Home | History | Annotate | Download | only in containers
      1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef BASE_CONTAINERS_STACK_CONTAINER_H_
      6 #define BASE_CONTAINERS_STACK_CONTAINER_H_
      7 
      8 #include <stddef.h>
      9 
     10 #include <vector>
     11 
     12 #include "base/macros.h"
     13 #include "build/build_config.h"
     14 
     15 namespace base {
     16 
     17 // This allocator can be used with STL containers to provide a stack buffer
     18 // from which to allocate memory and overflows onto the heap. This stack buffer
     19 // would be allocated on the stack and allows us to avoid heap operations in
     20 // some situations.
     21 //
     22 // STL likes to make copies of allocators, so the allocator itself can't hold
     23 // the data. Instead, we make the creator responsible for creating a
     24 // StackAllocator::Source which contains the data. Copying the allocator
     25 // merely copies the pointer to this shared source, so all allocators created
     26 // based on our allocator will share the same stack buffer.
     27 //
     28 // This stack buffer implementation is very simple. The first allocation that
     29 // fits in the stack buffer will use the stack buffer. Any subsequent
     30 // allocations will not use the stack buffer, even if there is unused room.
     31 // This makes it appropriate for array-like containers, but the caller should
     32 // be sure to reserve() in the container up to the stack buffer size. Otherwise
     33 // the container will allocate a small array which will "use up" the stack
     34 // buffer.
     35 template<typename T, size_t stack_capacity>
     36 class StackAllocator : public std::allocator<T> {
     37  public:
     38   typedef typename std::allocator<T>::pointer pointer;
     39   typedef typename std::allocator<T>::size_type size_type;
     40 
     41   // Backing store for the allocator. The container owner is responsible for
     42   // maintaining this for as long as any containers using this allocator are
     43   // live.
     44   struct Source {
     45     Source() : used_stack_buffer_(false) {
     46     }
     47 
     48     // Casts the buffer in its right type.
     49     T* stack_buffer() { return reinterpret_cast<T*>(stack_buffer_); }
     50     const T* stack_buffer() const {
     51       return reinterpret_cast<const T*>(&stack_buffer_);
     52     }
     53 
     54     // The buffer itself. It is not of type T because we don't want the
     55     // constructors and destructors to be automatically called. Define a POD
     56     // buffer of the right size instead.
     57     alignas(T) char stack_buffer_[sizeof(T[stack_capacity])];
     58 #if defined(__GNUC__) && !defined(ARCH_CPU_X86_FAMILY)
     59     static_assert(alignof(T) <= 16, "http://crbug.com/115612");
     60 #endif
     61 
     62     // Set when the stack buffer is used for an allocation. We do not track
     63     // how much of the buffer is used, only that somebody is using it.
     64     bool used_stack_buffer_;
     65   };
     66 
     67   // Used by containers when they want to refer to an allocator of type U.
     68   template<typename U>
     69   struct rebind {
     70     typedef StackAllocator<U, stack_capacity> other;
     71   };
     72 
     73   // For the straight up copy c-tor, we can share storage.
     74   StackAllocator(const StackAllocator<T, stack_capacity>& rhs)
     75       : std::allocator<T>(), source_(rhs.source_) {
     76   }
     77 
     78   // ISO C++ requires the following constructor to be defined,
     79   // and std::vector in VC++2008SP1 Release fails with an error
     80   // in the class _Container_base_aux_alloc_real (from <xutility>)
     81   // if the constructor does not exist.
     82   // For this constructor, we cannot share storage; there's
     83   // no guarantee that the Source buffer of Ts is large enough
     84   // for Us.
     85   // TODO: If we were fancy pants, perhaps we could share storage
     86   // iff sizeof(T) == sizeof(U).
     87   template<typename U, size_t other_capacity>
     88   StackAllocator(const StackAllocator<U, other_capacity>& other)
     89       : source_(NULL) {
     90   }
     91 
     92   // This constructor must exist. It creates a default allocator that doesn't
     93   // actually have a stack buffer. glibc's std::string() will compare the
     94   // current allocator against the default-constructed allocator, so this
     95   // should be fast.
     96   StackAllocator() : source_(NULL) {
     97   }
     98 
     99   explicit StackAllocator(Source* source) : source_(source) {
    100   }
    101 
    102   // Actually do the allocation. Use the stack buffer if nobody has used it yet
    103   // and the size requested fits. Otherwise, fall through to the standard
    104   // allocator.
    105   pointer allocate(size_type n, void* hint = 0) {
    106     if (source_ != NULL && !source_->used_stack_buffer_
    107         && n <= stack_capacity) {
    108       source_->used_stack_buffer_ = true;
    109       return source_->stack_buffer();
    110     } else {
    111       return std::allocator<T>::allocate(n, hint);
    112     }
    113   }
    114 
    115   // Free: when trying to free the stack buffer, just mark it as free. For
    116   // non-stack-buffer pointers, just fall though to the standard allocator.
    117   void deallocate(pointer p, size_type n) {
    118     if (source_ != NULL && p == source_->stack_buffer())
    119       source_->used_stack_buffer_ = false;
    120     else
    121       std::allocator<T>::deallocate(p, n);
    122   }
    123 
    124  private:
    125   Source* source_;
    126 };
    127 
    128 // A wrapper around STL containers that maintains a stack-sized buffer that the
    129 // initial capacity of the vector is based on. Growing the container beyond the
    130 // stack capacity will transparently overflow onto the heap. The container must
    131 // support reserve().
    132 //
    133 // This will not work with std::string since some implementations allocate
    134 // more bytes than requested in calls to reserve(), forcing the allocation onto
    135 // the heap.  http://crbug.com/709273
    136 //
    137 // WATCH OUT: the ContainerType MUST use the proper StackAllocator for this
    138 // type. This object is really intended to be used only internally. You'll want
    139 // to use the wrappers below for different types.
    140 template<typename TContainerType, int stack_capacity>
    141 class StackContainer {
    142  public:
    143   typedef TContainerType ContainerType;
    144   typedef typename ContainerType::value_type ContainedType;
    145   typedef StackAllocator<ContainedType, stack_capacity> Allocator;
    146 
    147   // Allocator must be constructed before the container!
    148   StackContainer() : allocator_(&stack_data_), container_(allocator_) {
    149     // Make the container use the stack allocation by reserving our buffer size
    150     // before doing anything else.
    151     container_.reserve(stack_capacity);
    152   }
    153 
    154   // Getters for the actual container.
    155   //
    156   // Danger: any copies of this made using the copy constructor must have
    157   // shorter lifetimes than the source. The copy will share the same allocator
    158   // and therefore the same stack buffer as the original. Use std::copy to
    159   // copy into a "real" container for longer-lived objects.
    160   ContainerType& container() { return container_; }
    161   const ContainerType& container() const { return container_; }
    162 
    163   // Support operator-> to get to the container. This allows nicer syntax like:
    164   //   StackContainer<...> foo;
    165   //   std::sort(foo->begin(), foo->end());
    166   ContainerType* operator->() { return &container_; }
    167   const ContainerType* operator->() const { return &container_; }
    168 
    169 #ifdef UNIT_TEST
    170   // Retrieves the stack source so that that unit tests can verify that the
    171   // buffer is being used properly.
    172   const typename Allocator::Source& stack_data() const {
    173     return stack_data_;
    174   }
    175 #endif
    176 
    177  protected:
    178   typename Allocator::Source stack_data_;
    179   Allocator allocator_;
    180   ContainerType container_;
    181 
    182  private:
    183   DISALLOW_COPY_AND_ASSIGN(StackContainer);
    184 };
    185 
    186 // StackVector -----------------------------------------------------------------
    187 
    188 // Example:
    189 //   StackVector<int, 16> foo;
    190 //   foo->push_back(22);  // we have overloaded operator->
    191 //   foo[0] = 10;         // as well as operator[]
    192 template<typename T, size_t stack_capacity>
    193 class StackVector : public StackContainer<
    194     std::vector<T, StackAllocator<T, stack_capacity> >,
    195     stack_capacity> {
    196  public:
    197   StackVector() : StackContainer<
    198       std::vector<T, StackAllocator<T, stack_capacity> >,
    199       stack_capacity>() {
    200   }
    201 
    202   // We need to put this in STL containers sometimes, which requires a copy
    203   // constructor. We can't call the regular copy constructor because that will
    204   // take the stack buffer from the original. Here, we create an empty object
    205   // and make a stack buffer of its own.
    206   StackVector(const StackVector<T, stack_capacity>& other)
    207       : StackContainer<
    208             std::vector<T, StackAllocator<T, stack_capacity> >,
    209             stack_capacity>() {
    210     this->container().assign(other->begin(), other->end());
    211   }
    212 
    213   StackVector<T, stack_capacity>& operator=(
    214       const StackVector<T, stack_capacity>& other) {
    215     this->container().assign(other->begin(), other->end());
    216     return *this;
    217   }
    218 
    219   // Vectors are commonly indexed, which isn't very convenient even with
    220   // operator-> (using "->at()" does exception stuff we don't want).
    221   T& operator[](size_t i) { return this->container().operator[](i); }
    222   const T& operator[](size_t i) const {
    223     return this->container().operator[](i);
    224   }
    225 };
    226 
    227 }  // namespace base
    228 
    229 #endif  // BASE_CONTAINERS_STACK_CONTAINER_H_
    230