Home | History | Annotate | Download | only in base
      1 // Copyright 2016 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_BIT_CAST_H_
      6 #define BASE_BIT_CAST_H_
      7 
      8 #include <string.h>
      9 #include <type_traits>
     10 
     11 #include "base/compiler_specific.h"
     12 #include "base/template_util.h"
     13 #include "build/build_config.h"
     14 
     15 // bit_cast<Dest,Source> is a template function that implements the equivalent
     16 // of "*reinterpret_cast<Dest*>(&source)".  We need this in very low-level
     17 // functions like the protobuf library and fast math support.
     18 //
     19 //   float f = 3.14159265358979;
     20 //   int i = bit_cast<int32_t>(f);
     21 //   // i = 0x40490fdb
     22 //
     23 // The classical address-casting method is:
     24 //
     25 //   // WRONG
     26 //   float f = 3.14159265358979;            // WRONG
     27 //   int i = * reinterpret_cast<int*>(&f);  // WRONG
     28 //
     29 // The address-casting method actually produces undefined behavior according to
     30 // the ISO C++98 specification, section 3.10 ("basic.lval"), paragraph 15.
     31 // (This did not substantially change in C++11.)  Roughly, this section says: if
     32 // an object in memory has one type, and a program accesses it with a different
     33 // type, then the result is undefined behavior for most values of "different
     34 // type".
     35 //
     36 // This is true for any cast syntax, either *(int*)&f or
     37 // *reinterpret_cast<int*>(&f).  And it is particularly true for conversions
     38 // between integral lvalues and floating-point lvalues.
     39 //
     40 // The purpose of this paragraph is to allow optimizing compilers to assume that
     41 // expressions with different types refer to different memory.  Compilers are
     42 // known to take advantage of this.  So a non-conforming program quietly
     43 // produces wildly incorrect output.
     44 //
     45 // The problem is not the use of reinterpret_cast.  The problem is type punning:
     46 // holding an object in memory of one type and reading its bits back using a
     47 // different type.
     48 //
     49 // The C++ standard is more subtle and complex than this, but that is the basic
     50 // idea.
     51 //
     52 // Anyways ...
     53 //
     54 // bit_cast<> calls memcpy() which is blessed by the standard, especially by the
     55 // example in section 3.9 .  Also, of course, bit_cast<> wraps up the nasty
     56 // logic in one place.
     57 //
     58 // Fortunately memcpy() is very fast.  In optimized mode, compilers replace
     59 // calls to memcpy() with inline object code when the size argument is a
     60 // compile-time constant.  On a 32-bit system, memcpy(d,s,4) compiles to one
     61 // load and one store, and memcpy(d,s,8) compiles to two loads and two stores.
     62 
     63 template <class Dest, class Source>
     64 inline Dest bit_cast(const Source& source) {
     65   static_assert(sizeof(Dest) == sizeof(Source),
     66                 "bit_cast requires source and destination to be the same size");
     67   static_assert(base::is_trivially_copyable<Dest>::value,
     68                 "bit_cast requires the destination type to be copyable");
     69   static_assert(base::is_trivially_copyable<Source>::value,
     70                 "bit_cast requires the source type to be copyable");
     71 
     72   Dest dest;
     73   memcpy(&dest, &source, sizeof(dest));
     74   return dest;
     75 }
     76 
     77 #endif  // BASE_BIT_CAST_H_
     78