Home | History | Annotate | Download | only in src
      1 /*
      2  * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
      3  * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
      4  * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
      5  */
      6 
      7 /* $Header: /tmp_amd/presto/export/kbs/jutta/src/gsm/RCS/short_term.c,v 1.2 1994/05/10 20:18:47 jutta Exp $ */
      8 
      9 #include <stdio.h>
     10 #include <assert.h>
     11 
     12 #include "private.h"
     13 
     14 #include "gsm.h"
     15 #include "proto.h"
     16 
     17 /*
     18  *  SHORT TERM ANALYSIS FILTERING SECTION
     19  */
     20 
     21 /* 4.2.8 */
     22 
     23 static void Decoding_of_the_coded_Log_Area_Ratios P2((LARc,LARpp),
     24 	word 	* LARc,		/* coded log area ratio	[0..7] 	IN	*/
     25 	word	* LARpp)	/* out: decoded ..			*/
     26 {
     27 	register word	temp1 /* , temp2 */;
     28 	register long	ltmp;	/* for GSM_ADD */
     29 
     30 	/*  This procedure requires for efficient implementation
     31 	 *  two tables.
     32  	 *
     33 	 *  INVA[1..8] = integer( (32768 * 8) / real_A[1..8])
     34 	 *  MIC[1..8]  = minimum value of the LARc[1..8]
     35 	 */
     36 
     37 	/*  Compute the LARpp[1..8]
     38 	 */
     39 
     40 	/* 	for (i = 1; i <= 8; i++, B++, MIC++, INVA++, LARc++, LARpp++) {
     41 	 *
     42 	 *		temp1  = GSM_ADD( *LARc, *MIC ) << 10;
     43 	 *		temp2  = *B << 1;
     44 	 *		temp1  = GSM_SUB( temp1, temp2 );
     45 	 *
     46 	 *		assert(*INVA != MIN_WORD);
     47 	 *
     48 	 *		temp1  = GSM_MULT_R( *INVA, temp1 );
     49 	 *		*LARpp = GSM_ADD( temp1, temp1 );
     50 	 *	}
     51 	 */
     52 
     53 #undef	STEP
     54 #define	STEP( B_TIMES_TWO, MIC, INVA )	\
     55 		temp1    = GSM_ADD( *LARc++, MIC ) << 10;	\
     56 		temp1    = GSM_SUB( temp1, B_TIMES_TWO );	\
     57 		temp1    = GSM_MULT_R( INVA, temp1 );		\
     58 		*LARpp++ = GSM_ADD( temp1, temp1 );
     59 
     60 	STEP(      0,  -32,  13107 );
     61 	STEP(      0,  -32,  13107 );
     62 	STEP(   4096,  -16,  13107 );
     63 	STEP(  -5120,  -16,  13107 );
     64 
     65 	STEP(    188,   -8,  19223 );
     66 	STEP(  -3584,   -8,  17476 );
     67 	STEP(   -682,   -4,  31454 );
     68 	STEP(  -2288,   -4,  29708 );
     69 
     70 	/* NOTE: the addition of *MIC is used to restore
     71 	 * 	 the sign of *LARc.
     72 	 */
     73 }
     74 
     75 /* 4.2.9 */
     76 /* Computation of the quantized reflection coefficients
     77  */
     78 
     79 /* 4.2.9.1  Interpolation of the LARpp[1..8] to get the LARp[1..8]
     80  */
     81 
     82 /*
     83  *  Within each frame of 160 analyzed speech samples the short term
     84  *  analysis and synthesis filters operate with four different sets of
     85  *  coefficients, derived from the previous set of decoded LARs(LARpp(j-1))
     86  *  and the actual set of decoded LARs (LARpp(j))
     87  *
     88  * (Initial value: LARpp(j-1)[1..8] = 0.)
     89  */
     90 
     91 static void Coefficients_0_12 P3((LARpp_j_1, LARpp_j, LARp),
     92 	register word * LARpp_j_1,
     93 	register word * LARpp_j,
     94 	register word * LARp)
     95 {
     96 	register int 	i;
     97 	register longword ltmp;
     98 
     99 	for (i = 1; i <= 8; i++, LARp++, LARpp_j_1++, LARpp_j++) {
    100 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
    101 		*LARp = GSM_ADD( *LARp,  SASR( *LARpp_j_1, 1));
    102 	}
    103 }
    104 
    105 static void Coefficients_13_26 P3((LARpp_j_1, LARpp_j, LARp),
    106 	register word * LARpp_j_1,
    107 	register word * LARpp_j,
    108 	register word * LARp)
    109 {
    110 	register int i;
    111 	register longword ltmp;
    112 	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
    113 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 1), SASR( *LARpp_j, 1 ));
    114 	}
    115 }
    116 
    117 static void Coefficients_27_39 P3((LARpp_j_1, LARpp_j, LARp),
    118 	register word * LARpp_j_1,
    119 	register word * LARpp_j,
    120 	register word * LARp)
    121 {
    122 	register int i;
    123 	register longword ltmp;
    124 
    125 	for (i = 1; i <= 8; i++, LARpp_j_1++, LARpp_j++, LARp++) {
    126 		*LARp = GSM_ADD( SASR( *LARpp_j_1, 2 ), SASR( *LARpp_j, 2 ));
    127 		*LARp = GSM_ADD( *LARp, SASR( *LARpp_j, 1 ));
    128 	}
    129 }
    130 
    131 
    132 static void Coefficients_40_159 P2((LARpp_j, LARp),
    133 	register word * LARpp_j,
    134 	register word * LARp)
    135 {
    136 	register int i;
    137 
    138 	for (i = 1; i <= 8; i++, LARp++, LARpp_j++)
    139 		*LARp = *LARpp_j;
    140 }
    141 
    142 /* 4.2.9.2 */
    143 
    144 static void LARp_to_rp P1((LARp),
    145 	register word * LARp)	/* [0..7] IN/OUT  */
    146 /*
    147  *  The input of this procedure is the interpolated LARp[0..7] array.
    148  *  The reflection coefficients, rp[i], are used in the analysis
    149  *  filter and in the synthesis filter.
    150  */
    151 {
    152 	register int 		i;
    153 	register word		temp;
    154 	register longword	ltmp;
    155 
    156 	for (i = 1; i <= 8; i++, LARp++) {
    157 
    158 		/* temp = GSM_ABS( *LARp );
    159 	         *
    160 		 * if (temp < 11059) temp <<= 1;
    161 		 * else if (temp < 20070) temp += 11059;
    162 		 * else temp = GSM_ADD( temp >> 2, 26112 );
    163 		 *
    164 		 * *LARp = *LARp < 0 ? -temp : temp;
    165 		 */
    166 
    167 		if (*LARp < 0) {
    168 			temp = *LARp == MIN_WORD ? MAX_WORD : -(*LARp);
    169 			*LARp = - ((temp < 11059) ? temp << 1
    170 				: ((temp < 20070) ? temp + 11059
    171 				:  GSM_ADD( temp >> 2, 26112 )));
    172 		} else {
    173 			temp  = *LARp;
    174 			*LARp =    (temp < 11059) ? temp << 1
    175 				: ((temp < 20070) ? temp + 11059
    176 				:  GSM_ADD( temp >> 2, 26112 ));
    177 		}
    178 	}
    179 }
    180 
    181 
    182 /* 4.2.10 */
    183 static void Short_term_analysis_filtering P4((S,rp,k_n,s),
    184 	struct gsm_state * S,
    185 	register word	* rp,	/* [0..7]	IN	*/
    186 	register int 	k_n, 	/*   k_end - k_start	*/
    187 	register word	* s	/* [0..n-1]	IN/OUT	*/
    188 )
    189 /*
    190  *  This procedure computes the short term residual signal d[..] to be fed
    191  *  to the RPE-LTP loop from the s[..] signal and from the local rp[..]
    192  *  array (quantized reflection coefficients).  As the call of this
    193  *  procedure can be done in many ways (see the interpolation of the LAR
    194  *  coefficient), it is assumed that the computation begins with index
    195  *  k_start (for arrays d[..] and s[..]) and stops with index k_end
    196  *  (k_start and k_end are defined in 4.2.9.1).  This procedure also
    197  *  needs to keep the array u[0..7] in memory for each call.
    198  */
    199 {
    200 	register word		* u = S->u;
    201 	register int		i;
    202 	register word		di, zzz, ui, sav, rpi;
    203 	register longword 	ltmp;
    204 
    205 	for (; k_n--; s++) {
    206 
    207 		di = sav = *s;
    208 
    209 		for (i = 0; i < 8; i++) {		/* YYY */
    210 
    211 			ui    = u[i];
    212 			rpi   = rp[i];
    213 			u[i]  = sav;
    214 
    215 			zzz   = GSM_MULT_R(rpi, di);
    216 			sav   = GSM_ADD(   ui,  zzz);
    217 
    218 			zzz   = GSM_MULT_R(rpi, ui);
    219 			di    = GSM_ADD(   di,  zzz );
    220 		}
    221 
    222 		*s = di;
    223 	}
    224 }
    225 
    226 #if defined(USE_FLOAT_MUL) && defined(FAST)
    227 
    228 static void Fast_Short_term_analysis_filtering P4((S,rp,k_n,s),
    229 	struct gsm_state * S,
    230 	register word	* rp,	/* [0..7]	IN	*/
    231 	register int 	k_n, 	/*   k_end - k_start	*/
    232 	register word	* s	/* [0..n-1]	IN/OUT	*/
    233 )
    234 {
    235 	register word		* u = S->u;
    236 	register int		i;
    237 
    238 	float 	  uf[8],
    239 		 rpf[8];
    240 
    241 	register float scalef = 3.0517578125e-5;
    242 	register float		sav, di, temp;
    243 
    244 	for (i = 0; i < 8; ++i) {
    245 		uf[i]  = u[i];
    246 		rpf[i] = rp[i] * scalef;
    247 	}
    248 	for (; k_n--; s++) {
    249 		sav = di = *s;
    250 		for (i = 0; i < 8; ++i) {
    251 			register float rpfi = rpf[i];
    252 			register float ufi  = uf[i];
    253 
    254 			uf[i] = sav;
    255 			temp  = rpfi * di + ufi;
    256 			di   += rpfi * ufi;
    257 			sav   = temp;
    258 		}
    259 		*s = di;
    260 	}
    261 	for (i = 0; i < 8; ++i) u[i] = uf[i];
    262 }
    263 #endif /* ! (defined (USE_FLOAT_MUL) && defined (FAST)) */
    264 
    265 static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
    266 	struct gsm_state * S,
    267 	register word	* rrp,	/* [0..7]	IN	*/
    268 	register int	k,	/* k_end - k_start	*/
    269 	register word	* wt,	/* [0..k-1]	IN	*/
    270 	register word	* sr	/* [0..k-1]	OUT	*/
    271 )
    272 {
    273 	register word		* v = S->v;
    274 	register int		i;
    275 	register word		sri, tmp1, tmp2;
    276 	register longword	ltmp;	/* for GSM_ADD  & GSM_SUB */
    277 
    278 	while (k--) {
    279 		sri = *wt++;
    280 		for (i = 8; i--;) {
    281 
    282 			/* sri = GSM_SUB( sri, gsm_mult_r( rrp[i], v[i] ) );
    283 			 */
    284 			tmp1 = rrp[i];
    285 			tmp2 = v[i];
    286 			tmp2 =  ( tmp1 == MIN_WORD && tmp2 == MIN_WORD
    287 				? MAX_WORD
    288 				: 0x0FFFF & (( (longword)tmp1 * (longword)tmp2
    289 					     + 16384) >> 15)) ;
    290 
    291 			sri  = GSM_SUB( sri, tmp2 );
    292 
    293 			/* v[i+1] = GSM_ADD( v[i], gsm_mult_r( rrp[i], sri ) );
    294 			 */
    295 			tmp1  = ( tmp1 == MIN_WORD && sri == MIN_WORD
    296 				? MAX_WORD
    297 				: 0x0FFFF & (( (longword)tmp1 * (longword)sri
    298 					     + 16384) >> 15)) ;
    299 
    300 			v[i+1] = GSM_ADD( v[i], tmp1);
    301 		}
    302 		*sr++ = v[0] = sri;
    303 	}
    304 }
    305 
    306 
    307 #if defined(FAST) && defined(USE_FLOAT_MUL)
    308 
    309 static void Fast_Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
    310 	struct gsm_state * S,
    311 	register word	* rrp,	/* [0..7]	IN	*/
    312 	register int	k,	/* k_end - k_start	*/
    313 	register word	* wt,	/* [0..k-1]	IN	*/
    314 	register word	* sr	/* [0..k-1]	OUT	*/
    315 )
    316 {
    317 	register word		* v = S->v;
    318 	register int		i;
    319 
    320 	float va[9], rrpa[8];
    321 	register float scalef = 3.0517578125e-5, temp;
    322 
    323 	for (i = 0; i < 8; ++i) {
    324 		va[i]   = v[i];
    325 		rrpa[i] = (float)rrp[i] * scalef;
    326 	}
    327 	while (k--) {
    328 		register float sri = *wt++;
    329 		for (i = 8; i--;) {
    330 			sri -= rrpa[i] * va[i];
    331 			if     (sri < -32768.) sri = -32768.;
    332 			else if (sri > 32767.) sri =  32767.;
    333 
    334 			temp = va[i] + rrpa[i] * sri;
    335 			if     (temp < -32768.) temp = -32768.;
    336 			else if (temp > 32767.) temp =  32767.;
    337 			va[i+1] = temp;
    338 		}
    339 		*sr++ = va[0] = sri;
    340 	}
    341 	for (i = 0; i < 9; ++i) v[i] = va[i];
    342 }
    343 
    344 #endif /* defined(FAST) && defined(USE_FLOAT_MUL) */
    345 
    346 void Gsm_Short_Term_Analysis_Filter P3((S,LARc,s),
    347 
    348 	struct gsm_state * S,
    349 
    350 	word	* LARc,		/* coded log area ratio [0..7]  IN	*/
    351 	word	* s		/* signal [0..159]		IN/OUT	*/
    352 )
    353 {
    354 	word		* LARpp_j	= S->LARpp[ S->j      ];
    355 	word		* LARpp_j_1	= S->LARpp[ S->j ^= 1 ];
    356 
    357 	word		LARp[8];
    358 
    359 #undef	FILTER
    360 #if 	defined(FAST) && defined(USE_FLOAT_MUL)
    361 # 	define	FILTER 	(* (S->fast			\
    362 			   ? Fast_Short_term_analysis_filtering	\
    363 		    	   : Short_term_analysis_filtering	))
    364 
    365 #else
    366 # 	define	FILTER	Short_term_analysis_filtering
    367 #endif
    368 
    369 	Decoding_of_the_coded_Log_Area_Ratios( LARc, LARpp_j );
    370 
    371 	Coefficients_0_12(  LARpp_j_1, LARpp_j, LARp );
    372 	LARp_to_rp( LARp );
    373 	FILTER( S, LARp, 13, s);
    374 
    375 	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
    376 	LARp_to_rp( LARp );
    377 	FILTER( S, LARp, 14, s + 13);
    378 
    379 	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
    380 	LARp_to_rp( LARp );
    381 	FILTER( S, LARp, 13, s + 27);
    382 
    383 	Coefficients_40_159( LARpp_j, LARp);
    384 	LARp_to_rp( LARp );
    385 	FILTER( S, LARp, 120, s + 40);
    386 }
    387 
    388 void Gsm_Short_Term_Synthesis_Filter P4((S, LARcr, wt, s),
    389 	struct gsm_state * S,
    390 
    391 	word	* LARcr,	/* received log area ratios [0..7] IN  */
    392 	word	* wt,		/* received d [0..159]		   IN  */
    393 
    394 	word	* s		/* signal   s [0..159]		  OUT  */
    395 )
    396 {
    397 	word		* LARpp_j	= S->LARpp[ S->j     ];
    398 	word		* LARpp_j_1	= S->LARpp[ S->j ^=1 ];
    399 
    400 	word		LARp[8];
    401 
    402 #undef	FILTER
    403 #if 	defined(FAST) && defined(USE_FLOAT_MUL)
    404 
    405 # 	define	FILTER 	(* (S->fast			\
    406 			   ? Fast_Short_term_synthesis_filtering	\
    407 		    	   : Short_term_synthesis_filtering	))
    408 #else
    409 #	define	FILTER	Short_term_synthesis_filtering
    410 #endif
    411 
    412 	Decoding_of_the_coded_Log_Area_Ratios( LARcr, LARpp_j );
    413 
    414 	Coefficients_0_12( LARpp_j_1, LARpp_j, LARp );
    415 	LARp_to_rp( LARp );
    416 	FILTER( S, LARp, 13, wt, s );
    417 
    418 	Coefficients_13_26( LARpp_j_1, LARpp_j, LARp);
    419 	LARp_to_rp( LARp );
    420 	FILTER( S, LARp, 14, wt + 13, s + 13 );
    421 
    422 	Coefficients_27_39( LARpp_j_1, LARpp_j, LARp);
    423 	LARp_to_rp( LARp );
    424 	FILTER( S, LARp, 13, wt + 27, s + 27 );
    425 
    426 	Coefficients_40_159( LARpp_j, LARp );
    427 	LARp_to_rp( LARp );
    428 	FILTER(S, LARp, 120, wt + 40, s + 40);
    429 }
    430