Home | History | Annotate | Download | only in drm
      1 /*
      2  * Copyright 2011 Intel Corporation
      3  *
      4  * Permission is hereby granted, free of charge, to any person obtaining a
      5  * copy of this software and associated documentation files (the "Software"),
      6  * to deal in the Software without restriction, including without limitation
      7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
      8  * and/or sell copies of the Software, and to permit persons to whom the
      9  * Software is furnished to do so, subject to the following conditions:
     10  *
     11  * The above copyright notice and this permission notice (including the next
     12  * paragraph) shall be included in all copies or substantial portions of the
     13  * Software.
     14  *
     15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
     16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
     17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
     18  * VA LINUX SYSTEMS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
     19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
     20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
     21  * OTHER DEALINGS IN THE SOFTWARE.
     22  */
     23 
     24 #ifndef DRM_FOURCC_H
     25 #define DRM_FOURCC_H
     26 
     27 #include "drm.h"
     28 
     29 #if defined(__cplusplus)
     30 extern "C" {
     31 #endif
     32 
     33 /**
     34  * DOC: overview
     35  *
     36  * In the DRM subsystem, framebuffer pixel formats are described using the
     37  * fourcc codes defined in `include/uapi/drm/drm_fourcc.h`. In addition to the
     38  * fourcc code, a Format Modifier may optionally be provided, in order to
     39  * further describe the buffer's format - for example tiling or compression.
     40  *
     41  * Format Modifiers
     42  * ----------------
     43  *
     44  * Format modifiers are used in conjunction with a fourcc code, forming a
     45  * unique fourcc:modifier pair. This format:modifier pair must fully define the
     46  * format and data layout of the buffer, and should be the only way to describe
     47  * that particular buffer.
     48  *
     49  * Having multiple fourcc:modifier pairs which describe the same layout should
     50  * be avoided, as such aliases run the risk of different drivers exposing
     51  * different names for the same data format, forcing userspace to understand
     52  * that they are aliases.
     53  *
     54  * Format modifiers may change any property of the buffer, including the number
     55  * of planes and/or the required allocation size. Format modifiers are
     56  * vendor-namespaced, and as such the relationship between a fourcc code and a
     57  * modifier is specific to the modifer being used. For example, some modifiers
     58  * may preserve meaning - such as number of planes - from the fourcc code,
     59  * whereas others may not.
     60  *
     61  * Vendors should document their modifier usage in as much detail as
     62  * possible, to ensure maximum compatibility across devices, drivers and
     63  * applications.
     64  *
     65  * The authoritative list of format modifier codes is found in
     66  * `include/uapi/drm/drm_fourcc.h`
     67  */
     68 
     69 #define fourcc_code(a, b, c, d) ((__u32)(a) | ((__u32)(b) << 8) | \
     70 				 ((__u32)(c) << 16) | ((__u32)(d) << 24))
     71 
     72 #define DRM_FORMAT_BIG_ENDIAN (1<<31) /* format is big endian instead of little endian */
     73 
     74 /* Reserve 0 for the invalid format specifier */
     75 #define DRM_FORMAT_INVALID	0
     76 
     77 /* color index */
     78 #define DRM_FORMAT_C8		fourcc_code('C', '8', ' ', ' ') /* [7:0] C */
     79 
     80 /* 8 bpp Red */
     81 #define DRM_FORMAT_R8		fourcc_code('R', '8', ' ', ' ') /* [7:0] R */
     82 
     83 /* 16 bpp Red */
     84 #define DRM_FORMAT_R16		fourcc_code('R', '1', '6', ' ') /* [15:0] R little endian */
     85 
     86 /* 16 bpp RG */
     87 #define DRM_FORMAT_RG88		fourcc_code('R', 'G', '8', '8') /* [15:0] R:G 8:8 little endian */
     88 #define DRM_FORMAT_GR88		fourcc_code('G', 'R', '8', '8') /* [15:0] G:R 8:8 little endian */
     89 
     90 /* 32 bpp RG */
     91 #define DRM_FORMAT_RG1616	fourcc_code('R', 'G', '3', '2') /* [31:0] R:G 16:16 little endian */
     92 #define DRM_FORMAT_GR1616	fourcc_code('G', 'R', '3', '2') /* [31:0] G:R 16:16 little endian */
     93 
     94 /* 8 bpp RGB */
     95 #define DRM_FORMAT_RGB332	fourcc_code('R', 'G', 'B', '8') /* [7:0] R:G:B 3:3:2 */
     96 #define DRM_FORMAT_BGR233	fourcc_code('B', 'G', 'R', '8') /* [7:0] B:G:R 2:3:3 */
     97 
     98 /* 16 bpp RGB */
     99 #define DRM_FORMAT_XRGB4444	fourcc_code('X', 'R', '1', '2') /* [15:0] x:R:G:B 4:4:4:4 little endian */
    100 #define DRM_FORMAT_XBGR4444	fourcc_code('X', 'B', '1', '2') /* [15:0] x:B:G:R 4:4:4:4 little endian */
    101 #define DRM_FORMAT_RGBX4444	fourcc_code('R', 'X', '1', '2') /* [15:0] R:G:B:x 4:4:4:4 little endian */
    102 #define DRM_FORMAT_BGRX4444	fourcc_code('B', 'X', '1', '2') /* [15:0] B:G:R:x 4:4:4:4 little endian */
    103 
    104 #define DRM_FORMAT_ARGB4444	fourcc_code('A', 'R', '1', '2') /* [15:0] A:R:G:B 4:4:4:4 little endian */
    105 #define DRM_FORMAT_ABGR4444	fourcc_code('A', 'B', '1', '2') /* [15:0] A:B:G:R 4:4:4:4 little endian */
    106 #define DRM_FORMAT_RGBA4444	fourcc_code('R', 'A', '1', '2') /* [15:0] R:G:B:A 4:4:4:4 little endian */
    107 #define DRM_FORMAT_BGRA4444	fourcc_code('B', 'A', '1', '2') /* [15:0] B:G:R:A 4:4:4:4 little endian */
    108 
    109 #define DRM_FORMAT_XRGB1555	fourcc_code('X', 'R', '1', '5') /* [15:0] x:R:G:B 1:5:5:5 little endian */
    110 #define DRM_FORMAT_XBGR1555	fourcc_code('X', 'B', '1', '5') /* [15:0] x:B:G:R 1:5:5:5 little endian */
    111 #define DRM_FORMAT_RGBX5551	fourcc_code('R', 'X', '1', '5') /* [15:0] R:G:B:x 5:5:5:1 little endian */
    112 #define DRM_FORMAT_BGRX5551	fourcc_code('B', 'X', '1', '5') /* [15:0] B:G:R:x 5:5:5:1 little endian */
    113 
    114 #define DRM_FORMAT_ARGB1555	fourcc_code('A', 'R', '1', '5') /* [15:0] A:R:G:B 1:5:5:5 little endian */
    115 #define DRM_FORMAT_ABGR1555	fourcc_code('A', 'B', '1', '5') /* [15:0] A:B:G:R 1:5:5:5 little endian */
    116 #define DRM_FORMAT_RGBA5551	fourcc_code('R', 'A', '1', '5') /* [15:0] R:G:B:A 5:5:5:1 little endian */
    117 #define DRM_FORMAT_BGRA5551	fourcc_code('B', 'A', '1', '5') /* [15:0] B:G:R:A 5:5:5:1 little endian */
    118 
    119 #define DRM_FORMAT_RGB565	fourcc_code('R', 'G', '1', '6') /* [15:0] R:G:B 5:6:5 little endian */
    120 #define DRM_FORMAT_BGR565	fourcc_code('B', 'G', '1', '6') /* [15:0] B:G:R 5:6:5 little endian */
    121 
    122 /* 24 bpp RGB */
    123 #define DRM_FORMAT_RGB888	fourcc_code('R', 'G', '2', '4') /* [23:0] R:G:B little endian */
    124 #define DRM_FORMAT_BGR888	fourcc_code('B', 'G', '2', '4') /* [23:0] B:G:R little endian */
    125 
    126 /* 32 bpp RGB */
    127 #define DRM_FORMAT_XRGB8888	fourcc_code('X', 'R', '2', '4') /* [31:0] x:R:G:B 8:8:8:8 little endian */
    128 #define DRM_FORMAT_XBGR8888	fourcc_code('X', 'B', '2', '4') /* [31:0] x:B:G:R 8:8:8:8 little endian */
    129 #define DRM_FORMAT_RGBX8888	fourcc_code('R', 'X', '2', '4') /* [31:0] R:G:B:x 8:8:8:8 little endian */
    130 #define DRM_FORMAT_BGRX8888	fourcc_code('B', 'X', '2', '4') /* [31:0] B:G:R:x 8:8:8:8 little endian */
    131 
    132 #define DRM_FORMAT_ARGB8888	fourcc_code('A', 'R', '2', '4') /* [31:0] A:R:G:B 8:8:8:8 little endian */
    133 #define DRM_FORMAT_ABGR8888	fourcc_code('A', 'B', '2', '4') /* [31:0] A:B:G:R 8:8:8:8 little endian */
    134 #define DRM_FORMAT_RGBA8888	fourcc_code('R', 'A', '2', '4') /* [31:0] R:G:B:A 8:8:8:8 little endian */
    135 #define DRM_FORMAT_BGRA8888	fourcc_code('B', 'A', '2', '4') /* [31:0] B:G:R:A 8:8:8:8 little endian */
    136 
    137 #define DRM_FORMAT_XRGB2101010	fourcc_code('X', 'R', '3', '0') /* [31:0] x:R:G:B 2:10:10:10 little endian */
    138 #define DRM_FORMAT_XBGR2101010	fourcc_code('X', 'B', '3', '0') /* [31:0] x:B:G:R 2:10:10:10 little endian */
    139 #define DRM_FORMAT_RGBX1010102	fourcc_code('R', 'X', '3', '0') /* [31:0] R:G:B:x 10:10:10:2 little endian */
    140 #define DRM_FORMAT_BGRX1010102	fourcc_code('B', 'X', '3', '0') /* [31:0] B:G:R:x 10:10:10:2 little endian */
    141 
    142 #define DRM_FORMAT_ARGB2101010	fourcc_code('A', 'R', '3', '0') /* [31:0] A:R:G:B 2:10:10:10 little endian */
    143 #define DRM_FORMAT_ABGR2101010	fourcc_code('A', 'B', '3', '0') /* [31:0] A:B:G:R 2:10:10:10 little endian */
    144 #define DRM_FORMAT_RGBA1010102	fourcc_code('R', 'A', '3', '0') /* [31:0] R:G:B:A 10:10:10:2 little endian */
    145 #define DRM_FORMAT_BGRA1010102	fourcc_code('B', 'A', '3', '0') /* [31:0] B:G:R:A 10:10:10:2 little endian */
    146 
    147 /* packed YCbCr */
    148 #define DRM_FORMAT_YUYV		fourcc_code('Y', 'U', 'Y', 'V') /* [31:0] Cr0:Y1:Cb0:Y0 8:8:8:8 little endian */
    149 #define DRM_FORMAT_YVYU		fourcc_code('Y', 'V', 'Y', 'U') /* [31:0] Cb0:Y1:Cr0:Y0 8:8:8:8 little endian */
    150 #define DRM_FORMAT_UYVY		fourcc_code('U', 'Y', 'V', 'Y') /* [31:0] Y1:Cr0:Y0:Cb0 8:8:8:8 little endian */
    151 #define DRM_FORMAT_VYUY		fourcc_code('V', 'Y', 'U', 'Y') /* [31:0] Y1:Cb0:Y0:Cr0 8:8:8:8 little endian */
    152 
    153 #define DRM_FORMAT_AYUV		fourcc_code('A', 'Y', 'U', 'V') /* [31:0] A:Y:Cb:Cr 8:8:8:8 little endian */
    154 #define DRM_FORMAT_XYUV8888		fourcc_code('X', 'Y', 'U', 'V') /* [31:0] X:Y:Cb:Cr 8:8:8:8 little endian */
    155 
    156 /*
    157  * packed YCbCr420 2x2 tiled formats
    158  * first 64 bits will contain Y,Cb,Cr components for a 2x2 tile
    159  */
    160 /* [63:0]   A3:A2:Y3:0:Cr0:0:Y2:0:A1:A0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    161 #define DRM_FORMAT_Y0L0		fourcc_code('Y', '0', 'L', '0')
    162 /* [63:0]   X3:X2:Y3:0:Cr0:0:Y2:0:X1:X0:Y1:0:Cb0:0:Y0:0  1:1:8:2:8:2:8:2:1:1:8:2:8:2:8:2 little endian */
    163 #define DRM_FORMAT_X0L0		fourcc_code('X', '0', 'L', '0')
    164 
    165 /* [63:0]   A3:A2:Y3:Cr0:Y2:A1:A0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    166 #define DRM_FORMAT_Y0L2		fourcc_code('Y', '0', 'L', '2')
    167 /* [63:0]   X3:X2:Y3:Cr0:Y2:X1:X0:Y1:Cb0:Y0  1:1:10:10:10:1:1:10:10:10 little endian */
    168 #define DRM_FORMAT_X0L2		fourcc_code('X', '0', 'L', '2')
    169 
    170 /*
    171  * 2 plane RGB + A
    172  * index 0 = RGB plane, same format as the corresponding non _A8 format has
    173  * index 1 = A plane, [7:0] A
    174  */
    175 #define DRM_FORMAT_XRGB8888_A8	fourcc_code('X', 'R', 'A', '8')
    176 #define DRM_FORMAT_XBGR8888_A8	fourcc_code('X', 'B', 'A', '8')
    177 #define DRM_FORMAT_RGBX8888_A8	fourcc_code('R', 'X', 'A', '8')
    178 #define DRM_FORMAT_BGRX8888_A8	fourcc_code('B', 'X', 'A', '8')
    179 #define DRM_FORMAT_RGB888_A8	fourcc_code('R', '8', 'A', '8')
    180 #define DRM_FORMAT_BGR888_A8	fourcc_code('B', '8', 'A', '8')
    181 #define DRM_FORMAT_RGB565_A8	fourcc_code('R', '5', 'A', '8')
    182 #define DRM_FORMAT_BGR565_A8	fourcc_code('B', '5', 'A', '8')
    183 
    184 /*
    185  * 2 plane YCbCr
    186  * index 0 = Y plane, [7:0] Y
    187  * index 1 = Cr:Cb plane, [15:0] Cr:Cb little endian
    188  * or
    189  * index 1 = Cb:Cr plane, [15:0] Cb:Cr little endian
    190  */
    191 #define DRM_FORMAT_NV12		fourcc_code('N', 'V', '1', '2') /* 2x2 subsampled Cr:Cb plane */
    192 #define DRM_FORMAT_NV21		fourcc_code('N', 'V', '2', '1') /* 2x2 subsampled Cb:Cr plane */
    193 #define DRM_FORMAT_NV16		fourcc_code('N', 'V', '1', '6') /* 2x1 subsampled Cr:Cb plane */
    194 #define DRM_FORMAT_NV61		fourcc_code('N', 'V', '6', '1') /* 2x1 subsampled Cb:Cr plane */
    195 #define DRM_FORMAT_NV24		fourcc_code('N', 'V', '2', '4') /* non-subsampled Cr:Cb plane */
    196 #define DRM_FORMAT_NV42		fourcc_code('N', 'V', '4', '2') /* non-subsampled Cb:Cr plane */
    197 
    198 /*
    199  * 3 plane YCbCr
    200  * index 0: Y plane, [7:0] Y
    201  * index 1: Cb plane, [7:0] Cb
    202  * index 2: Cr plane, [7:0] Cr
    203  * or
    204  * index 1: Cr plane, [7:0] Cr
    205  * index 2: Cb plane, [7:0] Cb
    206  */
    207 #define DRM_FORMAT_YUV410	fourcc_code('Y', 'U', 'V', '9') /* 4x4 subsampled Cb (1) and Cr (2) planes */
    208 #define DRM_FORMAT_YVU410	fourcc_code('Y', 'V', 'U', '9') /* 4x4 subsampled Cr (1) and Cb (2) planes */
    209 #define DRM_FORMAT_YUV411	fourcc_code('Y', 'U', '1', '1') /* 4x1 subsampled Cb (1) and Cr (2) planes */
    210 #define DRM_FORMAT_YVU411	fourcc_code('Y', 'V', '1', '1') /* 4x1 subsampled Cr (1) and Cb (2) planes */
    211 #define DRM_FORMAT_YUV420	fourcc_code('Y', 'U', '1', '2') /* 2x2 subsampled Cb (1) and Cr (2) planes */
    212 #define DRM_FORMAT_YVU420	fourcc_code('Y', 'V', '1', '2') /* 2x2 subsampled Cr (1) and Cb (2) planes */
    213 #define DRM_FORMAT_YUV422	fourcc_code('Y', 'U', '1', '6') /* 2x1 subsampled Cb (1) and Cr (2) planes */
    214 #define DRM_FORMAT_YVU422	fourcc_code('Y', 'V', '1', '6') /* 2x1 subsampled Cr (1) and Cb (2) planes */
    215 #define DRM_FORMAT_YUV444	fourcc_code('Y', 'U', '2', '4') /* non-subsampled Cb (1) and Cr (2) planes */
    216 #define DRM_FORMAT_YVU444	fourcc_code('Y', 'V', '2', '4') /* non-subsampled Cr (1) and Cb (2) planes */
    217 
    218 
    219 /*
    220  * Format Modifiers:
    221  *
    222  * Format modifiers describe, typically, a re-ordering or modification
    223  * of the data in a plane of an FB.  This can be used to express tiled/
    224  * swizzled formats, or compression, or a combination of the two.
    225  *
    226  * The upper 8 bits of the format modifier are a vendor-id as assigned
    227  * below.  The lower 56 bits are assigned as vendor sees fit.
    228  */
    229 
    230 /* Vendor Ids: */
    231 #define DRM_FORMAT_MOD_NONE           0
    232 #define DRM_FORMAT_MOD_VENDOR_NONE    0
    233 #define DRM_FORMAT_MOD_VENDOR_INTEL   0x01
    234 #define DRM_FORMAT_MOD_VENDOR_AMD     0x02
    235 #define DRM_FORMAT_MOD_VENDOR_NVIDIA  0x03
    236 #define DRM_FORMAT_MOD_VENDOR_SAMSUNG 0x04
    237 #define DRM_FORMAT_MOD_VENDOR_QCOM    0x05
    238 #define DRM_FORMAT_MOD_VENDOR_VIVANTE 0x06
    239 #define DRM_FORMAT_MOD_VENDOR_BROADCOM 0x07
    240 #define DRM_FORMAT_MOD_VENDOR_ARM     0x08
    241 /* add more to the end as needed */
    242 
    243 #define DRM_FORMAT_RESERVED	      ((1ULL << 56) - 1)
    244 
    245 #define fourcc_mod_code(vendor, val) \
    246 	((((__u64)DRM_FORMAT_MOD_VENDOR_## vendor) << 56) | ((val) & 0x00ffffffffffffffULL))
    247 
    248 /*
    249  * Format Modifier tokens:
    250  *
    251  * When adding a new token please document the layout with a code comment,
    252  * similar to the fourcc codes above. drm_fourcc.h is considered the
    253  * authoritative source for all of these.
    254  */
    255 
    256 /*
    257  * Invalid Modifier
    258  *
    259  * This modifier can be used as a sentinel to terminate the format modifiers
    260  * list, or to initialize a variable with an invalid modifier. It might also be
    261  * used to report an error back to userspace for certain APIs.
    262  */
    263 #define DRM_FORMAT_MOD_INVALID	fourcc_mod_code(NONE, DRM_FORMAT_RESERVED)
    264 
    265 /*
    266  * Linear Layout
    267  *
    268  * Just plain linear layout. Note that this is different from no specifying any
    269  * modifier (e.g. not setting DRM_MODE_FB_MODIFIERS in the DRM_ADDFB2 ioctl),
    270  * which tells the driver to also take driver-internal information into account
    271  * and so might actually result in a tiled framebuffer.
    272  */
    273 #define DRM_FORMAT_MOD_LINEAR	fourcc_mod_code(NONE, 0)
    274 
    275 /* Intel framebuffer modifiers */
    276 
    277 /*
    278  * Intel X-tiling layout
    279  *
    280  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    281  * in row-major layout. Within the tile bytes are laid out row-major, with
    282  * a platform-dependent stride. On top of that the memory can apply
    283  * platform-depending swizzling of some higher address bits into bit6.
    284  *
    285  * This format is highly platforms specific and not useful for cross-driver
    286  * sharing. It exists since on a given platform it does uniquely identify the
    287  * layout in a simple way for i915-specific userspace.
    288  */
    289 #define I915_FORMAT_MOD_X_TILED	fourcc_mod_code(INTEL, 1)
    290 
    291 /*
    292  * Intel Y-tiling layout
    293  *
    294  * This is a tiled layout using 4Kb tiles (except on gen2 where the tiles 2Kb)
    295  * in row-major layout. Within the tile bytes are laid out in OWORD (16 bytes)
    296  * chunks column-major, with a platform-dependent height. On top of that the
    297  * memory can apply platform-depending swizzling of some higher address bits
    298  * into bit6.
    299  *
    300  * This format is highly platforms specific and not useful for cross-driver
    301  * sharing. It exists since on a given platform it does uniquely identify the
    302  * layout in a simple way for i915-specific userspace.
    303  */
    304 #define I915_FORMAT_MOD_Y_TILED	fourcc_mod_code(INTEL, 2)
    305 
    306 /*
    307  * Intel Yf-tiling layout
    308  *
    309  * This is a tiled layout using 4Kb tiles in row-major layout.
    310  * Within the tile pixels are laid out in 16 256 byte units / sub-tiles which
    311  * are arranged in four groups (two wide, two high) with column-major layout.
    312  * Each group therefore consits out of four 256 byte units, which are also laid
    313  * out as 2x2 column-major.
    314  * 256 byte units are made out of four 64 byte blocks of pixels, producing
    315  * either a square block or a 2:1 unit.
    316  * 64 byte blocks of pixels contain four pixel rows of 16 bytes, where the width
    317  * in pixel depends on the pixel depth.
    318  */
    319 #define I915_FORMAT_MOD_Yf_TILED fourcc_mod_code(INTEL, 3)
    320 
    321 /*
    322  * Intel color control surface (CCS) for render compression
    323  *
    324  * The framebuffer format must be one of the 8:8:8:8 RGB formats.
    325  * The main surface will be plane index 0 and must be Y/Yf-tiled,
    326  * the CCS will be plane index 1.
    327  *
    328  * Each CCS tile matches a 1024x512 pixel area of the main surface.
    329  * To match certain aspects of the 3D hardware the CCS is
    330  * considered to be made up of normal 128Bx32 Y tiles, Thus
    331  * the CCS pitch must be specified in multiples of 128 bytes.
    332  *
    333  * In reality the CCS tile appears to be a 64Bx64 Y tile, composed
    334  * of QWORD (8 bytes) chunks instead of OWORD (16 bytes) chunks.
    335  * But that fact is not relevant unless the memory is accessed
    336  * directly.
    337  */
    338 #define I915_FORMAT_MOD_Y_TILED_CCS	fourcc_mod_code(INTEL, 4)
    339 #define I915_FORMAT_MOD_Yf_TILED_CCS	fourcc_mod_code(INTEL, 5)
    340 
    341 /*
    342  * Tiled, NV12MT, grouped in 64 (pixels) x 32 (lines) -sized macroblocks
    343  *
    344  * Macroblocks are laid in a Z-shape, and each pixel data is following the
    345  * standard NV12 style.
    346  * As for NV12, an image is the result of two frame buffers: one for Y,
    347  * one for the interleaved Cb/Cr components (1/2 the height of the Y buffer).
    348  * Alignment requirements are (for each buffer):
    349  * - multiple of 128 pixels for the width
    350  * - multiple of  32 pixels for the height
    351  *
    352  * For more information: see https://linuxtv.org/downloads/v4l-dvb-apis/re32.html
    353  */
    354 #define DRM_FORMAT_MOD_SAMSUNG_64_32_TILE	fourcc_mod_code(SAMSUNG, 1)
    355 
    356 /*
    357  * Tiled, 16 (pixels) x 16 (lines) - sized macroblocks
    358  *
    359  * This is a simple tiled layout using tiles of 16x16 pixels in a row-major
    360  * layout. For YCbCr formats Cb/Cr components are taken in such a way that
    361  * they correspond to their 16x16 luma block.
    362  */
    363 #define DRM_FORMAT_MOD_SAMSUNG_16_16_TILE	fourcc_mod_code(SAMSUNG, 2)
    364 
    365 /*
    366  * Qualcomm Compressed Format
    367  *
    368  * Refers to a compressed variant of the base format that is compressed.
    369  * Implementation may be platform and base-format specific.
    370  *
    371  * Each macrotile consists of m x n (mostly 4 x 4) tiles.
    372  * Pixel data pitch/stride is aligned with macrotile width.
    373  * Pixel data height is aligned with macrotile height.
    374  * Entire pixel data buffer is aligned with 4k(bytes).
    375  */
    376 #define DRM_FORMAT_MOD_QCOM_COMPRESSED	fourcc_mod_code(QCOM, 1)
    377 
    378 /* Vivante framebuffer modifiers */
    379 
    380 /*
    381  * Vivante 4x4 tiling layout
    382  *
    383  * This is a simple tiled layout using tiles of 4x4 pixels in a row-major
    384  * layout.
    385  */
    386 #define DRM_FORMAT_MOD_VIVANTE_TILED		fourcc_mod_code(VIVANTE, 1)
    387 
    388 /*
    389  * Vivante 64x64 super-tiling layout
    390  *
    391  * This is a tiled layout using 64x64 pixel super-tiles, where each super-tile
    392  * contains 8x4 groups of 2x4 tiles of 4x4 pixels (like above) each, all in row-
    393  * major layout.
    394  *
    395  * For more information: see
    396  * https://github.com/etnaviv/etna_viv/blob/master/doc/hardware.md#texture-tiling
    397  */
    398 #define DRM_FORMAT_MOD_VIVANTE_SUPER_TILED	fourcc_mod_code(VIVANTE, 2)
    399 
    400 /*
    401  * Vivante 4x4 tiling layout for dual-pipe
    402  *
    403  * Same as the 4x4 tiling layout, except every second 4x4 pixel tile starts at a
    404  * different base address. Offsets from the base addresses are therefore halved
    405  * compared to the non-split tiled layout.
    406  */
    407 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_TILED	fourcc_mod_code(VIVANTE, 3)
    408 
    409 /*
    410  * Vivante 64x64 super-tiling layout for dual-pipe
    411  *
    412  * Same as the 64x64 super-tiling layout, except every second 4x4 pixel tile
    413  * starts at a different base address. Offsets from the base addresses are
    414  * therefore halved compared to the non-split super-tiled layout.
    415  */
    416 #define DRM_FORMAT_MOD_VIVANTE_SPLIT_SUPER_TILED fourcc_mod_code(VIVANTE, 4)
    417 
    418 /* NVIDIA frame buffer modifiers */
    419 
    420 /*
    421  * Tegra Tiled Layout, used by Tegra 2, 3 and 4.
    422  *
    423  * Pixels are arranged in simple tiles of 16 x 16 bytes.
    424  */
    425 #define DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED fourcc_mod_code(NVIDIA, 1)
    426 
    427 /*
    428  * 16Bx2 Block Linear layout, used by desktop GPUs, and Tegra K1 and later
    429  *
    430  * Pixels are arranged in 64x8 Groups Of Bytes (GOBs). GOBs are then stacked
    431  * vertically by a power of 2 (1 to 32 GOBs) to form a block.
    432  *
    433  * Within a GOB, data is ordered as 16B x 2 lines sectors laid in Z-shape.
    434  *
    435  * Parameter 'v' is the log2 encoding of the number of GOBs stacked vertically.
    436  * Valid values are:
    437  *
    438  * 0 == ONE_GOB
    439  * 1 == TWO_GOBS
    440  * 2 == FOUR_GOBS
    441  * 3 == EIGHT_GOBS
    442  * 4 == SIXTEEN_GOBS
    443  * 5 == THIRTYTWO_GOBS
    444  *
    445  * Chapter 20 "Pixel Memory Formats" of the Tegra X1 TRM describes this format
    446  * in full detail.
    447  */
    448 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(v) \
    449 	fourcc_mod_code(NVIDIA, 0x10 | ((v) & 0xf))
    450 
    451 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_ONE_GOB \
    452 	fourcc_mod_code(NVIDIA, 0x10)
    453 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_TWO_GOB \
    454 	fourcc_mod_code(NVIDIA, 0x11)
    455 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_FOUR_GOB \
    456 	fourcc_mod_code(NVIDIA, 0x12)
    457 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_EIGHT_GOB \
    458 	fourcc_mod_code(NVIDIA, 0x13)
    459 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_SIXTEEN_GOB \
    460 	fourcc_mod_code(NVIDIA, 0x14)
    461 #define DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK_THIRTYTWO_GOB \
    462 	fourcc_mod_code(NVIDIA, 0x15)
    463 
    464 /*
    465  * Some Broadcom modifiers take parameters, for example the number of
    466  * vertical lines in the image. Reserve the lower 32 bits for modifier
    467  * type, and the next 24 bits for parameters. Top 8 bits are the
    468  * vendor code.
    469  */
    470 #define __fourcc_mod_broadcom_param_shift 8
    471 #define __fourcc_mod_broadcom_param_bits 48
    472 #define fourcc_mod_broadcom_code(val, params) \
    473 	fourcc_mod_code(BROADCOM, ((((__u64)params) << __fourcc_mod_broadcom_param_shift) | val))
    474 #define fourcc_mod_broadcom_param(m) \
    475 	((int)(((m) >> __fourcc_mod_broadcom_param_shift) &	\
    476 	       ((1ULL << __fourcc_mod_broadcom_param_bits) - 1)))
    477 #define fourcc_mod_broadcom_mod(m) \
    478 	((m) & ~(((1ULL << __fourcc_mod_broadcom_param_bits) - 1) <<	\
    479 		 __fourcc_mod_broadcom_param_shift))
    480 
    481 /*
    482  * Broadcom VC4 "T" format
    483  *
    484  * This is the primary layout that the V3D GPU can texture from (it
    485  * can't do linear).  The T format has:
    486  *
    487  * - 64b utiles of pixels in a raster-order grid according to cpp.  It's 4x4
    488  *   pixels at 32 bit depth.
    489  *
    490  * - 1k subtiles made of a 4x4 raster-order grid of 64b utiles (so usually
    491  *   16x16 pixels).
    492  *
    493  * - 4k tiles made of a 2x2 grid of 1k subtiles (so usually 32x32 pixels).  On
    494  *   even 4k tile rows, they're arranged as (BL, TL, TR, BR), and on odd rows
    495  *   they're (TR, BR, BL, TL), where bottom left is start of memory.
    496  *
    497  * - an image made of 4k tiles in rows either left-to-right (even rows of 4k
    498  *   tiles) or right-to-left (odd rows of 4k tiles).
    499  */
    500 #define DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED fourcc_mod_code(BROADCOM, 1)
    501 
    502 /*
    503  * Broadcom SAND format
    504  *
    505  * This is the native format that the H.264 codec block uses.  For VC4
    506  * HVS, it is only valid for H.264 (NV12/21) and RGBA modes.
    507  *
    508  * The image can be considered to be split into columns, and the
    509  * columns are placed consecutively into memory.  The width of those
    510  * columns can be either 32, 64, 128, or 256 pixels, but in practice
    511  * only 128 pixel columns are used.
    512  *
    513  * The pitch between the start of each column is set to optimally
    514  * switch between SDRAM banks. This is passed as the number of lines
    515  * of column width in the modifier (we can't use the stride value due
    516  * to various core checks that look at it , so you should set the
    517  * stride to width*cpp).
    518  *
    519  * Note that the column height for this format modifier is the same
    520  * for all of the planes, assuming that each column contains both Y
    521  * and UV.  Some SAND-using hardware stores UV in a separate tiled
    522  * image from Y to reduce the column height, which is not supported
    523  * with these modifiers.
    524  */
    525 
    526 #define DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(v) \
    527 	fourcc_mod_broadcom_code(2, v)
    528 #define DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(v) \
    529 	fourcc_mod_broadcom_code(3, v)
    530 #define DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(v) \
    531 	fourcc_mod_broadcom_code(4, v)
    532 #define DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(v) \
    533 	fourcc_mod_broadcom_code(5, v)
    534 
    535 #define DRM_FORMAT_MOD_BROADCOM_SAND32 \
    536 	DRM_FORMAT_MOD_BROADCOM_SAND32_COL_HEIGHT(0)
    537 #define DRM_FORMAT_MOD_BROADCOM_SAND64 \
    538 	DRM_FORMAT_MOD_BROADCOM_SAND64_COL_HEIGHT(0)
    539 #define DRM_FORMAT_MOD_BROADCOM_SAND128 \
    540 	DRM_FORMAT_MOD_BROADCOM_SAND128_COL_HEIGHT(0)
    541 #define DRM_FORMAT_MOD_BROADCOM_SAND256 \
    542 	DRM_FORMAT_MOD_BROADCOM_SAND256_COL_HEIGHT(0)
    543 
    544 /* Broadcom UIF format
    545  *
    546  * This is the common format for the current Broadcom multimedia
    547  * blocks, including V3D 3.x and newer, newer video codecs, and
    548  * displays.
    549  *
    550  * The image consists of utiles (64b blocks), UIF blocks (2x2 utiles),
    551  * and macroblocks (4x4 UIF blocks).  Those 4x4 UIF block groups are
    552  * stored in columns, with padding between the columns to ensure that
    553  * moving from one column to the next doesn't hit the same SDRAM page
    554  * bank.
    555  *
    556  * To calculate the padding, it is assumed that each hardware block
    557  * and the software driving it knows the platform's SDRAM page size,
    558  * number of banks, and XOR address, and that it's identical between
    559  * all blocks using the format.  This tiling modifier will use XOR as
    560  * necessary to reduce the padding.  If a hardware block can't do XOR,
    561  * the assumption is that a no-XOR tiling modifier will be created.
    562  */
    563 #define DRM_FORMAT_MOD_BROADCOM_UIF fourcc_mod_code(BROADCOM, 6)
    564 
    565 /*
    566  * Arm Framebuffer Compression (AFBC) modifiers
    567  *
    568  * AFBC is a proprietary lossless image compression protocol and format.
    569  * It provides fine-grained random access and minimizes the amount of data
    570  * transferred between IP blocks.
    571  *
    572  * AFBC has several features which may be supported and/or used, which are
    573  * represented using bits in the modifier. Not all combinations are valid,
    574  * and different devices or use-cases may support different combinations.
    575  */
    576 #define DRM_FORMAT_MOD_ARM_AFBC(__afbc_mode)	fourcc_mod_code(ARM, __afbc_mode)
    577 
    578 /*
    579  * AFBC superblock size
    580  *
    581  * Indicates the superblock size(s) used for the AFBC buffer. The buffer
    582  * size (in pixels) must be aligned to a multiple of the superblock size.
    583  * Four lowest significant bits(LSBs) are reserved for block size.
    584  */
    585 #define AFBC_FORMAT_MOD_BLOCK_SIZE_MASK      0xf
    586 #define AFBC_FORMAT_MOD_BLOCK_SIZE_16x16     (1ULL)
    587 #define AFBC_FORMAT_MOD_BLOCK_SIZE_32x8      (2ULL)
    588 
    589 /*
    590  * AFBC lossless colorspace transform
    591  *
    592  * Indicates that the buffer makes use of the AFBC lossless colorspace
    593  * transform.
    594  */
    595 #define AFBC_FORMAT_MOD_YTR     (1ULL <<  4)
    596 
    597 /*
    598  * AFBC block-split
    599  *
    600  * Indicates that the payload of each superblock is split. The second
    601  * half of the payload is positioned at a predefined offset from the start
    602  * of the superblock payload.
    603  */
    604 #define AFBC_FORMAT_MOD_SPLIT   (1ULL <<  5)
    605 
    606 /*
    607  * AFBC sparse layout
    608  *
    609  * This flag indicates that the payload of each superblock must be stored at a
    610  * predefined position relative to the other superblocks in the same AFBC
    611  * buffer. This order is the same order used by the header buffer. In this mode
    612  * each superblock is given the same amount of space as an uncompressed
    613  * superblock of the particular format would require, rounding up to the next
    614  * multiple of 128 bytes in size.
    615  */
    616 #define AFBC_FORMAT_MOD_SPARSE  (1ULL <<  6)
    617 
    618 /*
    619  * AFBC copy-block restrict
    620  *
    621  * Buffers with this flag must obey the copy-block restriction. The restriction
    622  * is such that there are no copy-blocks referring across the border of 8x8
    623  * blocks. For the subsampled data the 8x8 limitation is also subsampled.
    624  */
    625 #define AFBC_FORMAT_MOD_CBR     (1ULL <<  7)
    626 
    627 /*
    628  * AFBC tiled layout
    629  *
    630  * The tiled layout groups superblocks in 8x8 or 4x4 tiles, where all
    631  * superblocks inside a tile are stored together in memory. 8x8 tiles are used
    632  * for pixel formats up to and including 32 bpp while 4x4 tiles are used for
    633  * larger bpp formats. The order between the tiles is scan line.
    634  * When the tiled layout is used, the buffer size (in pixels) must be aligned
    635  * to the tile size.
    636  */
    637 #define AFBC_FORMAT_MOD_TILED   (1ULL <<  8)
    638 
    639 /*
    640  * AFBC solid color blocks
    641  *
    642  * Indicates that the buffer makes use of solid-color blocks, whereby bandwidth
    643  * can be reduced if a whole superblock is a single color.
    644  */
    645 #define AFBC_FORMAT_MOD_SC      (1ULL <<  9)
    646 
    647 #if defined(__cplusplus)
    648 }
    649 #endif
    650 
    651 #endif /* DRM_FOURCC_H */
    652