junk_alloc = opt_junk_free =
   1126 						    false;
   1127 					} else if (CONF_MATCH_VALUE("alloc")) {
   1128 						opt_junk = "alloc";
   1129 						opt_junk_alloc = true;
   1130 						opt_junk_free = false;
   1131 					} else if (CONF_MATCH_VALUE("free")) {
   1132 						opt_junk = "free";
   1133 						opt_junk_alloc = false;
   1134 						opt_junk_free = true;
   1135 					} else {
   1136 						malloc_conf_error(
   1137 						    "Invalid conf value", k,
   1138 						    klen, v, vlen);
   1139 					}
   1140 					continue;
   1141 				}
   1142 				CONF_HANDLE_BOOL(opt_zero, "zero")
   1143 			}
   1144 			if (config_utrace) {
   1145 				CONF_HANDLE_BOOL(opt_utrace, "utrace")
   1146 			}
   1147 			if (config_xmalloc) {
   1148 				CONF_HANDLE_BOOL(opt_xmalloc, "xmalloc")
   1149 			}
   1150 			CONF_HANDLE_BOOL(opt_tcache, "tcache")
   1151 			CONF_HANDLE_SIZE_T(opt_lg_extent_max_active_fit,
   1152 			    "lg_extent_max_active_fit", 0,
   1153 			    (sizeof(size_t) << 3), yes, yes, false)
   1154 			CONF_HANDLE_SSIZE_T(opt_lg_tcache_max, "lg_tcache_max",
   1155 			    -1, (sizeof(size_t) << 3) - 1)
   1156 			if (strncmp("percpu_arena", k, klen) == 0) {
   1157 				bool match = false;
   1158 				for (int i = percpu_arena_mode_names_base; i <
   1159 				    percpu_arena_mode_names_limit; i++) {
   1160 					if (strncmp(percpu_arena_mode_names[i],
   1161 					    v, vlen) == 0) {
   1162 						if (!have_percpu_arena) {
   1163 							malloc_conf_error(
   1164 							    "No getcpu support",
   1165 							    k, klen, v, vlen);
   1166 						}
   1167 						opt_percpu_arena = i;
   1168 						match = true;
   1169 						break;
   1170 					}
   1171 				}
   1172 				if (!match) {
   1173 					malloc_conf_error("Invalid conf value",
   1174 					    k, klen, v, vlen);
   1175 				}
   1176 				continue;
   1177 			}
   1178 			CONF_HANDLE_BOOL(opt_background_thread,
   1179 			    "background_thread");
   1180 			CONF_HANDLE_SIZE_T(opt_max_background_threads,
   1181 					   "max_background_threads", 1,
   1182 					   opt_max_background_threads, yes, yes,
   1183 					   true);
   1184 			if (config_prof) {
   1185 				CONF_HANDLE_BOOL(opt_prof, "prof")
   1186 				CONF_HANDLE_CHAR_P(opt_prof_prefix,
   1187 				    "prof_prefix", "jeprof")
   1188 				CONF_HANDLE_BOOL(opt_prof_active, "prof_active")
   1189 				CONF_HANDLE_BOOL(opt_prof_thread_active_init,
   1190 				    "prof_thread_active_init")
   1191 				CONF_HANDLE_SIZE_T(opt_lg_prof_sample,
   1192 				    "lg_prof_sample", 0, (sizeof(uint64_t) << 3)
   1193 				    - 1, no, yes, true)
   1194 				CONF_HANDLE_BOOL(opt_prof_accum, "prof_accum")
   1195 				CONF_HANDLE_SSIZE_T(opt_lg_prof_interval,
   1196 				    "lg_prof_interval", -1,
   1197 				    (sizeof(uint64_t) << 3) - 1)
   1198 				CONF_HANDLE_BOOL(opt_prof_gdump, "prof_gdump")
   1199 				CONF_HANDLE_BOOL(opt_prof_final, "prof_final")
   1200 				CONF_HANDLE_BOOL(opt_prof_leak, "prof_leak")
   1201 			}
   1202 			if (config_log) {
   1203 				if (CONF_MATCH("log")) {
   1204 					size_t cpylen = (
   1205 					    vlen <= sizeof(log_var_names) ?
   1206 					    vlen : sizeof(log_var_names) - 1);
   1207 					strncpy(log_var_names, v, cpylen);
   1208 					log_var_names[cpylen] = '\0';
   1209 					continue;
   1210 				}
   1211 			}
   1212 			if (CONF_MATCH("thp")) {
   1213 				bool match = false;
   1214 				for (int i = 0; i < thp_mode_names_limit; i++) {
   1215 					if (strncmp(thp_mode_names[i],v, vlen)
   1216 					    == 0) {
   1217 						if (!have_madvise_huge) {
   1218 							malloc_conf_error(
   1219 							    "No THP support",
   1220 							    k, klen, v, vlen);
   1221 						}
   1222 						opt_thp = i;
   1223 						match = true;
   1224 						break;
   1225 					}
   1226 				}
   1227 				if (!match) {
   1228 					malloc_conf_error("Invalid conf value",
   1229 					    k, klen, v, vlen);
   1230 				}
   1231 				continue;
   1232 			}
   1233 			malloc_conf_error("Invalid conf pair", k, klen, v,
   1234 			    vlen);
   1235 #undef CONF_MATCH
   1236 #undef CONF_MATCH_VALUE
   1237 #undef CONF_HANDLE_BOOL
   1238 #undef CONF_MIN_no
   1239 #undef CONF_MIN_yes
   1240 #undef CONF_MAX_no
   1241 #undef CONF_MAX_yes
   1242 #undef CONF_HANDLE_T_U
   1243 #undef CONF_HANDLE_UNSIGNED
   1244 #undef CONF_HANDLE_SIZE_T
   1245 #undef CONF_HANDLE_SSIZE_T
   1246 #undef CONF_HANDLE_CHAR_P
   1247 		}
   1248 		if (opt_abort_conf && had_conf_error) {
   1249 			malloc_abort_invalid_conf();
   1250 		}
   1251 	}
   1252 	atomic_store_b(&log_init_done, true, ATOMIC_RELEASE);
   1253 }
   1254 
   1255 static bool
   1256 malloc_init_hard_needed(void) {
   1257 	if (malloc_initialized() || (IS_INITIALIZER && malloc_init_state ==
   1258 	    malloc_init_recursible)) {
   1259 		/*
   1260 		 * Another thread initialized the allocator before this one
   1261 		 * acquired init_lock, or this thread is the initializing
   1262 		 * thread, and it is recursively allocating.
   1263 		 */
   1264 		return false;
   1265 	}
   1266 #ifdef JEMALLOC_THREADED_INIT
   1267 	if (malloc_initializer != NO_INITIALIZER && !IS_INITIALIZER) {
   1268 		/* Busy-wait until the initializing thread completes. */
   1269 		spin_t spinner = SPIN_INITIALIZER;
   1270 		do {
   1271 			malloc_mutex_unlock(TSDN_NULL, &init_lock);
   1272 			spin_adaptive(&spinner);
   1273 			malloc_mutex_lock(TSDN_NULL, &init_lock);
   1274 		} while (!malloc_initialized());
   1275 		return false;
   1276 	}
   1277 #endif
   1278 	return true;
   1279 }
   1280 
   1281 static bool
   1282 malloc_init_hard_a0_locked() {
   1283 	malloc_initializer = INITIALIZER;
   1284 
   1285 	if (config_prof) {
   1286 		prof_boot0();
   1287 	}
   1288 	malloc_conf_init();
   1289 	if (opt_stats_print) {
   1290 		/* Print statistics at exit. */
   1291 		if (atexit(stats_print_atexit) != 0) {
   1292 			malloc_write("<jemalloc>: Error in atexit()\n");
   1293 			if (opt_abort) {
   1294 				abort();
   1295 			}
   1296 		}
   1297 	}
   1298 	if (pages_boot()) {
   1299 		return true;
   1300 	}
   1301 	if (base_boot(TSDN_NULL)) {
   1302 		return true;
   1303 	}
   1304 	if (extent_boot()) {
   1305 		return true;
   1306 	}
   1307 	if (ctl_boot()) {
   1308 		return true;
   1309 	}
   1310 	if (config_prof) {
   1311 		prof_boot1();
   1312 	}
   1313 	arena_boot();
   1314 	if (tcache_boot(TSDN_NULL)) {
   1315 		return true;
   1316 	}
   1317 	if (malloc_mutex_init(&arenas_lock, "arenas", WITNESS_RANK_ARENAS,
   1318 	    malloc_mutex_rank_exclusive)) {
   1319 		return true;
   1320 	}
   1321 	/*
   1322 	 * Create enough scaffolding to allow recursive allocation in
   1323 	 * malloc_ncpus().
   1324 	 */
   1325 	narenas_auto = 1;
   1326 	memset(arenas, 0, sizeof(arena_t *) * narenas_auto);
   1327 	/*
   1328 	 * Initialize one arena here.  The rest are lazily created in
   1329 	 * arena_choose_hard().
   1330 	 */
   1331 	if (arena_init(TSDN_NULL, 0, (extent_hooks_t *)&extent_hooks_default)
   1332 	    == NULL) {
   1333 		return true;
   1334 	}
   1335 	a0 = arena_get(TSDN_NULL, 0, false);
   1336 	malloc_init_state = malloc_init_a0_initialized;
   1337 
   1338 	return false;
   1339 }
   1340 
   1341 static bool
   1342 malloc_init_hard_a0(void) {
   1343 	bool ret;
   1344 
   1345 	malloc_mutex_lock(TSDN_NULL, &init_lock);
   1346 	ret = malloc_init_hard_a0_locked();
   1347 	malloc_mutex_unlock(TSDN_NULL, &init_lock);
   1348 	return ret;
   1349 }
   1350 
   1351 /* Initialize data structures which may trigger recursive allocation. */
   1352 static bool
   1353 malloc_init_hard_recursible(void) {
   1354 	malloc_init_state = malloc_init_recursible;
   1355 
   1356 #if defined(__BIONIC__) && defined(ANDROID_NUM_ARENAS)
   1357 	/* Hardcode since this value won't be used. */
   1358 	ncpus = 2;
   1359 #else
   1360 	ncpus = malloc_ncpus();
   1361 #endif
   1362 
   1363 #if (defined(JEMALLOC_HAVE_PTHREAD_ATFORK) && !defined(JEMALLOC_MUTEX_INIT_CB) \
   1364     && !defined(JEMALLOC_ZONE) && !defined(_WIN32) && \
   1365     !defined(__native_client__))
   1366 	/* LinuxThreads' pthread_atfork() allocates. */
   1367 	if (pthread_atfork(jemalloc_prefork, jemalloc_postfork_parent,
   1368 	    jemalloc_postfork_child) != 0) {
   1369 		malloc_write("<jemalloc>: Error in pthread_atfork()\n");
   1370 		if (opt_abort) {
   1371 			abort();
   1372 		}
   1373 		return true;
   1374 	}
   1375 #endif
   1376 
   1377 	if (background_thread_boot0()) {
   1378 		return true;
   1379 	}
   1380 
   1381 	return false;
   1382 }
   1383 
   1384 static unsigned
   1385 malloc_narenas_default(void) {
   1386 #if defined(ANDROID_NUM_ARENAS)
   1387 	return ANDROID_NUM_ARENAS;
   1388 #else
   1389 	assert(ncpus > 0);
   1390 	/*
   1391 	 * For SMP systems, create more than one arena per CPU by
   1392 	 * default.
   1393 	 */
   1394 	if (ncpus > 1) {
   1395 		return ncpus << 2;
   1396 	} else {
   1397 		return 1;
   1398 	}
   1399 #endif
   1400 }
   1401 
   1402 static percpu_arena_mode_t
   1403 percpu_arena_as_initialized(percpu_arena_mode_t mode) {
   1404 	assert(!malloc_initialized());
   1405 	assert(mode <= percpu_arena_disabled);
   1406 
   1407 	if (mode != percpu_arena_disabled) {
   1408 		mode += percpu_arena_mode_enabled_base;
   1409 	}
   1410 
   1411 	return mode;
   1412 }
   1413 
   1414 static bool
   1415 malloc_init_narenas(void) {
   1416 	assert(ncpus > 0);
   1417 
   1418 	if (opt_percpu_arena != percpu_arena_disabled) {
   1419 		if (!have_percpu_arena || malloc_getcpu() < 0) {
   1420 			opt_percpu_arena = percpu_arena_disabled;
   1421 			malloc_printf("<jemalloc>: perCPU arena getcpu() not "
   1422 			    "available. Setting narenas to %u.\n", opt_narenas ?
   1423 			    opt_narenas : malloc_narenas_default());
   1424 			if (opt_abort) {
   1425 				abort();
   1426 			}
   1427 		} else {
   1428 			if (ncpus >= MALLOCX_ARENA_LIMIT) {
   1429 				malloc_printf("<jemalloc>: narenas w/ percpu"
   1430 				    "arena beyond limit (%d)\n", ncpus);
   1431 				if (opt_abort) {
   1432 					abort();
   1433 				}
   1434 				return true;
   1435 			}
   1436 			/* NB: opt_percpu_arena isn't fully initialized yet. */
   1437 			if (percpu_arena_as_initialized(opt_percpu_arena) ==
   1438 			    per_phycpu_arena && ncpus % 2 != 0) {
   1439 				malloc_printf("<jemalloc>: invalid "
   1440 				    "configuration -- per physical CPU arena "
   1441 				    "with odd number (%u) of CPUs (no hyper "
   1442 				    "threading?).\n", ncpus);
   1443 				if (opt_abort)
   1444 					abort();
   1445 			}
   1446 			unsigned n = percpu_arena_ind_limit(
   1447 			    percpu_arena_as_initialized(opt_percpu_arena));
   1448 			if (opt_narenas < n) {
   1449 				/*
   1450 				 * If narenas is specified with percpu_arena
   1451 				 * enabled, actual narenas is set as the greater
   1452 				 * of the two. percpu_arena_choose will be free
   1453 				 * to use any of the arenas based on CPU
   1454 				 * id. This is conservative (at a small cost)
   1455 				 * but ensures correctness.
   1456 				 *
   1457 				 * If for some reason the ncpus determined at
   1458 				 * boot is not the actual number (e.g. because
   1459 				 * of affinity setting from numactl), reserving
   1460 				 * narenas this way provides a workaround for
   1461 				 * percpu_arena.
   1462 				 */
   1463 				opt_narenas = n;
   1464 			}
   1465 		}
   1466 	}
   1467 	if (opt_narenas == 0) {
   1468 		opt_narenas = malloc_narenas_default();
   1469 	}
   1470 	assert(opt_narenas > 0);
   1471 
   1472 	narenas_auto = opt_narenas;
   1473 	/*
   1474 	 * Limit the number of arenas to the indexing range of MALLOCX_ARENA().
   1475 	 */
   1476 	if (narenas_auto >= MALLOCX_ARENA_LIMIT) {
   1477 		narenas_auto = MALLOCX_ARENA_LIMIT - 1;
   1478 		malloc_printf("<jemalloc>: Reducing narenas to limit (%d)\n",
   1479 		    narenas_auto);
   1480 	}
   1481 	narenas_total_set(narenas_auto);
   1482 
   1483 	return false;
   1484 }
   1485 
   1486 static void
   1487 malloc_init_percpu(void) {
   1488 	opt_percpu_arena = percpu_arena_as_initialized(opt_percpu_arena);
   1489 }
   1490 
   1491 static bool
   1492 malloc_init_hard_finish(void) {
   1493 	if (malloc_mutex_boot()) {
   1494 		return true;
   1495 	}
   1496 
   1497 	malloc_init_state = malloc_init_initialized;
   1498 	malloc_slow_flag_init();
   1499 
   1500 	return false;
   1501 }
   1502 
   1503 static void
   1504 malloc_init_hard_cleanup(tsdn_t *tsdn, bool reentrancy_set) {
   1505 	malloc_mutex_assert_owner(tsdn, &init_lock);
   1506 	malloc_mutex_unlock(tsdn, &init_lock);
   1507 	if (reentrancy_set) {
   1508 		assert(!tsdn_null(tsdn));
   1509 		tsd_t *tsd = tsdn_tsd(tsdn);
   1510 		assert(tsd_reentrancy_level_get(tsd) > 0);
   1511 		post_reentrancy(tsd);
   1512 	}
   1513 }
   1514 
   1515 static bool
   1516 malloc_init_hard(void) {
   1517 	tsd_t *tsd;
   1518 
   1519 #if defined(_WIN32) && _WIN32_WINNT < 0x0600
   1520 	_init_init_lock();
   1521 #endif
   1522 	malloc_mutex_lock(TSDN_NULL, &init_lock);
   1523 
   1524 #define UNLOCK_RETURN(tsdn, ret, reentrancy)		\
   1525 	malloc_init_hard_cleanup(tsdn, reentrancy);	\
   1526 	return ret;
   1527 
   1528 	if (!malloc_init_hard_needed()) {
   1529 		UNLOCK_RETURN(TSDN_NULL, false, false)
   1530 	}
   1531 
   1532 	if (malloc_init_state != malloc_init_a0_initialized &&
   1533 	    malloc_init_hard_a0_locked()) {
   1534 		UNLOCK_RETURN(TSDN_NULL, true, false)
   1535 	}
   1536 
   1537 	malloc_mutex_unlock(TSDN_NULL, &init_lock);
   1538 	/* Recursive allocation relies on functional tsd. */
   1539 	tsd = malloc_tsd_boot0();
   1540 	if (tsd == NULL) {
   1541 		return true;
   1542 	}
   1543 	if (malloc_init_hard_recursible()) {
   1544 		return true;
   1545 	}
   1546 
   1547 	malloc_mutex_lock(tsd_tsdn(tsd), &init_lock);
   1548 	/* Set reentrancy level to 1 during init. */
   1549 	pre_reentrancy(tsd, NULL);
   1550 	/* Initialize narenas before prof_boot2 (for allocation). */
   1551 	if (malloc_init_narenas() || background_thread_boot1(tsd_tsdn(tsd))) {
   1552 		UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
   1553 	}
   1554 	if (config_prof && prof_boot2(tsd)) {
   1555 		UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
   1556 	}
   1557 
   1558 	malloc_init_percpu();
   1559 
   1560 	if (malloc_init_hard_finish()) {
   1561 		UNLOCK_RETURN(tsd_tsdn(tsd), true, true)
   1562 	}
   1563 	post_reentrancy(tsd);
   1564 	malloc_mutex_unlock(tsd_tsdn(tsd), &init_lock);
   1565 
   1566 	witness_assert_lockless(witness_tsd_tsdn(
   1567 	    tsd_witness_tsdp_get_unsafe(tsd)));
   1568 	malloc_tsd_boot1();
   1569 	/* Update TSD after tsd_boot1. */
   1570 	tsd = tsd_fetch();
   1571 	if (opt_background_thread) {
   1572 		assert(have_background_thread);
   1573 		/*
   1574 		 * Need to finish init & unlock first before creating background
   1575 		 * threads (pthread_create depends on malloc).  ctl_init (which
   1576 		 * sets isthreaded) needs to be called without holding any lock.
   1577 		 */
   1578 		background_thread_ctl_init(tsd_tsdn(tsd));
   1579 
   1580 		malloc_mutex_lock(tsd_tsdn(tsd), &background_thread_lock);
   1581 		bool err = background_thread_create(tsd, 0);
   1582 		malloc_mutex_unlock(tsd_tsdn(tsd), &background_thread_lock);
   1583 		if (err) {
   1584 			return true;
   1585 		}
   1586 	}
   1587 #undef UNLOCK_RETURN
   1588 	return false;
   1589 }
   1590 
   1591 /*
   1592  * End initialization functions.
   1593  */
   1594 /******************************************************************************/
   1595 /*
   1596  * Begin allocation-path internal functions and data structures.
   1597  */
   1598 
   1599 /*
   1600  * Settings determined by the documented behavior of the allocation functions.
   1601  */
   1602 typedef struct static_opts_s static_opts_t;
   1603 struct static_opts_s {
   1604 	/* Whether or not allocation size may overflow. */
   1605 	bool may_overflow;
   1606 	/* Whether or not allocations of size 0 should be treated as size 1. */
   1607 	bool bump_empty_alloc;
   1608 	/*
   1609 	 * Whether to assert that allocations are not of size 0 (after any
   1610 	 * bumping).
   1611 	 */
   1612 	bool assert_nonempty_alloc;
   1613 
   1614 	/*
   1615 	 * Whether or not to modify the 'result' argument to malloc in case of
   1616 	 * error.
   1617 	 */
   1618 	bool null_out_result_on_error;
   1619 	/* Whether to set errno when we encounter an error condition. */
   1620 	bool set_errno_on_error;
   1621 
   1622 	/*
   1623 	 * The minimum valid alignment for functions requesting aligned storage.
   1624 	 */
   1625 	size_t min_alignment;
   1626 
   1627 	/* The error string to use if we oom. */
   1628 	const char *oom_string;
   1629 	/* The error string to use if the passed-in alignment is invalid. */
   1630 	const char *invalid_alignment_string;
   1631 
   1632 	/*
   1633 	 * False if we're configured to skip some time-consuming operations.
   1634 	 *
   1635 	 * This isn't really a malloc "behavior", but it acts as a useful
   1636 	 * summary of several other static (or at least, static after program
   1637 	 * initialization) options.
   1638 	 */
   1639 	bool slow;
   1640 };
   1641 
   1642 JEMALLOC_ALWAYS_INLINE void
   1643 static_opts_init(static_opts_t *static_opts) {
   1644 	static_opts->may_overflow = false;
   1645 	static_opts->bump_empty_alloc = false;
   1646 	static_opts->assert_nonempty_alloc = false;
   1647 	static_opts->null_out_result_on_error = false;
   1648 	static_opts->set_errno_on_error = false;
   1649 	static_opts->min_alignment = 0;
   1650 	static_opts->oom_string = "";
   1651 	static_opts->invalid_alignment_string = "";
   1652 	static_opts->slow = false;
   1653 }
   1654 
   1655 /*
   1656  * These correspond to the macros in jemalloc/jemalloc_macros.h.  Broadly, we
   1657  * should have one constant here per magic value there.  Note however that the
   1658  * representations need not be related.
   1659  */
   1660 #define TCACHE_IND_NONE ((unsigned)-1)
   1661 #define TCACHE_IND_AUTOMATIC ((unsigned)-2)
   1662 #define ARENA_IND_AUTOMATIC ((unsigned)-1)
   1663 
   1664 typedef struct dynamic_opts_s dynamic_opts_t;
   1665 struct dynamic_opts_s {
   1666 	void **result;
   1667 	size_t num_items;
   1668 	size_t item_size;
   1669 	size_t alignment;
   1670 	bool zero;
   1671 	unsigned tcache_ind;
   1672 	unsigned arena_ind;
   1673 };
   1674 
   1675 JEMALLOC_ALWAYS_INLINE void
   1676 dynamic_opts_init(dynamic_opts_t *dynamic_opts) {
   1677 	dynamic_opts->result = NULL;
   1678 	dynamic_opts->num_items = 0;
   1679 	dynamic_opts->item_size = 0;
   1680 	dynamic_opts->alignment = 0;
   1681 	dynamic_opts->zero = false;
   1682 	dynamic_opts->tcache_ind = TCACHE_IND_AUTOMATIC;
   1683 	dynamic_opts->arena_ind = ARENA_IND_AUTOMATIC;
   1684 }
   1685 
   1686 /* ind is ignored if dopts->alignment > 0. */
   1687 JEMALLOC_ALWAYS_INLINE void *
   1688 imalloc_no_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
   1689     size_t size, size_t usize, szind_t ind) {
   1690 	tcache_t *tcache;
   1691 	arena_t *arena;
   1692 
   1693 	/* Fill in the tcache. */
   1694 	if (dopts->tcache_ind == TCACHE_IND_AUTOMATIC) {
   1695 		if (likely(!sopts->slow)) {
   1696 			/* Getting tcache ptr unconditionally. */
   1697 			tcache = tsd_tcachep_get(tsd);
   1698 			assert(tcache == tcache_get(tsd));
   1699 		} else {
   1700 			tcache = tcache_get(tsd);
   1701 		}
   1702 	} else if (dopts->tcache_ind == TCACHE_IND_NONE) {
   1703 		tcache = NULL;
   1704 	} else {
   1705 		tcache = tcaches_get(tsd, dopts->tcache_ind);
   1706 	}
   1707 
   1708 	/* Fill in the arena. */
   1709 	if (dopts->arena_ind == ARENA_IND_AUTOMATIC) {
   1710 		/*
   1711 		 * In case of automatic arena management, we defer arena
   1712 		 * computation until as late as we can, hoping to fill the
   1713 		 * allocation out of the tcache.
   1714 		 */
   1715 		arena = NULL;
   1716 	} else {
   1717 		arena = arena_get(tsd_tsdn(tsd), dopts->arena_ind, true);
   1718 	}
   1719 
   1720 	if (unlikely(dopts->alignment != 0)) {
   1721 		return ipalloct(tsd_tsdn(tsd), usize, dopts->alignment,
   1722 		    dopts->zero, tcache, arena);
   1723 	}
   1724 
   1725 	return iallocztm(tsd_tsdn(tsd), size, ind, dopts->zero, tcache, false,
   1726 	    arena, sopts->slow);
   1727 }
   1728 
   1729 JEMALLOC_ALWAYS_INLINE void *
   1730 imalloc_sample(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd,
   1731     size_t usize, szind_t ind) {
   1732 	void *ret;
   1733 
   1734 	/*
   1735 	 * For small allocations, sampling bumps the usize.  If so, we allocate
   1736 	 * from the ind_large bucket.
   1737 	 */
   1738 	szind_t ind_large;
   1739 	size_t bumped_usize = usize;
   1740 
   1741 	if (usize <= SMALL_MAXCLASS) {
   1742 		assert(((dopts->alignment == 0) ? sz_s2u(LARGE_MINCLASS) :
   1743 		    sz_sa2u(LARGE_MINCLASS, dopts->alignment))
   1744 		    == LARGE_MINCLASS);
   1745 		ind_large = sz_size2index(LARGE_MINCLASS);
   1746 		bumped_usize = sz_s2u(LARGE_MINCLASS);
   1747 		ret = imalloc_no_sample(sopts, dopts, tsd, bumped_usize,
   1748 		    bumped_usize, ind_large);
   1749 		if (unlikely(ret == NULL)) {
   1750 			return NULL;
   1751 		}
   1752 		arena_prof_promote(tsd_tsdn(tsd), ret, usize);
   1753 	} else {
   1754 		ret = imalloc_no_sample(sopts, dopts, tsd, usize, usize, ind);
   1755 	}
   1756 
   1757 	return ret;
   1758 }
   1759 
   1760 /*
   1761  * Returns true if the allocation will overflow, and false otherwise.  Sets
   1762  * *size to the product either way.
   1763  */
   1764 JEMALLOC_ALWAYS_INLINE bool
   1765 compute_size_with_overflow(bool may_overflow, dynamic_opts_t *dopts,
   1766     size_t *size) {
   1767 	/*
   1768 	 * This function is just num_items * item_size, except that we may have
   1769 	 * to check for overflow.
   1770 	 */
   1771 
   1772 	if (!may_overflow) {
   1773 		assert(dopts->num_items == 1);
   1774 		*size = dopts->item_size;
   1775 		return false;
   1776 	}
   1777 
   1778 	/* A size_t with its high-half bits all set to 1. */
   1779 	static const size_t high_bits = SIZE_T_MAX << (sizeof(size_t) * 8 / 2);
   1780 
   1781 	*size = dopts->item_size * dopts->num_items;
   1782 
   1783 	if (unlikely(*size == 0)) {
   1784 		return (dopts->num_items != 0 && dopts->item_size != 0);
   1785 	}
   1786 
   1787 	/*
   1788 	 * We got a non-zero size, but we don't know if we overflowed to get
   1789 	 * there.  To avoid having to do a divide, we'll be clever and note that
   1790 	 * if both A and B can be represented in N/2 bits, then their product
   1791 	 * can be represented in N bits (without the possibility of overflow).
   1792 	 */
   1793 	if (likely((high_bits & (dopts->num_items | dopts->item_size)) == 0)) {
   1794 		return false;
   1795 	}
   1796 	if (likely(*size / dopts->item_size == dopts->num_items)) {
   1797 		return false;
   1798 	}
   1799 	return true;
   1800 }
   1801 
   1802 JEMALLOC_ALWAYS_INLINE int
   1803 imalloc_body(static_opts_t *sopts, dynamic_opts_t *dopts, tsd_t *tsd) {
   1804 	/* Where the actual allocated memory will live. */
   1805 	void *allocation = NULL;
   1806 	/* Filled in by compute_size_with_overflow below. */
   1807 	size_t size = 0;
   1808 	/*
   1809 	 * For unaligned allocations, we need only ind.  For aligned
   1810 	 * allocations, or in case of stats or profiling we need usize.
   1811 	 *
   1812 	 * These are actually dead stores, in that their values are reset before
   1813 	 * any branch on their value is taken.  Sometimes though, it's
   1814 	 * convenient to pass them as arguments before this point.  To avoid
   1815 	 * undefined behavior then, we initialize them with dummy stores.
   1816 	 */
   1817 	szind_t ind = 0;
   1818 	size_t usize = 0;
   1819 
   1820 	/* Reentrancy is only checked on slow path. */
   1821 	int8_t reentrancy_level;
   1822 
   1823 	/* Compute the amount of memory the user wants. */
   1824 	if (unlikely(compute_size_with_overflow(sopts->may_overflow, dopts,
   1825 	    &size))) {
   1826 		goto label_oom;
   1827 	}
   1828 
   1829 	/* Validate the user input. */
   1830 	if (sopts->bump_empty_alloc) {
   1831 		if (unlikely(size == 0)) {
   1832 			size = 1;
   1833 		}
   1834 	}
   1835 
   1836 	if (sopts->assert_nonempty_alloc) {
   1837 		assert (size != 0);
   1838 	}
   1839 
   1840 	if (unlikely(dopts->alignment < sopts->min_alignment
   1841 	    || (dopts->alignment & (dopts->alignment - 1)) != 0)) {
   1842 		goto label_invalid_alignment;
   1843 	}
   1844 
   1845 	/* This is the beginning of the "core" algorithm. */
   1846 
   1847 	if (dopts->alignment == 0) {
   1848 		ind = sz_size2index(size);
   1849 		if (unlikely(ind >= NSIZES)) {
   1850 			goto label_oom;
   1851 		}
   1852 		if (config_stats || (config_prof && opt_prof)) {
   1853 			usize = sz_index2size(ind);
   1854 			assert(usize > 0 && usize <= LARGE_MAXCLASS);
   1855 		}
   1856 	} else {
   1857 		usize = sz_sa2u(size, dopts->alignment);
   1858 		if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
   1859 			goto label_oom;
   1860 		}
   1861 	}
   1862 
   1863 	check_entry_exit_locking(tsd_tsdn(tsd));
   1864 
   1865 	/*
   1866 	 * If we need to handle reentrancy, we can do it out of a
   1867 	 * known-initialized arena (i.e. arena 0).
   1868 	 */
   1869 	reentrancy_level = tsd_reentrancy_level_get(tsd);
   1870 	if (sopts->slow && unlikely(reentrancy_level > 0)) {
   1871 		/*
   1872 		 * We should never specify particular arenas or tcaches from
   1873 		 * within our internal allocations.
   1874 		 */
   1875 		assert(dopts->tcache_ind == TCACHE_IND_AUTOMATIC ||
   1876 		    dopts->tcache_ind == TCACHE_IND_NONE);
   1877 		assert(dopts->arena_ind == ARENA_IND_AUTOMATIC);
   1878 		dopts->tcache_ind = TCACHE_IND_NONE;
   1879 		/* We know that arena 0 has already been initialized. */
   1880 		dopts->arena_ind = 0;
   1881 	}
   1882 
   1883 	/* If profiling is on, get our profiling context. */
   1884 	if (config_prof && opt_prof) {
   1885 		/*
   1886 		 * Note that if we're going down this path, usize must have been
   1887 		 * initialized in the previous if statement.
   1888 		 */
   1889 		prof_tctx_t *tctx = prof_alloc_prep(
   1890 		    tsd, usize, prof_active_get_unlocked(), true);
   1891 
   1892 		alloc_ctx_t alloc_ctx;
   1893 		if (likely((uintptr_t)tctx == (uintptr_t)1U)) {
   1894 			alloc_ctx.slab = (usize <= SMALL_MAXCLASS);
   1895 			allocation = imalloc_no_sample(
   1896 			    sopts, dopts, tsd, usize, usize, ind);
   1897 		} else if ((uintptr_t)tctx > (uintptr_t)1U) {
   1898 			/*
   1899 			 * Note that ind might still be 0 here.  This is fine;
   1900 			 * imalloc_sample ignores ind if dopts->alignment > 0.
   1901 			 */
   1902 			allocation = imalloc_sample(
   1903 			    sopts, dopts, tsd, usize, ind);
   1904 			alloc_ctx.slab = false;
   1905 		} else {
   1906 			allocation = NULL;
   1907 		}
   1908 
   1909 		if (unlikely(allocation == NULL)) {
   1910 			prof_alloc_rollback(tsd, tctx, true);
   1911 			goto label_oom;
   1912 		}
   1913 		prof_malloc(tsd_tsdn(tsd), allocation, usize, &alloc_ctx, tctx);
   1914 	} else {
   1915 		/*
   1916 		 * If dopts->alignment > 0, then ind is still 0, but usize was
   1917 		 * computed in the previous if statement.  Down the positive
   1918 		 * alignment path, imalloc_no_sample ignores ind and size
   1919 		 * (relying only on usize).
   1920 		 */
   1921 		allocation = imalloc_no_sample(sopts, dopts, tsd, size, usize,
   1922 		    ind);
   1923 		if (unlikely(allocation == NULL)) {
   1924 			goto label_oom;
   1925 		}
   1926 	}
   1927 
   1928 	/*
   1929 	 * Allocation has been done at this point.  We still have some
   1930 	 * post-allocation work to do though.
   1931 	 */
   1932 	assert(dopts->alignment == 0
   1933 	    || ((uintptr_t)allocation & (dopts->alignment - 1)) == ZU(0));
   1934 
   1935 	if (config_stats) {
   1936 		assert(usize == isalloc(tsd_tsdn(tsd), allocation));
   1937 		*tsd_thread_allocatedp_get(tsd) += usize;
   1938 	}
   1939 
   1940 	if (sopts->slow) {
   1941 		UTRACE(0, size, allocation);
   1942 	}
   1943 
   1944 	/* Success! */
   1945 	check_entry_exit_locking(tsd_tsdn(tsd));
   1946 	*dopts->result = allocation;
   1947 	return 0;
   1948 
   1949 label_oom:
   1950 	if (unlikely(sopts->slow) && config_xmalloc && unlikely(opt_xmalloc)) {
   1951 		malloc_write(sopts->oom_string);
   1952 		abort();
   1953 	}
   1954 
   1955 	if (sopts->slow) {
   1956 		UTRACE(NULL, size, NULL);
   1957 	}
   1958 
   1959 	check_entry_exit_locking(tsd_tsdn(tsd));
   1960 
   1961 	if (sopts->set_errno_on_error) {
   1962 		set_errno(ENOMEM);
   1963 	}
   1964 
   1965 	if (sopts->null_out_result_on_error) {
   1966 		*dopts->result = NULL;
   1967 	}
   1968 
   1969 	return ENOMEM;
   1970 
   1971 	/*
   1972 	 * This label is only jumped to by one goto; we move it out of line
   1973 	 * anyways to avoid obscuring the non-error paths, and for symmetry with
   1974 	 * the oom case.
   1975 	 */
   1976 label_invalid_alignment:
   1977 	if (config_xmalloc && unlikely(opt_xmalloc)) {
   1978 		malloc_write(sopts->invalid_alignment_string);
   1979 		abort();
   1980 	}
   1981 
   1982 	if (sopts->set_errno_on_error) {
   1983 		set_errno(EINVAL);
   1984 	}
   1985 
   1986 	if (sopts->slow) {
   1987 		UTRACE(NULL, size, NULL);
   1988 	}
   1989 
   1990 	check_entry_exit_locking(tsd_tsdn(tsd));
   1991 
   1992 	if (sopts->null_out_result_on_error) {
   1993 		*dopts->result = NULL;
   1994 	}
   1995 
   1996 	return EINVAL;
   1997 }
   1998 
   1999 /* Returns the errno-style error code of the allocation. */
   2000 JEMALLOC_ALWAYS_INLINE int
   2001 imalloc(static_opts_t *sopts, dynamic_opts_t *dopts) {
   2002 	if (unlikely(!malloc_initialized()) && unlikely(malloc_init())) {
   2003 		if (config_xmalloc && unlikely(opt_xmalloc)) {
   2004 			malloc_write(sopts->oom_string);
   2005 			abort();
   2006 		}
   2007 		UTRACE(NULL, dopts->num_items * dopts->item_size, NULL);
   2008 		set_errno(ENOMEM);
   2009 		*dopts->result = NULL;
   2010 
   2011 		return ENOMEM;
   2012 	}
   2013 
   2014 	/* We always need the tsd.  Let's grab it right away. */
   2015 	tsd_t *tsd = tsd_fetch();
   2016 	assert(tsd);
   2017 	if (likely(tsd_fast(tsd))) {
   2018 		/* Fast and common path. */
   2019 		tsd_assert_fast(tsd);
   2020 		sopts->slow = false;
   2021 		return imalloc_body(sopts, dopts, tsd);
   2022 	} else {
   2023 		sopts->slow = true;
   2024 		return imalloc_body(sopts, dopts, tsd);
   2025 	}
   2026 }
   2027 /******************************************************************************/
   2028 /*
   2029  * Begin malloc(3)-compatible functions.
   2030  */
   2031 
   2032 JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
   2033 void JEMALLOC_NOTHROW *
   2034 JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
   2035 je_malloc(size_t size) {
   2036 	void *ret;
   2037 	static_opts_t sopts;
   2038 	dynamic_opts_t dopts;
   2039 
   2040 	LOG("core.malloc.entry", "size: %zu", size);
   2041 
   2042 	static_opts_init(&sopts);
   2043 	dynamic_opts_init(&dopts);
   2044 
   2045 	sopts.bump_empty_alloc = true;
   2046 	sopts.null_out_result_on_error = true;
   2047 	sopts.set_errno_on_error = true;
   2048 	sopts.oom_string = "<jemalloc>: Error in malloc(): out of memory\n";
   2049 
   2050 	dopts.result = &ret;
   2051 	dopts.num_items = 1;
   2052 	dopts.item_size = size;
   2053 
   2054 	imalloc(&sopts, &dopts);
   2055 
   2056 	LOG("core.malloc.exit", "result: %p", ret);
   2057 
   2058 	return ret;
   2059 }
   2060 
   2061 JEMALLOC_EXPORT int JEMALLOC_NOTHROW
   2062 JEMALLOC_ATTR(nonnull(1))
   2063 je_posix_memalign(void **memptr, size_t alignment, size_t size) {
   2064 	int ret;
   2065 	static_opts_t sopts;
   2066 	dynamic_opts_t dopts;
   2067 
   2068 	LOG("core.posix_memalign.entry", "mem ptr: %p, alignment: %zu, "
   2069 	    "size: %zu", memptr, alignment, size);
   2070 
   2071 	static_opts_init(&sopts);
   2072 	dynamic_opts_init(&dopts);
   2073 
   2074 	sopts.bump_empty_alloc = true;
   2075 	sopts.min_alignment = sizeof(void *);
   2076 	sopts.oom_string =
   2077 	    "<jemalloc>: Error allocating aligned memory: out of memory\n";
   2078 	sopts.invalid_alignment_string =
   2079 	    "<jemalloc>: Error allocating aligned memory: invalid alignment\n";
   2080 
   2081 	dopts.result = memptr;
   2082 	dopts.num_items = 1;
   2083 	dopts.item_size = size;
   2084 	dopts.alignment = alignment;
   2085 
   2086 	ret = imalloc(&sopts, &dopts);
   2087 
   2088 	LOG("core.posix_memalign.exit", "result: %d, alloc ptr: %p", ret,
   2089 	    *memptr);
   2090 
   2091 	return ret;
   2092 }
   2093 
   2094 JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
   2095 void JEMALLOC_NOTHROW *
   2096 JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(2)
   2097 je_aligned_alloc(size_t alignment, size_t size) {
   2098 	void *ret;
   2099 
   2100 	static_opts_t sopts;
   2101 	dynamic_opts_t dopts;
   2102 
   2103 	LOG("core.aligned_alloc.entry", "alignment: %zu, size: %zu\n",
   2104 	    alignment, size);
   2105 
   2106 	static_opts_init(&sopts);
   2107 	dynamic_opts_init(&dopts);
   2108 
   2109 	sopts.bump_empty_alloc = true;
   2110 	sopts.null_out_result_on_error = true;
   2111 	sopts.set_errno_on_error = true;
   2112 	sopts.min_alignment = 1;
   2113 	sopts.oom_string =
   2114 	    "<jemalloc>: Error allocating aligned memory: out of memory\n";
   2115 	sopts.invalid_alignment_string =
   2116 	    "<jemalloc>: Error allocating aligned memory: invalid alignment\n";
   2117 
   2118 	dopts.result = &ret;
   2119 	dopts.num_items = 1;
   2120 	dopts.item_size = size;
   2121 	dopts.alignment = alignment;
   2122 
   2123 	imalloc(&sopts, &dopts);
   2124 
   2125 	LOG("core.aligned_alloc.exit", "result: %p", ret);
   2126 
   2127 	return ret;
   2128 }
   2129 
   2130 JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
   2131 void JEMALLOC_NOTHROW *
   2132 JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE2(1, 2)
   2133 je_calloc(size_t num, size_t size) {
   2134 	void *ret;
   2135 	static_opts_t sopts;
   2136 	dynamic_opts_t dopts;
   2137 
   2138 	LOG("core.calloc.entry", "num: %zu, size: %zu\n", num, size);
   2139 
   2140 	static_opts_init(&sopts);
   2141 	dynamic_opts_init(&dopts);
   2142 
   2143 	sopts.may_overflow = true;
   2144 	sopts.bump_empty_alloc = true;
   2145 	sopts.null_out_result_on_error = true;
   2146 	sopts.set_errno_on_error = true;
   2147 	sopts.oom_string = "<jemalloc>: Error in calloc(): out of memory\n";
   2148 
   2149 	dopts.result = &ret;
   2150 	dopts.num_items = num;
   2151 	dopts.item_size = size;
   2152 	dopts.zero = true;
   2153 
   2154 	imalloc(&sopts, &dopts);
   2155 
   2156 	LOG("core.calloc.exit", "result: %p", ret);
   2157 
   2158 	return ret;
   2159 }
   2160 
   2161 static void *
   2162 irealloc_prof_sample(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t usize,
   2163     prof_tctx_t *tctx) {
   2164 	void *p;
   2165 
   2166 	if (tctx == NULL) {
   2167 		return NULL;
   2168 	}
   2169 	if (usize <= SMALL_MAXCLASS) {
   2170 		p = iralloc(tsd, old_ptr, old_usize, LARGE_MINCLASS, 0, false);
   2171 		if (p == NULL) {
   2172 			return NULL;
   2173 		}
   2174 		arena_prof_promote(tsd_tsdn(tsd), p, usize);
   2175 	} else {
   2176 		p = iralloc(tsd, old_ptr, old_usize, usize, 0, false);
   2177 	}
   2178 
   2179 	return p;
   2180 }
   2181 
   2182 JEMALLOC_ALWAYS_INLINE void *
   2183 irealloc_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t usize,
   2184    alloc_ctx_t *alloc_ctx) {
   2185 	void *p;
   2186 	bool prof_active;
   2187 	prof_tctx_t *old_tctx, *tctx;
   2188 
   2189 	prof_active = prof_active_get_unlocked();
   2190 	old_tctx = prof_tctx_get(tsd_tsdn(tsd), old_ptr, alloc_ctx);
   2191 	tctx = prof_alloc_prep(tsd, usize, prof_active, true);
   2192 	if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
   2193 		p = irealloc_prof_sample(tsd, old_ptr, old_usize, usize, tctx);
   2194 	} else {
   2195 		p = iralloc(tsd, old_ptr, old_usize, usize, 0, false);
   2196 	}
   2197 	if (unlikely(p == NULL)) {
   2198 		prof_alloc_rollback(tsd, tctx, true);
   2199 		return NULL;
   2200 	}
   2201 	prof_realloc(tsd, p, usize, tctx, prof_active, true, old_ptr, old_usize,
   2202 	    old_tctx);
   2203 
   2204 	return p;
   2205 }
   2206 
   2207 JEMALLOC_ALWAYS_INLINE void
   2208 ifree(tsd_t *tsd, void *ptr, tcache_t *tcache, bool slow_path) {
   2209 	if (!slow_path) {
   2210 		tsd_assert_fast(tsd);
   2211 	}
   2212 	check_entry_exit_locking(tsd_tsdn(tsd));
   2213 	if (tsd_reentrancy_level_get(tsd) != 0) {
   2214 		assert(slow_path);
   2215 	}
   2216 
   2217 	assert(ptr != NULL);
   2218 	assert(malloc_initialized() || IS_INITIALIZER);
   2219 
   2220 	alloc_ctx_t alloc_ctx;
   2221 	rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
   2222 	rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
   2223 	    (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
   2224 	assert(alloc_ctx.szind != NSIZES);
   2225 
   2226 	size_t usize;
   2227 	if (config_prof && opt_prof) {
   2228 		usize = sz_index2size(alloc_ctx.szind);
   2229 		prof_free(tsd, ptr, usize, &alloc_ctx);
   2230 	} else if (config_stats) {
   2231 		usize = sz_index2size(alloc_ctx.szind);
   2232 	}
   2233 	if (config_stats) {
   2234 		*tsd_thread_deallocatedp_get(tsd) += usize;
   2235 	}
   2236 
   2237 	if (likely(!slow_path)) {
   2238 		idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false,
   2239 		    false);
   2240 	} else {
   2241 		idalloctm(tsd_tsdn(tsd), ptr, tcache, &alloc_ctx, false,
   2242 		    true);
   2243 	}
   2244 }
   2245 
   2246 JEMALLOC_ALWAYS_INLINE void
   2247 isfree(tsd_t *tsd, void *ptr, size_t usize, tcache_t *tcache, bool slow_path) {
   2248 	if (!slow_path) {
   2249 		tsd_assert_fast(tsd);
   2250 	}
   2251 	check_entry_exit_locking(tsd_tsdn(tsd));
   2252 	if (tsd_reentrancy_level_get(tsd) != 0) {
   2253 		assert(slow_path);
   2254 	}
   2255 
   2256 	assert(ptr != NULL);
   2257 	assert(malloc_initialized() || IS_INITIALIZER);
   2258 
   2259 	alloc_ctx_t alloc_ctx, *ctx;
   2260 	if (!config_cache_oblivious && ((uintptr_t)ptr & PAGE_MASK) != 0) {
   2261 		/*
   2262 		 * When cache_oblivious is disabled and ptr is not page aligned,
   2263 		 * the allocation was not sampled -- usize can be used to
   2264 		 * determine szind directly.
   2265 		 */
   2266 		alloc_ctx.szind = sz_size2index(usize);
   2267 		alloc_ctx.slab = true;
   2268 		ctx = &alloc_ctx;
   2269 		if (config_debug) {
   2270 			alloc_ctx_t dbg_ctx;
   2271 			rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
   2272 			rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree,
   2273 			    rtree_ctx, (uintptr_t)ptr, true, &dbg_ctx.szind,
   2274 			    &dbg_ctx.slab);
   2275 			assert(dbg_ctx.szind == alloc_ctx.szind);
   2276 			assert(dbg_ctx.slab == alloc_ctx.slab);
   2277 		}
   2278 	} else if (config_prof && opt_prof) {
   2279 		rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
   2280 		rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
   2281 		    (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
   2282 		assert(alloc_ctx.szind == sz_size2index(usize));
   2283 		ctx = &alloc_ctx;
   2284 	} else {
   2285 		ctx = NULL;
   2286 	}
   2287 
   2288 	if (config_prof && opt_prof) {
   2289 		prof_free(tsd, ptr, usize, ctx);
   2290 	}
   2291 	if (config_stats) {
   2292 		*tsd_thread_deallocatedp_get(tsd) += usize;
   2293 	}
   2294 
   2295 	if (likely(!slow_path)) {
   2296 		isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, ctx, false);
   2297 	} else {
   2298 		isdalloct(tsd_tsdn(tsd), ptr, usize, tcache, ctx, true);
   2299 	}
   2300 }
   2301 
   2302 JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
   2303 void JEMALLOC_NOTHROW *
   2304 JEMALLOC_ALLOC_SIZE(2)
   2305 je_realloc(void *ptr, size_t size) {
   2306 	void *ret;
   2307 	tsdn_t *tsdn JEMALLOC_CC_SILENCE_INIT(NULL);
   2308 	size_t usize JEMALLOC_CC_SILENCE_INIT(0);
   2309 	size_t old_usize = 0;
   2310 
   2311 	LOG("core.realloc.entry", "ptr: %p, size: %zu\n", ptr, size);
   2312 
   2313 	if (unlikely(size == 0)) {
   2314 		if (ptr != NULL) {
   2315 			/* realloc(ptr, 0) is equivalent to free(ptr). */
   2316 			UTRACE(ptr, 0, 0);
   2317 			tcache_t *tcache;
   2318 			tsd_t *tsd = tsd_fetch();
   2319 			if (tsd_reentrancy_level_get(tsd) == 0) {
   2320 				tcache = tcache_get(tsd);
   2321 			} else {
   2322 				tcache = NULL;
   2323 			}
   2324 			ifree(tsd, ptr, tcache, true);
   2325 
   2326 			LOG("core.realloc.exit", "result: %p", NULL);
   2327 			return NULL;
   2328 		}
   2329 		size = 1;
   2330 	}
   2331 
   2332 	if (likely(ptr != NULL)) {
   2333 		assert(malloc_initialized() || IS_INITIALIZER);
   2334 		tsd_t *tsd = tsd_fetch();
   2335 
   2336 		check_entry_exit_locking(tsd_tsdn(tsd));
   2337 
   2338 		alloc_ctx_t alloc_ctx;
   2339 		rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
   2340 		rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
   2341 		    (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
   2342 		assert(alloc_ctx.szind != NSIZES);
   2343 		old_usize = sz_index2size(alloc_ctx.szind);
   2344 		assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
   2345 		if (config_prof && opt_prof) {
   2346 			usize = sz_s2u(size);
   2347 			ret = unlikely(usize == 0 || usize > LARGE_MAXCLASS) ?
   2348 			    NULL : irealloc_prof(tsd, ptr, old_usize, usize,
   2349 			    &alloc_ctx);
   2350 		} else {
   2351 			if (config_stats) {
   2352 				usize = sz_s2u(size);
   2353 			}
   2354 			ret = iralloc(tsd, ptr, old_usize, size, 0, false);
   2355 		}
   2356 		tsdn = tsd_tsdn(tsd);
   2357 	} else {
   2358 		/* realloc(NULL, size) is equivalent to malloc(size). */
   2359 		void *ret = je_malloc(size);
   2360 		LOG("core.realloc.exit", "result: %p", ret);
   2361 		return ret;
   2362 	}
   2363 
   2364 	if (unlikely(ret == NULL)) {
   2365 		if (config_xmalloc && unlikely(opt_xmalloc)) {
   2366 			malloc_write("<jemalloc>: Error in realloc(): "
   2367 			    "out of memory\n");
   2368 			abort();
   2369 		}
   2370 		set_errno(ENOMEM);
   2371 	}
   2372 	if (config_stats && likely(ret != NULL)) {
   2373 		tsd_t *tsd;
   2374 
   2375 		assert(usize == isalloc(tsdn, ret));
   2376 		tsd = tsdn_tsd(tsdn);
   2377 		*tsd_thread_allocatedp_get(tsd) += usize;
   2378 		*tsd_thread_deallocatedp_get(tsd) += old_usize;
   2379 	}
   2380 	UTRACE(ptr, size, ret);
   2381 	check_entry_exit_locking(tsdn);
   2382 
   2383 	LOG("core.realloc.exit", "result: %p", ret);
   2384 	return ret;
   2385 }
   2386 
   2387 JEMALLOC_EXPORT void JEMALLOC_NOTHROW
   2388 je_free(void *ptr) {
   2389 	LOG("core.free.entry", "ptr: %p", ptr);
   2390 
   2391 	UTRACE(ptr, 0, 0);
   2392 	if (likely(ptr != NULL)) {
   2393 		/*
   2394 		 * We avoid setting up tsd fully (e.g. tcache, arena binding)
   2395 		 * based on only free() calls -- other activities trigger the
   2396 		 * minimal to full transition.  This is because free() may
   2397 		 * happen during thread shutdown after tls deallocation: if a
   2398 		 * thread never had any malloc activities until then, a
   2399 		 * fully-setup tsd won't be destructed properly.
   2400 		 */
   2401 		tsd_t *tsd = tsd_fetch_min();
   2402 		check_entry_exit_locking(tsd_tsdn(tsd));
   2403 
   2404 		tcache_t *tcache;
   2405 		if (likely(tsd_fast(tsd))) {
   2406 			tsd_assert_fast(tsd);
   2407 			/* Unconditionally get tcache ptr on fast path. */
   2408 			tcache = tsd_tcachep_get(tsd);
   2409 			ifree(tsd, ptr, tcache, false);
   2410 		} else {
   2411 			if (likely(tsd_reentrancy_level_get(tsd) == 0)) {
   2412 				tcache = tcache_get(tsd);
   2413 			} else {
   2414 				tcache = NULL;
   2415 			}
   2416 			ifree(tsd, ptr, tcache, true);
   2417 		}
   2418 		check_entry_exit_locking(tsd_tsdn(tsd));
   2419 	}
   2420 	LOG("core.free.exit", "");
   2421 }
   2422 
   2423 /*
   2424  * End malloc(3)-compatible functions.
   2425  */
   2426 /******************************************************************************/
   2427 /*
   2428  * Begin non-standard override functions.
   2429  */
   2430 
   2431 #ifdef JEMALLOC_OVERRIDE_MEMALIGN
   2432 JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
   2433 void JEMALLOC_NOTHROW *
   2434 JEMALLOC_ATTR(malloc)
   2435 je_memalign(size_t alignment, size_t size) {
   2436 	void *ret;
   2437 	static_opts_t sopts;
   2438 	dynamic_opts_t dopts;
   2439 
   2440 	LOG("core.memalign.entry", "alignment: %zu, size: %zu\n", alignment,
   2441 	    size);
   2442 
   2443 	static_opts_init(&sopts);
   2444 	dynamic_opts_init(&dopts);
   2445 
   2446 	sopts.bump_empty_alloc = true;
   2447 	sopts.min_alignment = 1;
   2448 	sopts.oom_string =
   2449 	    "<jemalloc>: Error allocating aligned memory: out of memory\n";
   2450 	sopts.invalid_alignment_string =
   2451 	    "<jemalloc>: Error allocating aligned memory: invalid alignment\n";
   2452 	sopts.null_out_result_on_error = true;
   2453 
   2454 	dopts.result = &ret;
   2455 	dopts.num_items = 1;
   2456 	dopts.item_size = size;
   2457 	dopts.alignment = alignment;
   2458 
   2459 	imalloc(&sopts, &dopts);
   2460 
   2461 	LOG("core.memalign.exit", "result: %p", ret);
   2462 	return ret;
   2463 }
   2464 #endif
   2465 
   2466 #ifdef JEMALLOC_OVERRIDE_VALLOC
   2467 JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
   2468 void JEMALLOC_NOTHROW *
   2469 JEMALLOC_ATTR(malloc)
   2470 je_valloc(size_t size) {
   2471 	void *ret;
   2472 
   2473 	static_opts_t sopts;
   2474 	dynamic_opts_t dopts;
   2475 
   2476 	LOG("core.valloc.entry", "size: %zu\n", size);
   2477 
   2478 	static_opts_init(&sopts);
   2479 	dynamic_opts_init(&dopts);
   2480 
   2481 	sopts.bump_empty_alloc = true;
   2482 	sopts.null_out_result_on_error = true;
   2483 	sopts.min_alignment = PAGE;
   2484 	sopts.oom_string =
   2485 	    "<jemalloc>: Error allocating aligned memory: out of memory\n";
   2486 	sopts.invalid_alignment_string =
   2487 	    "<jemalloc>: Error allocating aligned memory: invalid alignment\n";
   2488 
   2489 	dopts.result = &ret;
   2490 	dopts.num_items = 1;
   2491 	dopts.item_size = size;
   2492 	dopts.alignment = PAGE;
   2493 
   2494 	imalloc(&sopts, &dopts);
   2495 
   2496 	LOG("core.valloc.exit", "result: %p\n", ret);
   2497 	return ret;
   2498 }
   2499 #endif
   2500 
   2501 #if defined(JEMALLOC_IS_MALLOC) && defined(JEMALLOC_GLIBC_MALLOC_HOOK)
   2502 /*
   2503  * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
   2504  * to inconsistently reference libc's malloc(3)-compatible functions
   2505  * (https://bugzilla.mozilla.org/show_bug.cgi?id=493541).
   2506  *
   2507  * These definitions interpose hooks in glibc.  The functions are actually
   2508  * passed an extra argument for the caller return address, which will be
   2509  * ignored.
   2510  */
   2511 JEMALLOC_EXPORT void (*__free_hook)(void *ptr) = je_free;
   2512 JEMALLOC_EXPORT void *(*__malloc_hook)(size_t size) = je_malloc;
   2513 JEMALLOC_EXPORT void *(*__realloc_hook)(void *ptr, size_t size) = je_realloc;
   2514 #  ifdef JEMALLOC_GLIBC_MEMALIGN_HOOK
   2515 JEMALLOC_EXPORT void *(*__memalign_hook)(size_t alignment, size_t size) =
   2516     je_memalign;
   2517 #  endif
   2518 
   2519 #  ifdef CPU_COUNT
   2520 /*
   2521  * To enable static linking with glibc, the libc specific malloc interface must
   2522  * be implemented also, so none of glibc's malloc.o functions are added to the
   2523  * link.
   2524  */
   2525 #    define ALIAS(je_fn)	__attribute__((alias (#je_fn), used))
   2526 /* To force macro expansion of je_ prefix before stringification. */
   2527 #    define PREALIAS(je_fn)	ALIAS(je_fn)
   2528 #    ifdef JEMALLOC_OVERRIDE___LIBC_CALLOC
   2529 void *__libc_calloc(size_t n, size_t size) PREALIAS(je_calloc);
   2530 #    endif
   2531 #    ifdef JEMALLOC_OVERRIDE___LIBC_FREE
   2532 void __libc_free(void* ptr) PREALIAS(je_free);
   2533 #    endif
   2534 #    ifdef JEMALLOC_OVERRIDE___LIBC_MALLOC
   2535 void *__libc_malloc(size_t size) PREALIAS(je_malloc);
   2536 #    endif
   2537 #    ifdef JEMALLOC_OVERRIDE___LIBC_MEMALIGN
   2538 void *__libc_memalign(size_t align, size_t s) PREALIAS(je_memalign);
   2539 #    endif
   2540 #    ifdef JEMALLOC_OVERRIDE___LIBC_REALLOC
   2541 void *__libc_realloc(void* ptr, size_t size) PREALIAS(je_realloc);
   2542 #    endif
   2543 #    ifdef JEMALLOC_OVERRIDE___LIBC_VALLOC
   2544 void *__libc_valloc(size_t size) PREALIAS(je_valloc);
   2545 #    endif
   2546 #    ifdef JEMALLOC_OVERRIDE___POSIX_MEMALIGN
   2547 int __posix_memalign(void** r, size_t a, size_t s) PREALIAS(je_posix_memalign);
   2548 #    endif
   2549 #    undef PREALIAS
   2550 #    undef ALIAS
   2551 #  endif
   2552 #endif
   2553 
   2554 /*
   2555  * End non-standard override functions.
   2556  */
   2557 /******************************************************************************/
   2558 /*
   2559  * Begin non-standard functions.
   2560  */
   2561 
   2562 JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
   2563 void JEMALLOC_NOTHROW *
   2564 JEMALLOC_ATTR(malloc) JEMALLOC_ALLOC_SIZE(1)
   2565 je_mallocx(size_t size, int flags) {
   2566 	void *ret;
   2567 	static_opts_t sopts;
   2568 	dynamic_opts_t dopts;
   2569 
   2570 	LOG("core.mallocx.entry", "size: %zu, flags: %d", size, flags);
   2571 
   2572 	static_opts_init(&sopts);
   2573 	dynamic_opts_init(&dopts);
   2574 
   2575 	sopts.assert_nonempty_alloc = true;
   2576 	sopts.null_out_result_on_error = true;
   2577 	sopts.oom_string = "<jemalloc>: Error in mallocx(): out of memory\n";
   2578 
   2579 	dopts.result = &ret;
   2580 	dopts.num_items = 1;
   2581 	dopts.item_size = size;
   2582 	if (unlikely(flags != 0)) {
   2583 		if ((flags & MALLOCX_LG_ALIGN_MASK) != 0) {
   2584 			dopts.alignment = MALLOCX_ALIGN_GET_SPECIFIED(flags);
   2585 		}
   2586 
   2587 		dopts.zero = MALLOCX_ZERO_GET(flags);
   2588 
   2589 		if ((flags & MALLOCX_TCACHE_MASK) != 0) {
   2590 			if ((flags & MALLOCX_TCACHE_MASK)
   2591 			    == MALLOCX_TCACHE_NONE) {
   2592 				dopts.tcache_ind = TCACHE_IND_NONE;
   2593 			} else {
   2594 				dopts.tcache_ind = MALLOCX_TCACHE_GET(flags);
   2595 			}
   2596 		} else {
   2597 			dopts.tcache_ind = TCACHE_IND_AUTOMATIC;
   2598 		}
   2599 
   2600 		if ((flags & MALLOCX_ARENA_MASK) != 0)
   2601 			dopts.arena_ind = MALLOCX_ARENA_GET(flags);
   2602 	}
   2603 
   2604 	imalloc(&sopts, &dopts);
   2605 
   2606 	LOG("core.mallocx.exit", "result: %p", ret);
   2607 	return ret;
   2608 }
   2609 
   2610 static void *
   2611 irallocx_prof_sample(tsdn_t *tsdn, void *old_ptr, size_t old_usize,
   2612     size_t usize, size_t alignment, bool zero, tcache_t *tcache, arena_t *arena,
   2613     prof_tctx_t *tctx) {
   2614 	void *p;
   2615 
   2616 	if (tctx == NULL) {
   2617 		return NULL;
   2618 	}
   2619 	if (usize <= SMALL_MAXCLASS) {
   2620 		p = iralloct(tsdn, old_ptr, old_usize, LARGE_MINCLASS,
   2621 		    alignment, zero, tcache, arena);
   2622 		if (p == NULL) {
   2623 			return NULL;
   2624 		}
   2625 		arena_prof_promote(tsdn, p, usize);
   2626 	} else {
   2627 		p = iralloct(tsdn, old_ptr, old_usize, usize, alignment, zero,
   2628 		    tcache, arena);
   2629 	}
   2630 
   2631 	return p;
   2632 }
   2633 
   2634 JEMALLOC_ALWAYS_INLINE void *
   2635 irallocx_prof(tsd_t *tsd, void *old_ptr, size_t old_usize, size_t size,
   2636     size_t alignment, size_t *usize, bool zero, tcache_t *tcache,
   2637     arena_t *arena, alloc_ctx_t *alloc_ctx) {
   2638 	void *p;
   2639 	bool prof_active;
   2640 	prof_tctx_t *old_tctx, *tctx;
   2641 
   2642 	prof_active = prof_active_get_unlocked();
   2643 	old_tctx = prof_tctx_get(tsd_tsdn(tsd), old_ptr, alloc_ctx);
   2644 	tctx = prof_alloc_prep(tsd, *usize, prof_active, false);
   2645 	if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
   2646 		p = irallocx_prof_sample(tsd_tsdn(tsd), old_ptr, old_usize,
   2647 		    *usize, alignment, zero, tcache, arena, tctx);
   2648 	} else {
   2649 		p = iralloct(tsd_tsdn(tsd), old_ptr, old_usize, size, alignment,
   2650 		    zero, tcache, arena);
   2651 	}
   2652 	if (unlikely(p == NULL)) {
   2653 		prof_alloc_rollback(tsd, tctx, false);
   2654 		return NULL;
   2655 	}
   2656 
   2657 	if (p == old_ptr && alignment != 0) {
   2658 		/*
   2659 		 * The allocation did not move, so it is possible that the size
   2660 		 * class is smaller than would guarantee the requested
   2661 		 * alignment, and that the alignment constraint was
   2662 		 * serendipitously satisfied.  Additionally, old_usize may not
   2663 		 * be the same as the current usize because of in-place large
   2664 		 * reallocation.  Therefore, query the actual value of usize.
   2665 		 */
   2666 		*usize = isalloc(tsd_tsdn(tsd), p);
   2667 	}
   2668 	prof_realloc(tsd, p, *usize, tctx, prof_active, false, old_ptr,
   2669 	    old_usize, old_tctx);
   2670 
   2671 	return p;
   2672 }
   2673 
   2674 JEMALLOC_EXPORT JEMALLOC_ALLOCATOR JEMALLOC_RESTRICT_RETURN
   2675 void JEMALLOC_NOTHROW *
   2676 JEMALLOC_ALLOC_SIZE(2)
   2677 je_rallocx(void *ptr, size_t size, int flags) {
   2678 	void *p;
   2679 	tsd_t *tsd;
   2680 	size_t usize;
   2681 	size_t old_usize;
   2682 	size_t alignment = MALLOCX_ALIGN_GET(flags);
   2683 	bool zero = flags & MALLOCX_ZERO;
   2684 	arena_t *arena;
   2685 	tcache_t *tcache;
   2686 
   2687 	LOG("core.rallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr,
   2688 	    size, flags);
   2689 
   2690 
   2691 	assert(ptr != NULL);
   2692 	assert(size != 0);
   2693 	assert(malloc_initialized() || IS_INITIALIZER);
   2694 	tsd = tsd_fetch();
   2695 	check_entry_exit_locking(tsd_tsdn(tsd));
   2696 
   2697 	if (unlikely((flags & MALLOCX_ARENA_MASK) != 0)) {
   2698 		unsigned arena_ind = MALLOCX_ARENA_GET(flags);
   2699 		arena = arena_get(tsd_tsdn(tsd), arena_ind, true);
   2700 		if (unlikely(arena == NULL)) {
   2701 			goto label_oom;
   2702 		}
   2703 	} else {
   2704 		arena = NULL;
   2705 	}
   2706 
   2707 	if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
   2708 		if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
   2709 			tcache = NULL;
   2710 		} else {
   2711 			tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
   2712 		}
   2713 	} else {
   2714 		tcache = tcache_get(tsd);
   2715 	}
   2716 
   2717 	alloc_ctx_t alloc_ctx;
   2718 	rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
   2719 	rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
   2720 	    (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
   2721 	assert(alloc_ctx.szind != NSIZES);
   2722 	old_usize = sz_index2size(alloc_ctx.szind);
   2723 	assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
   2724 	if (config_prof && opt_prof) {
   2725 		usize = (alignment == 0) ?
   2726 		    sz_s2u(size) : sz_sa2u(size, alignment);
   2727 		if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
   2728 			goto label_oom;
   2729 		}
   2730 		p = irallocx_prof(tsd, ptr, old_usize, size, alignment, &usize,
   2731 		    zero, tcache, arena, &alloc_ctx);
   2732 		if (unlikely(p == NULL)) {
   2733 			goto label_oom;
   2734 		}
   2735 	} else {
   2736 		p = iralloct(tsd_tsdn(tsd), ptr, old_usize, size, alignment,
   2737 		    zero, tcache, arena);
   2738 		if (unlikely(p == NULL)) {
   2739 			goto label_oom;
   2740 		}
   2741 		if (config_stats) {
   2742 			usize = isalloc(tsd_tsdn(tsd), p);
   2743 		}
   2744 	}
   2745 	assert(alignment == 0 || ((uintptr_t)p & (alignment - 1)) == ZU(0));
   2746 
   2747 	if (config_stats) {
   2748 		*tsd_thread_allocatedp_get(tsd) += usize;
   2749 		*tsd_thread_deallocatedp_get(tsd) += old_usize;
   2750 	}
   2751 	UTRACE(ptr, size, p);
   2752 	check_entry_exit_locking(tsd_tsdn(tsd));
   2753 
   2754 	LOG("core.rallocx.exit", "result: %p", p);
   2755 	return p;
   2756 label_oom:
   2757 	if (config_xmalloc && unlikely(opt_xmalloc)) {
   2758 		malloc_write("<jemalloc>: Error in rallocx(): out of memory\n");
   2759 		abort();
   2760 	}
   2761 	UTRACE(ptr, size, 0);
   2762 	check_entry_exit_locking(tsd_tsdn(tsd));
   2763 
   2764 	LOG("core.rallocx.exit", "result: %p", NULL);
   2765 	return NULL;
   2766 }
   2767 
   2768 JEMALLOC_ALWAYS_INLINE size_t
   2769 ixallocx_helper(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size,
   2770     size_t extra, size_t alignment, bool zero) {
   2771 	size_t usize;
   2772 
   2773 	if (ixalloc(tsdn, ptr, old_usize, size, extra, alignment, zero)) {
   2774 		return old_usize;
   2775 	}
   2776 	usize = isalloc(tsdn, ptr);
   2777 
   2778 	return usize;
   2779 }
   2780 
   2781 static size_t
   2782 ixallocx_prof_sample(tsdn_t *tsdn, void *ptr, size_t old_usize, size_t size,
   2783     size_t extra, size_t alignment, bool zero, prof_tctx_t *tctx) {
   2784 	size_t usize;
   2785 
   2786 	if (tctx == NULL) {
   2787 		return old_usize;
   2788 	}
   2789 	usize = ixallocx_helper(tsdn, ptr, old_usize, size, extra, alignment,
   2790 	    zero);
   2791 
   2792 	return usize;
   2793 }
   2794 
   2795 JEMALLOC_ALWAYS_INLINE size_t
   2796 ixallocx_prof(tsd_t *tsd, void *ptr, size_t old_usize, size_t size,
   2797     size_t extra, size_t alignment, bool zero, alloc_ctx_t *alloc_ctx) {
   2798 	size_t usize_max, usize;
   2799 	bool prof_active;
   2800 	prof_tctx_t *old_tctx, *tctx;
   2801 
   2802 	prof_active = prof_active_get_unlocked();
   2803 	old_tctx = prof_tctx_get(tsd_tsdn(tsd), ptr, alloc_ctx);
   2804 	/*
   2805 	 * usize isn't knowable before ixalloc() returns when extra is non-zero.
   2806 	 * Therefore, compute its maximum possible value and use that in
   2807 	 * prof_alloc_prep() to decide whether to capture a backtrace.
   2808 	 * prof_realloc() will use the actual usize to decide whether to sample.
   2809 	 */
   2810 	if (alignment == 0) {
   2811 		usize_max = sz_s2u(size+extra);
   2812 		assert(usize_max > 0 && usize_max <= LARGE_MAXCLASS);
   2813 	} else {
   2814 		usize_max = sz_sa2u(size+extra, alignment);
   2815 		if (unlikely(usize_max == 0 || usize_max > LARGE_MAXCLASS)) {
   2816 			/*
   2817 			 * usize_max is out of range, and chances are that
   2818 			 * allocation will fail, but use the maximum possible
   2819 			 * value and carry on with prof_alloc_prep(), just in
   2820 			 * case allocation succeeds.
   2821 			 */
   2822 			usize_max = LARGE_MAXCLASS;
   2823 		}
   2824 	}
   2825 	tctx = prof_alloc_prep(tsd, usize_max, prof_active, false);
   2826 
   2827 	if (unlikely((uintptr_t)tctx != (uintptr_t)1U)) {
   2828 		usize = ixallocx_prof_sample(tsd_tsdn(tsd), ptr, old_usize,
   2829 		    size, extra, alignment, zero, tctx);
   2830 	} else {
   2831 		usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size,
   2832 		    extra, alignment, zero);
   2833 	}
   2834 	if (usize == old_usize) {
   2835 		prof_alloc_rollback(tsd, tctx, false);
   2836 		return usize;
   2837 	}
   2838 	prof_realloc(tsd, ptr, usize, tctx, prof_active, false, ptr, old_usize,
   2839 	    old_tctx);
   2840 
   2841 	return usize;
   2842 }
   2843 
   2844 JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
   2845 je_xallocx(void *ptr, size_t size, size_t extra, int flags) {
   2846 	tsd_t *tsd;
   2847 	size_t usize, old_usize;
   2848 	size_t alignment = MALLOCX_ALIGN_GET(flags);
   2849 	bool zero = flags & MALLOCX_ZERO;
   2850 
   2851 	LOG("core.xallocx.entry", "ptr: %p, size: %zu, extra: %zu, "
   2852 	    "flags: %d", ptr, size, extra, flags);
   2853 
   2854 	assert(ptr != NULL);
   2855 	assert(size != 0);
   2856 	assert(SIZE_T_MAX - size >= extra);
   2857 	assert(malloc_initialized() || IS_INITIALIZER);
   2858 	tsd = tsd_fetch();
   2859 	check_entry_exit_locking(tsd_tsdn(tsd));
   2860 
   2861 	alloc_ctx_t alloc_ctx;
   2862 	rtree_ctx_t *rtree_ctx = tsd_rtree_ctx(tsd);
   2863 	rtree_szind_slab_read(tsd_tsdn(tsd), &extents_rtree, rtree_ctx,
   2864 	    (uintptr_t)ptr, true, &alloc_ctx.szind, &alloc_ctx.slab);
   2865 	assert(alloc_ctx.szind != NSIZES);
   2866 	old_usize = sz_index2size(alloc_ctx.szind);
   2867 	assert(old_usize == isalloc(tsd_tsdn(tsd), ptr));
   2868 	/*
   2869 	 * The API explicitly absolves itself of protecting against (size +
   2870 	 * extra) numerical overflow, but we may need to clamp extra to avoid
   2871 	 * exceeding LARGE_MAXCLASS.
   2872 	 *
   2873 	 * Ordinarily, size limit checking is handled deeper down, but here we
   2874 	 * have to check as part of (size + extra) clamping, since we need the
   2875 	 * clamped value in the above helper functions.
   2876 	 */
   2877 	if (unlikely(size > LARGE_MAXCLASS)) {
   2878 		usize = old_usize;
   2879 		goto label_not_resized;
   2880 	}
   2881 	if (unlikely(LARGE_MAXCLASS - size < extra)) {
   2882 		extra = LARGE_MAXCLASS - size;
   2883 	}
   2884 
   2885 	if (config_prof && opt_prof) {
   2886 		usize = ixallocx_prof(tsd, ptr, old_usize, size, extra,
   2887 		    alignment, zero, &alloc_ctx);
   2888 	} else {
   2889 		usize = ixallocx_helper(tsd_tsdn(tsd), ptr, old_usize, size,
   2890 		    extra, alignment, zero);
   2891 	}
   2892 	if (unlikely(usize == old_usize)) {
   2893 		goto label_not_resized;
   2894 	}
   2895 
   2896 	if (config_stats) {
   2897 		*tsd_thread_allocatedp_get(tsd) += usize;
   2898 		*tsd_thread_deallocatedp_get(tsd) += old_usize;
   2899 	}
   2900 label_not_resized:
   2901 	UTRACE(ptr, size, ptr);
   2902 	check_entry_exit_locking(tsd_tsdn(tsd));
   2903 
   2904 	LOG("core.xallocx.exit", "result: %zu", usize);
   2905 	return usize;
   2906 }
   2907 
   2908 JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
   2909 JEMALLOC_ATTR(pure)
   2910 je_sallocx(const void *ptr, UNUSED int flags) {
   2911 	size_t usize;
   2912 	tsdn_t *tsdn;
   2913 
   2914 	LOG("core.sallocx.entry", "ptr: %p, flags: %d", ptr, flags);
   2915 
   2916 	assert(malloc_initialized() || IS_INITIALIZER);
   2917 	assert(ptr != NULL);
   2918 
   2919 	tsdn = tsdn_fetch();
   2920 	check_entry_exit_locking(tsdn);
   2921 
   2922 	if (config_debug || force_ivsalloc) {
   2923 		usize = ivsalloc(tsdn, ptr);
   2924 		assert(force_ivsalloc || usize != 0);
   2925 	} else {
   2926 		usize = isalloc(tsdn, ptr);
   2927 	}
   2928 
   2929 	check_entry_exit_locking(tsdn);
   2930 
   2931 	LOG("core.sallocx.exit", "result: %zu", usize);
   2932 	return usize;
   2933 }
   2934 
   2935 JEMALLOC_EXPORT void JEMALLOC_NOTHROW
   2936 je_dallocx(void *ptr, int flags) {
   2937 	LOG("core.dallocx.entry", "ptr: %p, flags: %d", ptr, flags);
   2938 
   2939 	assert(ptr != NULL);
   2940 	assert(malloc_initialized() || IS_INITIALIZER);
   2941 
   2942 	tsd_t *tsd = tsd_fetch();
   2943 	bool fast = tsd_fast(tsd);
   2944 	check_entry_exit_locking(tsd_tsdn(tsd));
   2945 
   2946 	tcache_t *tcache;
   2947 	if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
   2948 		/* Not allowed to be reentrant and specify a custom tcache. */
   2949 		assert(tsd_reentrancy_level_get(tsd) == 0);
   2950 		if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
   2951 			tcache = NULL;
   2952 		} else {
   2953 			tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
   2954 		}
   2955 	} else {
   2956 		if (likely(fast)) {
   2957 			tcache = tsd_tcachep_get(tsd);
   2958 			assert(tcache == tcache_get(tsd));
   2959 		} else {
   2960 			if (likely(tsd_reentrancy_level_get(tsd) == 0)) {
   2961 				tcache = tcache_get(tsd);
   2962 			}  else {
   2963 				tcache = NULL;
   2964 			}
   2965 		}
   2966 	}
   2967 
   2968 	UTRACE(ptr, 0, 0);
   2969 	if (likely(fast)) {
   2970 		tsd_assert_fast(tsd);
   2971 		ifree(tsd, ptr, tcache, false);
   2972 	} else {
   2973 		ifree(tsd, ptr, tcache, true);
   2974 	}
   2975 	check_entry_exit_locking(tsd_tsdn(tsd));
   2976 
   2977 	LOG("core.dallocx.exit", "");
   2978 }
   2979 
   2980 JEMALLOC_ALWAYS_INLINE size_t
   2981 inallocx(tsdn_t *tsdn, size_t size, int flags) {
   2982 	check_entry_exit_locking(tsdn);
   2983 
   2984 	size_t usize;
   2985 	if (likely((flags & MALLOCX_LG_ALIGN_MASK) == 0)) {
   2986 		usize = sz_s2u(size);
   2987 	} else {
   2988 		usize = sz_sa2u(size, MALLOCX_ALIGN_GET_SPECIFIED(flags));
   2989 	}
   2990 	check_entry_exit_locking(tsdn);
   2991 	return usize;
   2992 }
   2993 
   2994 JEMALLOC_EXPORT void JEMALLOC_NOTHROW
   2995 je_sdallocx(void *ptr, size_t size, int flags) {
   2996 	assert(ptr != NULL);
   2997 	assert(malloc_initialized() || IS_INITIALIZER);
   2998 
   2999 	LOG("core.sdallocx.entry", "ptr: %p, size: %zu, flags: %d", ptr,
   3000 	    size, flags);
   3001 
   3002 	tsd_t *tsd = tsd_fetch();
   3003 	bool fast = tsd_fast(tsd);
   3004 	size_t usize = inallocx(tsd_tsdn(tsd), size, flags);
   3005 	assert(usize == isalloc(tsd_tsdn(tsd), ptr));
   3006 	check_entry_exit_locking(tsd_tsdn(tsd));
   3007 
   3008 	tcache_t *tcache;
   3009 	if (unlikely((flags & MALLOCX_TCACHE_MASK) != 0)) {
   3010 		/* Not allowed to be reentrant and specify a custom tcache. */
   3011 		assert(tsd_reentrancy_level_get(tsd) == 0);
   3012 		if ((flags & MALLOCX_TCACHE_MASK) == MALLOCX_TCACHE_NONE) {
   3013 			tcache = NULL;
   3014 		} else {
   3015 			tcache = tcaches_get(tsd, MALLOCX_TCACHE_GET(flags));
   3016 		}
   3017 	} else {
   3018 		if (likely(fast)) {
   3019 			tcache = tsd_tcachep_get(tsd);
   3020 			assert(tcache == tcache_get(tsd));
   3021 		} else {
   3022 			if (likely(tsd_reentrancy_level_get(tsd) == 0)) {
   3023 				tcache = tcache_get(tsd);
   3024 			} else {
   3025 				tcache = NULL;
   3026 			}
   3027 		}
   3028 	}
   3029 
   3030 	UTRACE(ptr, 0, 0);
   3031 	if (likely(fast)) {
   3032 		tsd_assert_fast(tsd);
   3033 		isfree(tsd, ptr, usize, tcache, false);
   3034 	} else {
   3035 		isfree(tsd, ptr, usize, tcache, true);
   3036 	}
   3037 	check_entry_exit_locking(tsd_tsdn(tsd));
   3038 
   3039 	LOG("core.sdallocx.exit", "");
   3040 }
   3041 
   3042 JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
   3043 JEMALLOC_ATTR(pure)
   3044 je_nallocx(size_t size, int flags) {
   3045 	size_t usize;
   3046 	tsdn_t *tsdn;
   3047 
   3048 	assert(size != 0);
   3049 
   3050 	if (unlikely(malloc_init())) {
   3051 		LOG("core.nallocx.exit", "result: %zu", ZU(0));
   3052 		return 0;
   3053 	}
   3054 
   3055 	tsdn = tsdn_fetch();
   3056 	check_entry_exit_locking(tsdn);
   3057 
   3058 	usize = inallocx(tsdn, size, flags);
   3059 	if (unlikely(usize > LARGE_MAXCLASS)) {
   3060 		LOG("core.nallocx.exit", "result: %zu", ZU(0));
   3061 		return 0;
   3062 	}
   3063 
   3064 	check_entry_exit_locking(tsdn);
   3065 	LOG("core.nallocx.exit", "result: %zu", usize);
   3066 	return usize;
   3067 }
   3068 
   3069 JEMALLOC_EXPORT int JEMALLOC_NOTHROW
   3070 je_mallctl(const char *name, void *oldp, size_t *oldlenp, void *newp,
   3071     size_t newlen) {
   3072 	int ret;
   3073 	tsd_t *tsd;
   3074 
   3075 	LOG("core.mallctl.entry", "name: %s", name);
   3076 
   3077 	if (unlikely(malloc_init())) {
   3078 		LOG("core.mallctl.exit", "result: %d", EAGAIN);
   3079 		return EAGAIN;
   3080 	}
   3081 
   3082 	tsd = tsd_fetch();
   3083 	check_entry_exit_locking(tsd_tsdn(tsd));
   3084 	ret = ctl_byname(tsd, name, oldp, oldlenp, newp, newlen);
   3085 	check_entry_exit_locking(tsd_tsdn(tsd));
   3086 
   3087 	LOG("core.mallctl.exit", "result: %d", ret);
   3088 	return ret;
   3089 }
   3090 
   3091 JEMALLOC_EXPORT int JEMALLOC_NOTHROW
   3092 je_mallctlnametomib(const char *name, size_t *mibp, size_t *miblenp) {
   3093 	int ret;
   3094 
   3095 	LOG("core.mallctlnametomib.entry", "name: %s", name);
   3096 
   3097 	if (unlikely(malloc_init())) {
   3098 		LOG("core.mallctlnametomib.exit", "result: %d", EAGAIN);
   3099 		return EAGAIN;
   3100 	}
   3101 
   3102 	tsd_t *tsd = tsd_fetch();
   3103 	check_entry_exit_locking(tsd_tsdn(tsd));
   3104 	ret = ctl_nametomib(tsd, name, mibp, miblenp);
   3105 	check_entry_exit_locking(tsd_tsdn(tsd));
   3106 
   3107 	LOG("core.mallctlnametomib.exit", "result: %d", ret);
   3108 	return ret;
   3109 }
   3110 
   3111 JEMALLOC_EXPORT int JEMALLOC_NOTHROW
   3112 je_mallctlbymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
   3113   void *newp, size_t newlen) {
   3114 	int ret;
   3115 	tsd_t *tsd;
   3116 
   3117 	LOG("core.mallctlbymib.entry", "");
   3118 
   3119 	if (unlikely(malloc_init())) {
   3120 		LOG("core.mallctlbymib.exit", "result: %d", EAGAIN);
   3121 		return EAGAIN;
   3122 	}
   3123 
   3124 	tsd = tsd_fetch();
   3125 	check_entry_exit_locking(tsd_tsdn(tsd));
   3126 	ret = ctl_bymib(tsd, mib, miblen, oldp, oldlenp, newp, newlen);
   3127 	check_entry_exit_locking(tsd_tsdn(tsd));
   3128 	LOG("core.mallctlbymib.exit", "result: %d", ret);
   3129 	return ret;
   3130 }
   3131 
   3132 JEMALLOC_EXPORT void JEMALLOC_NOTHROW
   3133 je_malloc_stats_print(void (*write_cb)(void *, const char *), void *cbopaque,
   3134     const char *opts) {
   3135 	tsdn_t *tsdn;
   3136 
   3137 	LOG("core.malloc_stats_print.entry", "");
   3138 
   3139 	tsdn = tsdn_fetch();
   3140 	check_entry_exit_locking(tsdn);
   3141 	stats_print(write_cb, cbopaque, opts);
   3142 	check_entry_exit_locking(tsdn);
   3143 	LOG("core.malloc_stats_print.exit", "");
   3144 }
   3145 
   3146 JEMALLOC_EXPORT size_t JEMALLOC_NOTHROW
   3147 je_malloc_usable_size(JEMALLOC_USABLE_SIZE_CONST void *ptr) {
   3148 	size_t ret;
   3149 	tsdn_t *tsdn;
   3150 
   3151 	LOG("core.malloc_usable_size.entry", "ptr: %p", ptr);
   3152 
   3153 	assert(malloc_initialized() || IS_INITIALIZER);
   3154 
   3155 	tsdn = tsdn_fetch();
   3156 	check_entry_exit_locking(tsdn);
   3157 
   3158 	if (unlikely(ptr == NULL)) {
   3159 		ret = 0;
   3160 	} else {
   3161 		if (config_debug || force_ivsalloc) {
   3162 			ret = ivsalloc(tsdn, ptr);
   3163 			assert(force_ivsalloc || ret != 0);
   3164 		} else {
   3165 			ret = isalloc(tsdn, ptr);
   3166 		}
   3167 	}
   3168 
   3169 	check_entry_exit_locking(tsdn);
   3170 	LOG("core.malloc_usable_size.exit", "result: %zu", ret);
   3171 	return ret;
   3172 }
   3173 
   3174 /*
   3175  * End non-standard functions.
   3176  */
   3177 /******************************************************************************/
   3178 /*
   3179  * The following functions are used by threading libraries for protection of
   3180  * malloc during fork().
   3181  */
   3182 
   3183 /*
   3184  * If an application creates a thread before doing any allocation in the main
   3185  * thread, then calls fork(2) in the main thread followed by memory allocation
   3186  * in the child process, a race can occur that results in deadlock within the
   3187  * child: the main thread may have forked while the created thread had
   3188  * partially initialized the allocator.  Ordinarily jemalloc prevents
   3189  * fork/malloc races via the following functions it registers during
   3190  * initialization using pthread_atfork(), but of course that does no good if
   3191  * the allocator isn't fully initialized at fork time.  The following library
   3192  * constructor is a partial solution to this problem.  It may still be possible
   3193  * to trigger the deadlock described above, but doing so would involve forking
   3194  * via a library constructor that runs before jemalloc's runs.
   3195  */
   3196 #ifndef JEMALLOC_JET
   3197 JEMALLOC_ATTR(constructor)
   3198 static void
   3199 jemalloc_constructor(void) {
   3200 	malloc_init();
   3201 }
   3202 #endif
   3203 
   3204 #ifndef JEMALLOC_MUTEX_INIT_CB
   3205 void
   3206 jemalloc_prefork(void)
   3207 #else
   3208 JEMALLOC_EXPORT void
   3209 _malloc_prefork(void)
   3210 #endif
   3211 {
   3212 	tsd_t *tsd;
   3213 	unsigned i, j, narenas;
   3214 	arena_t *arena;
   3215 
   3216 #ifdef JEMALLOC_MUTEX_INIT_CB
   3217 	if (!malloc_initialized()) {
   3218 		return;
   3219 	}
   3220 #endif
   3221 	assert(malloc_initialized());
   3222 
   3223 	tsd = tsd_fetch();
   3224 
   3225 	narenas = narenas_total_get();
   3226 
   3227 	witness_prefork(tsd_witness_tsdp_get(tsd));
   3228 	/* Acquire all mutexes in a safe order. */
   3229 	ctl_prefork(tsd_tsdn(tsd));
   3230 	tcache_prefork(tsd_tsdn(tsd));
   3231 	malloc_mutex_prefork(tsd_tsdn(tsd), &arenas_lock);
   3232 	if (have_background_thread) {
   3233 		background_thread_prefork0(tsd_tsdn(tsd));
   3234 	}
   3235 	prof_prefork0(tsd_tsdn(tsd));
   3236 	if (have_background_thread) {
   3237 		background_thread_prefork1(tsd_tsdn(tsd));
   3238 	}
   3239 	/* Break arena prefork into stages to preserve lock order. */
   3240 	for (i = 0; i < 8; i++) {
   3241 		for (j = 0; j < narenas; j++) {
   3242 			if ((arena = arena_get(tsd_tsdn(tsd), j, false)) !=
   3243 			    NULL) {
   3244 				switch (i) {
   3245 				case 0:
   3246 					arena_prefork0(tsd_tsdn(tsd), arena);
   3247 					break;
   3248 				case 1:
   3249 					arena_prefork1(tsd_tsdn(tsd), arena);
   3250 					break;
   3251 				case 2:
   3252 					arena_prefork2(tsd_tsdn(tsd), arena);
   3253 					break;
   3254 				case 3:
   3255 					arena_prefork3(tsd_tsdn(tsd), arena);
   3256 					break;
   3257 				case 4:
   3258 					arena_prefork4(tsd_tsdn(tsd), arena);
   3259 					break;
   3260 				case 5:
   3261 					arena_prefork5(tsd_tsdn(tsd), arena);
   3262 					break;
   3263 				case 6:
   3264 					arena_prefork6(tsd_tsdn(tsd), arena);
   3265 					break;
   3266 				case 7:
   3267 					arena_prefork7(tsd_tsdn(tsd), arena);
   3268 					break;
   3269 				default: not_reached();
   3270 				}
   3271 			}
   3272 		}
   3273 	}
   3274 	prof_prefork1(tsd_tsdn(tsd));
   3275 }
   3276 
   3277 #ifndef JEMALLOC_MUTEX_INIT_CB
   3278 void
   3279 jemalloc_postfork_parent(void)
   3280 #else
   3281 JEMALLOC_EXPORT void
   3282 _malloc_postfork(void)
   3283 #endif
   3284 {
   3285 	tsd_t *tsd;
   3286 	unsigned i, narenas;
   3287 
   3288 #ifdef JEMALLOC_MUTEX_INIT_CB
   3289 	if (!malloc_initialized()) {
   3290 		return;
   3291 	}
   3292 #endif
   3293 	assert(malloc_initialized());
   3294 
   3295 	tsd = tsd_fetch();
   3296 
   3297 	witness_postfork_parent(tsd_witness_tsdp_get(tsd));
   3298 	/* Release all mutexes, now that fork() has completed. */
   3299 	for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
   3300 		arena_t *arena;
   3301 
   3302 		if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
   3303 			arena_postfork_parent(tsd_tsdn(tsd), arena);
   3304 		}
   3305 	}
   3306 	prof_postfork_parent(tsd_tsdn(tsd));
   3307 	if (have_background_thread) {
   3308 		background_thread_postfork_parent(tsd_tsdn(tsd));
   3309 	}
   3310 	malloc_mutex_postfork_parent(tsd_tsdn(tsd), &arenas_lock);
   3311 	tcache_postfork_parent(tsd_tsdn(tsd));
   3312 	ctl_postfork_parent(tsd_tsdn(tsd));
   3313 }
   3314 
   3315 void
   3316 jemalloc_postfork_child(void) {
   3317 	tsd_t *tsd;
   3318 	unsigned i, narenas;
   3319 
   3320 	assert(malloc_initialized());
   3321 
   3322 	tsd = tsd_fetch();
   3323 
   3324 	witness_postfork_child(tsd_witness_tsdp_get(tsd));
   3325 	/* Release all mutexes, now that fork() has completed. */
   3326 	for (i = 0, narenas = narenas_total_get(); i < narenas; i++) {
   3327 		arena_t *arena;
   3328 
   3329 		if ((arena = arena_get(tsd_tsdn(tsd), i, false)) != NULL) {
   3330 			arena_postfork_child(tsd_tsdn(tsd), arena);
   3331 		}
   3332 	}
   3333 	prof_postfork_child(tsd_tsdn(tsd));
   3334 	if (have_background_thread) {
   3335 		background_thread_postfork_child(tsd_tsdn(tsd));
   3336 	}
   3337 	malloc_mutex_postfork_child(tsd_tsdn(tsd), &arenas_lock);
   3338 	tcache_postfork_child(tsd_tsdn(tsd));
   3339 	ctl_postfork_child(tsd_tsdn(tsd));
   3340 }
   3341 
   3342 /******************************************************************************/
   3343 
   3344 #if defined(__BIONIC__) && !defined(JEMALLOC_JET)
   3345 #include "android_je_iterate.c"
   3346 #include "android_je_mallinfo.c"
   3347 #endif
   3348