Home | History | Annotate | Download | only in unit
      1 #include "test/jemalloc_test.h"
      2 
      3 static const uint64_t smoothstep_tab[] = {
      4 #define STEP(step, h, x, y)			\
      5 	h,
      6 	SMOOTHSTEP
      7 #undef STEP
      8 };
      9 
     10 TEST_BEGIN(test_smoothstep_integral) {
     11 	uint64_t sum, min, max;
     12 	unsigned i;
     13 
     14 	/*
     15 	 * The integral of smoothstep in the [0..1] range equals 1/2.  Verify
     16 	 * that the fixed point representation's integral is no more than
     17 	 * rounding error distant from 1/2.  Regarding rounding, each table
     18 	 * element is rounded down to the nearest fixed point value, so the
     19 	 * integral may be off by as much as SMOOTHSTEP_NSTEPS ulps.
     20 	 */
     21 	sum = 0;
     22 	for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) {
     23 		sum += smoothstep_tab[i];
     24 	}
     25 
     26 	max = (KQU(1) << (SMOOTHSTEP_BFP-1)) * (SMOOTHSTEP_NSTEPS+1);
     27 	min = max - SMOOTHSTEP_NSTEPS;
     28 
     29 	assert_u64_ge(sum, min,
     30 	    "Integral too small, even accounting for truncation");
     31 	assert_u64_le(sum, max, "Integral exceeds 1/2");
     32 	if (false) {
     33 		malloc_printf("%"FMTu64" ulps under 1/2 (limit %d)\n",
     34 		    max - sum, SMOOTHSTEP_NSTEPS);
     35 	}
     36 }
     37 TEST_END
     38 
     39 TEST_BEGIN(test_smoothstep_monotonic) {
     40 	uint64_t prev_h;
     41 	unsigned i;
     42 
     43 	/*
     44 	 * The smoothstep function is monotonic in [0..1], i.e. its slope is
     45 	 * non-negative.  In practice we want to parametrize table generation
     46 	 * such that piecewise slope is greater than zero, but do not require
     47 	 * that here.
     48 	 */
     49 	prev_h = 0;
     50 	for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) {
     51 		uint64_t h = smoothstep_tab[i];
     52 		assert_u64_ge(h, prev_h, "Piecewise non-monotonic, i=%u", i);
     53 		prev_h = h;
     54 	}
     55 	assert_u64_eq(smoothstep_tab[SMOOTHSTEP_NSTEPS-1],
     56 	    (KQU(1) << SMOOTHSTEP_BFP), "Last step must equal 1");
     57 }
     58 TEST_END
     59 
     60 TEST_BEGIN(test_smoothstep_slope) {
     61 	uint64_t prev_h, prev_delta;
     62 	unsigned i;
     63 
     64 	/*
     65 	 * The smoothstep slope strictly increases until x=0.5, and then
     66 	 * strictly decreases until x=1.0.  Verify the slightly weaker
     67 	 * requirement of monotonicity, so that inadequate table precision does
     68 	 * not cause false test failures.
     69 	 */
     70 	prev_h = 0;
     71 	prev_delta = 0;
     72 	for (i = 0; i < SMOOTHSTEP_NSTEPS / 2 + SMOOTHSTEP_NSTEPS % 2; i++) {
     73 		uint64_t h = smoothstep_tab[i];
     74 		uint64_t delta = h - prev_h;
     75 		assert_u64_ge(delta, prev_delta,
     76 		    "Slope must monotonically increase in 0.0 <= x <= 0.5, "
     77 		    "i=%u", i);
     78 		prev_h = h;
     79 		prev_delta = delta;
     80 	}
     81 
     82 	prev_h = KQU(1) << SMOOTHSTEP_BFP;
     83 	prev_delta = 0;
     84 	for (i = SMOOTHSTEP_NSTEPS-1; i >= SMOOTHSTEP_NSTEPS / 2; i--) {
     85 		uint64_t h = smoothstep_tab[i];
     86 		uint64_t delta = prev_h - h;
     87 		assert_u64_ge(delta, prev_delta,
     88 		    "Slope must monotonically decrease in 0.5 <= x <= 1.0, "
     89 		    "i=%u", i);
     90 		prev_h = h;
     91 		prev_delta = delta;
     92 	}
     93 }
     94 TEST_END
     95 
     96 int
     97 main(void) {
     98 	return test(
     99 	    test_smoothstep_integral,
    100 	    test_smoothstep_monotonic,
    101 	    test_smoothstep_slope);
    102 }
    103