Home | History | Annotate | Download | only in common
      1 /*
      2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
      3  *
      4  * This source code is subject to the terms of the BSD 2 Clause License and
      5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
      6  * was not distributed with this source code in the LICENSE file, you can
      7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
      8  * Media Patent License 1.0 was not distributed with this source code in the
      9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
     10  */
     11 
     12 #include "av1/common/cfl.h"
     13 #include "av1/common/common_data.h"
     14 #include "av1/common/onyxc_int.h"
     15 
     16 #include "config/av1_rtcd.h"
     17 
     18 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params) {
     19   assert(block_size_wide[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
     20   assert(block_size_high[CFL_MAX_BLOCK_SIZE] == CFL_BUF_LINE);
     21 
     22   memset(&cfl->recon_buf_q3, 0, sizeof(cfl->recon_buf_q3));
     23   memset(&cfl->ac_buf_q3, 0, sizeof(cfl->ac_buf_q3));
     24   cfl->subsampling_x = seq_params->subsampling_x;
     25   cfl->subsampling_y = seq_params->subsampling_y;
     26   cfl->are_parameters_computed = 0;
     27   cfl->store_y = 0;
     28   // The DC_PRED cache is disabled by default and is only enabled in
     29   // cfl_rd_pick_alpha
     30   cfl->use_dc_pred_cache = 0;
     31   cfl->dc_pred_is_cached[CFL_PRED_U] = 0;
     32   cfl->dc_pred_is_cached[CFL_PRED_V] = 0;
     33 }
     34 
     35 void cfl_store_dc_pred(MACROBLOCKD *const xd, const uint8_t *input,
     36                        CFL_PRED_TYPE pred_plane, int width) {
     37   assert(pred_plane < CFL_PRED_PLANES);
     38   assert(width <= CFL_BUF_LINE);
     39 
     40   if (is_cur_buf_hbd(xd)) {
     41     uint16_t *const input_16 = CONVERT_TO_SHORTPTR(input);
     42     memcpy(xd->cfl.dc_pred_cache[pred_plane], input_16, width << 1);
     43     return;
     44   }
     45 
     46   memcpy(xd->cfl.dc_pred_cache[pred_plane], input, width);
     47 }
     48 
     49 static void cfl_load_dc_pred_lbd(const int16_t *dc_pred_cache, uint8_t *dst,
     50                                  int dst_stride, int width, int height) {
     51   for (int j = 0; j < height; j++) {
     52     memcpy(dst, dc_pred_cache, width);
     53     dst += dst_stride;
     54   }
     55 }
     56 
     57 static void cfl_load_dc_pred_hbd(const int16_t *dc_pred_cache, uint16_t *dst,
     58                                  int dst_stride, int width, int height) {
     59   const size_t num_bytes = width << 1;
     60   for (int j = 0; j < height; j++) {
     61     memcpy(dst, dc_pred_cache, num_bytes);
     62     dst += dst_stride;
     63   }
     64 }
     65 void cfl_load_dc_pred(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
     66                       TX_SIZE tx_size, CFL_PRED_TYPE pred_plane) {
     67   const int width = tx_size_wide[tx_size];
     68   const int height = tx_size_high[tx_size];
     69   assert(pred_plane < CFL_PRED_PLANES);
     70   assert(width <= CFL_BUF_LINE);
     71   assert(height <= CFL_BUF_LINE);
     72   if (is_cur_buf_hbd(xd)) {
     73     uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst);
     74     cfl_load_dc_pred_hbd(xd->cfl.dc_pred_cache[pred_plane], dst_16, dst_stride,
     75                          width, height);
     76     return;
     77   }
     78   cfl_load_dc_pred_lbd(xd->cfl.dc_pred_cache[pred_plane], dst, dst_stride,
     79                        width, height);
     80 }
     81 
     82 // Due to frame boundary issues, it is possible that the total area covered by
     83 // chroma exceeds that of luma. When this happens, we fill the missing pixels by
     84 // repeating the last columns and/or rows.
     85 static INLINE void cfl_pad(CFL_CTX *cfl, int width, int height) {
     86   const int diff_width = width - cfl->buf_width;
     87   const int diff_height = height - cfl->buf_height;
     88 
     89   if (diff_width > 0) {
     90     const int min_height = height - diff_height;
     91     uint16_t *recon_buf_q3 = cfl->recon_buf_q3 + (width - diff_width);
     92     for (int j = 0; j < min_height; j++) {
     93       const uint16_t last_pixel = recon_buf_q3[-1];
     94       assert(recon_buf_q3 + diff_width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
     95       for (int i = 0; i < diff_width; i++) {
     96         recon_buf_q3[i] = last_pixel;
     97       }
     98       recon_buf_q3 += CFL_BUF_LINE;
     99     }
    100     cfl->buf_width = width;
    101   }
    102   if (diff_height > 0) {
    103     uint16_t *recon_buf_q3 =
    104         cfl->recon_buf_q3 + ((height - diff_height) * CFL_BUF_LINE);
    105     for (int j = 0; j < diff_height; j++) {
    106       const uint16_t *last_row_q3 = recon_buf_q3 - CFL_BUF_LINE;
    107       assert(recon_buf_q3 + width <= cfl->recon_buf_q3 + CFL_BUF_SQUARE);
    108       for (int i = 0; i < width; i++) {
    109         recon_buf_q3[i] = last_row_q3[i];
    110       }
    111       recon_buf_q3 += CFL_BUF_LINE;
    112     }
    113     cfl->buf_height = height;
    114   }
    115 }
    116 
    117 static void subtract_average_c(const uint16_t *src, int16_t *dst, int width,
    118                                int height, int round_offset, int num_pel_log2) {
    119   int sum = round_offset;
    120   const uint16_t *recon = src;
    121   for (int j = 0; j < height; j++) {
    122     for (int i = 0; i < width; i++) {
    123       sum += recon[i];
    124     }
    125     recon += CFL_BUF_LINE;
    126   }
    127   const int avg = sum >> num_pel_log2;
    128   for (int j = 0; j < height; j++) {
    129     for (int i = 0; i < width; i++) {
    130       dst[i] = src[i] - avg;
    131     }
    132     src += CFL_BUF_LINE;
    133     dst += CFL_BUF_LINE;
    134   }
    135 }
    136 
    137 CFL_SUB_AVG_FN(c)
    138 
    139 static INLINE int cfl_idx_to_alpha(int alpha_idx, int joint_sign,
    140                                    CFL_PRED_TYPE pred_type) {
    141   const int alpha_sign = (pred_type == CFL_PRED_U) ? CFL_SIGN_U(joint_sign)
    142                                                    : CFL_SIGN_V(joint_sign);
    143   if (alpha_sign == CFL_SIGN_ZERO) return 0;
    144   const int abs_alpha_q3 =
    145       (pred_type == CFL_PRED_U) ? CFL_IDX_U(alpha_idx) : CFL_IDX_V(alpha_idx);
    146   return (alpha_sign == CFL_SIGN_POS) ? abs_alpha_q3 + 1 : -abs_alpha_q3 - 1;
    147 }
    148 
    149 static INLINE void cfl_predict_lbd_c(const int16_t *ac_buf_q3, uint8_t *dst,
    150                                      int dst_stride, int alpha_q3, int width,
    151                                      int height) {
    152   for (int j = 0; j < height; j++) {
    153     for (int i = 0; i < width; i++) {
    154       dst[i] = clip_pixel(get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i]);
    155     }
    156     dst += dst_stride;
    157     ac_buf_q3 += CFL_BUF_LINE;
    158   }
    159 }
    160 
    161 CFL_PREDICT_FN(c, lbd)
    162 
    163 void cfl_predict_hbd_c(const int16_t *ac_buf_q3, uint16_t *dst, int dst_stride,
    164                        int alpha_q3, int bit_depth, int width, int height) {
    165   for (int j = 0; j < height; j++) {
    166     for (int i = 0; i < width; i++) {
    167       dst[i] = clip_pixel_highbd(
    168           get_scaled_luma_q0(alpha_q3, ac_buf_q3[i]) + dst[i], bit_depth);
    169     }
    170     dst += dst_stride;
    171     ac_buf_q3 += CFL_BUF_LINE;
    172   }
    173 }
    174 
    175 CFL_PREDICT_FN(c, hbd)
    176 
    177 static void cfl_compute_parameters(MACROBLOCKD *const xd, TX_SIZE tx_size) {
    178   CFL_CTX *const cfl = &xd->cfl;
    179   // Do not call cfl_compute_parameters multiple time on the same values.
    180   assert(cfl->are_parameters_computed == 0);
    181 
    182   cfl_pad(cfl, tx_size_wide[tx_size], tx_size_high[tx_size]);
    183   get_subtract_average_fn(tx_size)(cfl->recon_buf_q3, cfl->ac_buf_q3);
    184   cfl->are_parameters_computed = 1;
    185 }
    186 
    187 void cfl_predict_block(MACROBLOCKD *const xd, uint8_t *dst, int dst_stride,
    188                        TX_SIZE tx_size, int plane) {
    189   CFL_CTX *const cfl = &xd->cfl;
    190   MB_MODE_INFO *mbmi = xd->mi[0];
    191   assert(is_cfl_allowed(xd));
    192 
    193   if (!cfl->are_parameters_computed) cfl_compute_parameters(xd, tx_size);
    194 
    195   const int alpha_q3 =
    196       cfl_idx_to_alpha(mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, plane - 1);
    197   assert((tx_size_high[tx_size] - 1) * CFL_BUF_LINE + tx_size_wide[tx_size] <=
    198          CFL_BUF_SQUARE);
    199   if (is_cur_buf_hbd(xd)) {
    200     uint16_t *dst_16 = CONVERT_TO_SHORTPTR(dst);
    201     get_predict_hbd_fn(tx_size)(cfl->ac_buf_q3, dst_16, dst_stride, alpha_q3,
    202                                 xd->bd);
    203     return;
    204   }
    205   get_predict_lbd_fn(tx_size)(cfl->ac_buf_q3, dst, dst_stride, alpha_q3);
    206 }
    207 
    208 static void cfl_luma_subsampling_420_lbd_c(const uint8_t *input,
    209                                            int input_stride,
    210                                            uint16_t *output_q3, int width,
    211                                            int height) {
    212   for (int j = 0; j < height; j += 2) {
    213     for (int i = 0; i < width; i += 2) {
    214       const int bot = i + input_stride;
    215       output_q3[i >> 1] =
    216           (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
    217     }
    218     input += input_stride << 1;
    219     output_q3 += CFL_BUF_LINE;
    220   }
    221 }
    222 
    223 static void cfl_luma_subsampling_422_lbd_c(const uint8_t *input,
    224                                            int input_stride,
    225                                            uint16_t *output_q3, int width,
    226                                            int height) {
    227   assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
    228   for (int j = 0; j < height; j++) {
    229     for (int i = 0; i < width; i += 2) {
    230       output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
    231     }
    232     input += input_stride;
    233     output_q3 += CFL_BUF_LINE;
    234   }
    235 }
    236 
    237 static void cfl_luma_subsampling_444_lbd_c(const uint8_t *input,
    238                                            int input_stride,
    239                                            uint16_t *output_q3, int width,
    240                                            int height) {
    241   assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
    242   for (int j = 0; j < height; j++) {
    243     for (int i = 0; i < width; i++) {
    244       output_q3[i] = input[i] << 3;
    245     }
    246     input += input_stride;
    247     output_q3 += CFL_BUF_LINE;
    248   }
    249 }
    250 
    251 static void cfl_luma_subsampling_420_hbd_c(const uint16_t *input,
    252                                            int input_stride,
    253                                            uint16_t *output_q3, int width,
    254                                            int height) {
    255   for (int j = 0; j < height; j += 2) {
    256     for (int i = 0; i < width; i += 2) {
    257       const int bot = i + input_stride;
    258       output_q3[i >> 1] =
    259           (input[i] + input[i + 1] + input[bot] + input[bot + 1]) << 1;
    260     }
    261     input += input_stride << 1;
    262     output_q3 += CFL_BUF_LINE;
    263   }
    264 }
    265 
    266 static void cfl_luma_subsampling_422_hbd_c(const uint16_t *input,
    267                                            int input_stride,
    268                                            uint16_t *output_q3, int width,
    269                                            int height) {
    270   assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
    271   for (int j = 0; j < height; j++) {
    272     for (int i = 0; i < width; i += 2) {
    273       output_q3[i >> 1] = (input[i] + input[i + 1]) << 2;
    274     }
    275     input += input_stride;
    276     output_q3 += CFL_BUF_LINE;
    277   }
    278 }
    279 
    280 static void cfl_luma_subsampling_444_hbd_c(const uint16_t *input,
    281                                            int input_stride,
    282                                            uint16_t *output_q3, int width,
    283                                            int height) {
    284   assert((height - 1) * CFL_BUF_LINE + width <= CFL_BUF_SQUARE);
    285   for (int j = 0; j < height; j++) {
    286     for (int i = 0; i < width; i++) {
    287       output_q3[i] = input[i] << 3;
    288     }
    289     input += input_stride;
    290     output_q3 += CFL_BUF_LINE;
    291   }
    292 }
    293 
    294 CFL_GET_SUBSAMPLE_FUNCTION(c)
    295 
    296 static INLINE cfl_subsample_hbd_fn cfl_subsampling_hbd(TX_SIZE tx_size,
    297                                                        int sub_x, int sub_y) {
    298   if (sub_x == 1) {
    299     if (sub_y == 1) {
    300       return cfl_get_luma_subsampling_420_hbd(tx_size);
    301     }
    302     return cfl_get_luma_subsampling_422_hbd(tx_size);
    303   }
    304   return cfl_get_luma_subsampling_444_hbd(tx_size);
    305 }
    306 
    307 static INLINE cfl_subsample_lbd_fn cfl_subsampling_lbd(TX_SIZE tx_size,
    308                                                        int sub_x, int sub_y) {
    309   if (sub_x == 1) {
    310     if (sub_y == 1) {
    311       return cfl_get_luma_subsampling_420_lbd(tx_size);
    312     }
    313     return cfl_get_luma_subsampling_422_lbd(tx_size);
    314   }
    315   return cfl_get_luma_subsampling_444_lbd(tx_size);
    316 }
    317 
    318 static void cfl_store(CFL_CTX *cfl, const uint8_t *input, int input_stride,
    319                       int row, int col, TX_SIZE tx_size, int use_hbd) {
    320   const int width = tx_size_wide[tx_size];
    321   const int height = tx_size_high[tx_size];
    322   const int tx_off_log2 = tx_size_wide_log2[0];
    323   const int sub_x = cfl->subsampling_x;
    324   const int sub_y = cfl->subsampling_y;
    325   const int store_row = row << (tx_off_log2 - sub_y);
    326   const int store_col = col << (tx_off_log2 - sub_x);
    327   const int store_height = height >> sub_y;
    328   const int store_width = width >> sub_x;
    329 
    330   // Invalidate current parameters
    331   cfl->are_parameters_computed = 0;
    332 
    333   // Store the surface of the pixel buffer that was written to, this way we
    334   // can manage chroma overrun (e.g. when the chroma surfaces goes beyond the
    335   // frame boundary)
    336   if (col == 0 && row == 0) {
    337     cfl->buf_width = store_width;
    338     cfl->buf_height = store_height;
    339   } else {
    340     cfl->buf_width = OD_MAXI(store_col + store_width, cfl->buf_width);
    341     cfl->buf_height = OD_MAXI(store_row + store_height, cfl->buf_height);
    342   }
    343 
    344   // Check that we will remain inside the pixel buffer.
    345   assert(store_row + store_height <= CFL_BUF_LINE);
    346   assert(store_col + store_width <= CFL_BUF_LINE);
    347 
    348   // Store the input into the CfL pixel buffer
    349   uint16_t *recon_buf_q3 =
    350       cfl->recon_buf_q3 + (store_row * CFL_BUF_LINE + store_col);
    351 
    352   if (use_hbd) {
    353     cfl_subsampling_hbd(tx_size, sub_x, sub_y)(CONVERT_TO_SHORTPTR(input),
    354                                                input_stride, recon_buf_q3);
    355   } else {
    356     cfl_subsampling_lbd(tx_size, sub_x, sub_y)(input, input_stride,
    357                                                recon_buf_q3);
    358   }
    359 }
    360 
    361 // Adjust the row and column of blocks smaller than 8X8, as chroma-referenced
    362 // and non-chroma-referenced blocks are stored together in the CfL buffer.
    363 static INLINE void sub8x8_adjust_offset(const CFL_CTX *cfl, int *row_out,
    364                                         int *col_out) {
    365   // Increment row index for bottom: 8x4, 16x4 or both bottom 4x4s.
    366   if ((cfl->mi_row & 0x01) && cfl->subsampling_y) {
    367     assert(*row_out == 0);
    368     (*row_out)++;
    369   }
    370 
    371   // Increment col index for right: 4x8, 4x16 or both right 4x4s.
    372   if ((cfl->mi_col & 0x01) && cfl->subsampling_x) {
    373     assert(*col_out == 0);
    374     (*col_out)++;
    375   }
    376 }
    377 
    378 void cfl_store_tx(MACROBLOCKD *const xd, int row, int col, TX_SIZE tx_size,
    379                   BLOCK_SIZE bsize) {
    380   CFL_CTX *const cfl = &xd->cfl;
    381   struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
    382   uint8_t *dst =
    383       &pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
    384 
    385   if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
    386     // Only dimensions of size 4 can have an odd offset.
    387     assert(!((col & 1) && tx_size_wide[tx_size] != 4));
    388     assert(!((row & 1) && tx_size_high[tx_size] != 4));
    389     sub8x8_adjust_offset(cfl, &row, &col);
    390   }
    391   cfl_store(cfl, dst, pd->dst.stride, row, col, tx_size, is_cur_buf_hbd(xd));
    392 }
    393 
    394 void cfl_store_block(MACROBLOCKD *const xd, BLOCK_SIZE bsize, TX_SIZE tx_size) {
    395   CFL_CTX *const cfl = &xd->cfl;
    396   struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y];
    397   int row = 0;
    398   int col = 0;
    399 
    400   if (block_size_high[bsize] == 4 || block_size_wide[bsize] == 4) {
    401     sub8x8_adjust_offset(cfl, &row, &col);
    402   }
    403   const int width = max_intra_block_width(xd, bsize, AOM_PLANE_Y, tx_size);
    404   const int height = max_intra_block_height(xd, bsize, AOM_PLANE_Y, tx_size);
    405   tx_size = get_tx_size(width, height);
    406   cfl_store(cfl, pd->dst.buf, pd->dst.stride, row, col, tx_size,
    407             is_cur_buf_hbd(xd));
    408 }
    409