Home | History | Annotate | Download | only in libjpeg-turbo
      1 /*
      2  * jidctred.c
      3  *
      4  * This file was part of the Independent JPEG Group's software.
      5  * Copyright (C) 1994-1998, Thomas G. Lane.
      6  * libjpeg-turbo Modifications:
      7  * Copyright (C) 2015, D. R. Commander.
      8  * For conditions of distribution and use, see the accompanying README.ijg
      9  * file.
     10  *
     11  * This file contains inverse-DCT routines that produce reduced-size output:
     12  * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
     13  *
     14  * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
     15  * algorithm used in jidctint.c.  We simply replace each 8-to-8 1-D IDCT step
     16  * with an 8-to-4 step that produces the four averages of two adjacent outputs
     17  * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
     18  * These steps were derived by computing the corresponding values at the end
     19  * of the normal LL&M code, then simplifying as much as possible.
     20  *
     21  * 1x1 is trivial: just take the DC coefficient divided by 8.
     22  *
     23  * See jidctint.c for additional comments.
     24  */
     25 
     26 #define JPEG_INTERNALS
     27 #include "jinclude.h"
     28 #include "jpeglib.h"
     29 #include "jdct.h"               /* Private declarations for DCT subsystem */
     30 
     31 #ifdef IDCT_SCALING_SUPPORTED
     32 
     33 
     34 /*
     35  * This module is specialized to the case DCTSIZE = 8.
     36  */
     37 
     38 #if DCTSIZE != 8
     39   Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
     40 #endif
     41 
     42 
     43 /* Scaling is the same as in jidctint.c. */
     44 
     45 #if BITS_IN_JSAMPLE == 8
     46 #define CONST_BITS  13
     47 #define PASS1_BITS  2
     48 #else
     49 #define CONST_BITS  13
     50 #define PASS1_BITS  1           /* lose a little precision to avoid overflow */
     51 #endif
     52 
     53 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
     54  * causing a lot of useless floating-point operations at run time.
     55  * To get around this we use the following pre-calculated constants.
     56  * If you change CONST_BITS you may want to add appropriate values.
     57  * (With a reasonable C compiler, you can just rely on the FIX() macro...)
     58  */
     59 
     60 #if CONST_BITS == 13
     61 #define FIX_0_211164243  ((JLONG)1730)          /* FIX(0.211164243) */
     62 #define FIX_0_509795579  ((JLONG)4176)          /* FIX(0.509795579) */
     63 #define FIX_0_601344887  ((JLONG)4926)          /* FIX(0.601344887) */
     64 #define FIX_0_720959822  ((JLONG)5906)          /* FIX(0.720959822) */
     65 #define FIX_0_765366865  ((JLONG)6270)          /* FIX(0.765366865) */
     66 #define FIX_0_850430095  ((JLONG)6967)          /* FIX(0.850430095) */
     67 #define FIX_0_899976223  ((JLONG)7373)          /* FIX(0.899976223) */
     68 #define FIX_1_061594337  ((JLONG)8697)          /* FIX(1.061594337) */
     69 #define FIX_1_272758580  ((JLONG)10426)         /* FIX(1.272758580) */
     70 #define FIX_1_451774981  ((JLONG)11893)         /* FIX(1.451774981) */
     71 #define FIX_1_847759065  ((JLONG)15137)         /* FIX(1.847759065) */
     72 #define FIX_2_172734803  ((JLONG)17799)         /* FIX(2.172734803) */
     73 #define FIX_2_562915447  ((JLONG)20995)         /* FIX(2.562915447) */
     74 #define FIX_3_624509785  ((JLONG)29692)         /* FIX(3.624509785) */
     75 #else
     76 #define FIX_0_211164243  FIX(0.211164243)
     77 #define FIX_0_509795579  FIX(0.509795579)
     78 #define FIX_0_601344887  FIX(0.601344887)
     79 #define FIX_0_720959822  FIX(0.720959822)
     80 #define FIX_0_765366865  FIX(0.765366865)
     81 #define FIX_0_850430095  FIX(0.850430095)
     82 #define FIX_0_899976223  FIX(0.899976223)
     83 #define FIX_1_061594337  FIX(1.061594337)
     84 #define FIX_1_272758580  FIX(1.272758580)
     85 #define FIX_1_451774981  FIX(1.451774981)
     86 #define FIX_1_847759065  FIX(1.847759065)
     87 #define FIX_2_172734803  FIX(2.172734803)
     88 #define FIX_2_562915447  FIX(2.562915447)
     89 #define FIX_3_624509785  FIX(3.624509785)
     90 #endif
     91 
     92 
     93 /* Multiply a JLONG variable by a JLONG constant to yield a JLONG result.
     94  * For 8-bit samples with the recommended scaling, all the variable
     95  * and constant values involved are no more than 16 bits wide, so a
     96  * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
     97  * For 12-bit samples, a full 32-bit multiplication will be needed.
     98  */
     99 
    100 #if BITS_IN_JSAMPLE == 8
    101 #define MULTIPLY(var, const)  MULTIPLY16C16(var, const)
    102 #else
    103 #define MULTIPLY(var, const)  ((var) * (const))
    104 #endif
    105 
    106 
    107 /* Dequantize a coefficient by multiplying it by the multiplier-table
    108  * entry; produce an int result.  In this module, both inputs and result
    109  * are 16 bits or less, so either int or short multiply will work.
    110  */
    111 
    112 #define DEQUANTIZE(coef, quantval)  (((ISLOW_MULT_TYPE)(coef)) * (quantval))
    113 
    114 
    115 /*
    116  * Perform dequantization and inverse DCT on one block of coefficients,
    117  * producing a reduced-size 4x4 output block.
    118  */
    119 
    120 GLOBAL(void)
    121 jpeg_idct_4x4(j_decompress_ptr cinfo, jpeg_component_info *compptr,
    122               JCOEFPTR coef_block, JSAMPARRAY output_buf,
    123               JDIMENSION output_col)
    124 {
    125   JLONG tmp0, tmp2, tmp10, tmp12;
    126   JLONG z1, z2, z3, z4;
    127   JCOEFPTR inptr;
    128   ISLOW_MULT_TYPE *quantptr;
    129   int *wsptr;
    130   JSAMPROW outptr;
    131   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    132   int ctr;
    133   int workspace[DCTSIZE * 4];   /* buffers data between passes */
    134   SHIFT_TEMPS
    135 
    136   /* Pass 1: process columns from input, store into work array. */
    137 
    138   inptr = coef_block;
    139   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
    140   wsptr = workspace;
    141   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    142     /* Don't bother to process column 4, because second pass won't use it */
    143     if (ctr == DCTSIZE - 4)
    144       continue;
    145     if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 2] == 0 &&
    146         inptr[DCTSIZE * 3] == 0 && inptr[DCTSIZE * 5] == 0 &&
    147         inptr[DCTSIZE * 6] == 0 && inptr[DCTSIZE * 7] == 0) {
    148       /* AC terms all zero; we need not examine term 4 for 4x4 output */
    149       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
    150                                         quantptr[DCTSIZE * 0]), PASS1_BITS);
    151 
    152       wsptr[DCTSIZE * 0] = dcval;
    153       wsptr[DCTSIZE * 1] = dcval;
    154       wsptr[DCTSIZE * 2] = dcval;
    155       wsptr[DCTSIZE * 3] = dcval;
    156 
    157       continue;
    158     }
    159 
    160     /* Even part */
    161 
    162     tmp0 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
    163     tmp0 = LEFT_SHIFT(tmp0, CONST_BITS + 1);
    164 
    165     z2 = DEQUANTIZE(inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2]);
    166     z3 = DEQUANTIZE(inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6]);
    167 
    168     tmp2 = MULTIPLY(z2, FIX_1_847759065) + MULTIPLY(z3, -FIX_0_765366865);
    169 
    170     tmp10 = tmp0 + tmp2;
    171     tmp12 = tmp0 - tmp2;
    172 
    173     /* Odd part */
    174 
    175     z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
    176     z2 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
    177     z3 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
    178     z4 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
    179 
    180     tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
    181            MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
    182            MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
    183            MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */
    184 
    185     tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
    186            MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
    187            MULTIPLY(z3,  FIX_0_899976223) + /* sqrt(2) * (c3-c7) */
    188            MULTIPLY(z4,  FIX_2_562915447);  /* sqrt(2) * (c1+c3) */
    189 
    190     /* Final output stage */
    191 
    192     wsptr[DCTSIZE * 0] =
    193       (int)DESCALE(tmp10 + tmp2, CONST_BITS - PASS1_BITS + 1);
    194     wsptr[DCTSIZE * 3] =
    195       (int)DESCALE(tmp10 - tmp2, CONST_BITS - PASS1_BITS + 1);
    196     wsptr[DCTSIZE * 1] =
    197       (int)DESCALE(tmp12 + tmp0, CONST_BITS - PASS1_BITS + 1);
    198     wsptr[DCTSIZE * 2] =
    199       (int)DESCALE(tmp12 - tmp0, CONST_BITS - PASS1_BITS + 1);
    200   }
    201 
    202   /* Pass 2: process 4 rows from work array, store into output array. */
    203 
    204   wsptr = workspace;
    205   for (ctr = 0; ctr < 4; ctr++) {
    206     outptr = output_buf[ctr] + output_col;
    207     /* It's not clear whether a zero row test is worthwhile here ... */
    208 
    209 #ifndef NO_ZERO_ROW_TEST
    210     if (wsptr[1] == 0 && wsptr[2] == 0 && wsptr[3] == 0 &&
    211         wsptr[5] == 0 && wsptr[6] == 0 && wsptr[7] == 0) {
    212       /* AC terms all zero */
    213       JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
    214                                                PASS1_BITS + 3) & RANGE_MASK];
    215 
    216       outptr[0] = dcval;
    217       outptr[1] = dcval;
    218       outptr[2] = dcval;
    219       outptr[3] = dcval;
    220 
    221       wsptr += DCTSIZE;         /* advance pointer to next row */
    222       continue;
    223     }
    224 #endif
    225 
    226     /* Even part */
    227 
    228     tmp0 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 1);
    229 
    230     tmp2 = MULTIPLY((JLONG)wsptr[2],  FIX_1_847759065) +
    231            MULTIPLY((JLONG)wsptr[6], -FIX_0_765366865);
    232 
    233     tmp10 = tmp0 + tmp2;
    234     tmp12 = tmp0 - tmp2;
    235 
    236     /* Odd part */
    237 
    238     z1 = (JLONG)wsptr[7];
    239     z2 = (JLONG)wsptr[5];
    240     z3 = (JLONG)wsptr[3];
    241     z4 = (JLONG)wsptr[1];
    242 
    243     tmp0 = MULTIPLY(z1, -FIX_0_211164243) + /* sqrt(2) * ( c3-c1) */
    244            MULTIPLY(z2,  FIX_1_451774981) + /* sqrt(2) * ( c3+c7) */
    245            MULTIPLY(z3, -FIX_2_172734803) + /* sqrt(2) * (-c1-c5) */
    246            MULTIPLY(z4,  FIX_1_061594337);  /* sqrt(2) * ( c5+c7) */
    247 
    248     tmp2 = MULTIPLY(z1, -FIX_0_509795579) + /* sqrt(2) * (c7-c5) */
    249            MULTIPLY(z2, -FIX_0_601344887) + /* sqrt(2) * (c5-c1) */
    250            MULTIPLY(z3, FIX_0_899976223) +  /* sqrt(2) * (c3-c7) */
    251            MULTIPLY(z4, FIX_2_562915447);   /* sqrt(2) * (c1+c3) */
    252 
    253     /* Final output stage */
    254 
    255     outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp2,
    256                                          CONST_BITS + PASS1_BITS + 3 + 1) &
    257                             RANGE_MASK];
    258     outptr[3] = range_limit[(int)DESCALE(tmp10 - tmp2,
    259                                          CONST_BITS + PASS1_BITS + 3 + 1) &
    260                             RANGE_MASK];
    261     outptr[1] = range_limit[(int)DESCALE(tmp12 + tmp0,
    262                                          CONST_BITS + PASS1_BITS + 3 + 1) &
    263                             RANGE_MASK];
    264     outptr[2] = range_limit[(int)DESCALE(tmp12 - tmp0,
    265                                          CONST_BITS + PASS1_BITS + 3 + 1) &
    266                             RANGE_MASK];
    267 
    268     wsptr += DCTSIZE;           /* advance pointer to next row */
    269   }
    270 }
    271 
    272 
    273 /*
    274  * Perform dequantization and inverse DCT on one block of coefficients,
    275  * producing a reduced-size 2x2 output block.
    276  */
    277 
    278 GLOBAL(void)
    279 jpeg_idct_2x2(j_decompress_ptr cinfo, jpeg_component_info *compptr,
    280               JCOEFPTR coef_block, JSAMPARRAY output_buf,
    281               JDIMENSION output_col)
    282 {
    283   JLONG tmp0, tmp10, z1;
    284   JCOEFPTR inptr;
    285   ISLOW_MULT_TYPE *quantptr;
    286   int *wsptr;
    287   JSAMPROW outptr;
    288   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    289   int ctr;
    290   int workspace[DCTSIZE * 2];   /* buffers data between passes */
    291   SHIFT_TEMPS
    292 
    293   /* Pass 1: process columns from input, store into work array. */
    294 
    295   inptr = coef_block;
    296   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
    297   wsptr = workspace;
    298   for (ctr = DCTSIZE; ctr > 0; inptr++, quantptr++, wsptr++, ctr--) {
    299     /* Don't bother to process columns 2,4,6 */
    300     if (ctr == DCTSIZE - 2 || ctr == DCTSIZE - 4 || ctr == DCTSIZE - 6)
    301       continue;
    302     if (inptr[DCTSIZE * 1] == 0 && inptr[DCTSIZE * 3] == 0 &&
    303         inptr[DCTSIZE * 5] == 0 && inptr[DCTSIZE * 7] == 0) {
    304       /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
    305       int dcval = LEFT_SHIFT(DEQUANTIZE(inptr[DCTSIZE * 0],
    306                              quantptr[DCTSIZE * 0]), PASS1_BITS);
    307 
    308       wsptr[DCTSIZE * 0] = dcval;
    309       wsptr[DCTSIZE * 1] = dcval;
    310 
    311       continue;
    312     }
    313 
    314     /* Even part */
    315 
    316     z1 = DEQUANTIZE(inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0]);
    317     tmp10 = LEFT_SHIFT(z1, CONST_BITS + 2);
    318 
    319     /* Odd part */
    320 
    321     z1 = DEQUANTIZE(inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7]);
    322     tmp0 = MULTIPLY(z1, -FIX_0_720959822);  /* sqrt(2) * ( c7-c5+c3-c1) */
    323     z1 = DEQUANTIZE(inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5]);
    324     tmp0 += MULTIPLY(z1, FIX_0_850430095);  /* sqrt(2) * (-c1+c3+c5+c7) */
    325     z1 = DEQUANTIZE(inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3]);
    326     tmp0 += MULTIPLY(z1, -FIX_1_272758580); /* sqrt(2) * (-c1+c3-c5-c7) */
    327     z1 = DEQUANTIZE(inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1]);
    328     tmp0 += MULTIPLY(z1, FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */
    329 
    330     /* Final output stage */
    331 
    332     wsptr[DCTSIZE * 0] =
    333       (int)DESCALE(tmp10 + tmp0, CONST_BITS - PASS1_BITS + 2);
    334     wsptr[DCTSIZE * 1] =
    335       (int)DESCALE(tmp10 - tmp0, CONST_BITS - PASS1_BITS + 2);
    336   }
    337 
    338   /* Pass 2: process 2 rows from work array, store into output array. */
    339 
    340   wsptr = workspace;
    341   for (ctr = 0; ctr < 2; ctr++) {
    342     outptr = output_buf[ctr] + output_col;
    343     /* It's not clear whether a zero row test is worthwhile here ... */
    344 
    345 #ifndef NO_ZERO_ROW_TEST
    346     if (wsptr[1] == 0 && wsptr[3] == 0 && wsptr[5] == 0 && wsptr[7] == 0) {
    347       /* AC terms all zero */
    348       JSAMPLE dcval = range_limit[(int)DESCALE((JLONG)wsptr[0],
    349                                                PASS1_BITS + 3) & RANGE_MASK];
    350 
    351       outptr[0] = dcval;
    352       outptr[1] = dcval;
    353 
    354       wsptr += DCTSIZE;         /* advance pointer to next row */
    355       continue;
    356     }
    357 #endif
    358 
    359     /* Even part */
    360 
    361     tmp10 = LEFT_SHIFT((JLONG)wsptr[0], CONST_BITS + 2);
    362 
    363     /* Odd part */
    364 
    365     tmp0 = MULTIPLY((JLONG)wsptr[7], -FIX_0_720959822) + /* sqrt(2) * ( c7-c5+c3-c1) */
    366            MULTIPLY((JLONG)wsptr[5],  FIX_0_850430095) + /* sqrt(2) * (-c1+c3+c5+c7) */
    367            MULTIPLY((JLONG)wsptr[3], -FIX_1_272758580) + /* sqrt(2) * (-c1+c3-c5-c7) */
    368            MULTIPLY((JLONG)wsptr[1],  FIX_3_624509785);  /* sqrt(2) * ( c1+c3+c5+c7) */
    369 
    370     /* Final output stage */
    371 
    372     outptr[0] = range_limit[(int)DESCALE(tmp10 + tmp0,
    373                                          CONST_BITS + PASS1_BITS + 3 + 2) &
    374                             RANGE_MASK];
    375     outptr[1] = range_limit[(int)DESCALE(tmp10 - tmp0,
    376                                          CONST_BITS + PASS1_BITS + 3 + 2) &
    377                             RANGE_MASK];
    378 
    379     wsptr += DCTSIZE;           /* advance pointer to next row */
    380   }
    381 }
    382 
    383 
    384 /*
    385  * Perform dequantization and inverse DCT on one block of coefficients,
    386  * producing a reduced-size 1x1 output block.
    387  */
    388 
    389 GLOBAL(void)
    390 jpeg_idct_1x1(j_decompress_ptr cinfo, jpeg_component_info *compptr,
    391               JCOEFPTR coef_block, JSAMPARRAY output_buf,
    392               JDIMENSION output_col)
    393 {
    394   int dcval;
    395   ISLOW_MULT_TYPE *quantptr;
    396   JSAMPLE *range_limit = IDCT_range_limit(cinfo);
    397   SHIFT_TEMPS
    398 
    399   /* We hardly need an inverse DCT routine for this: just take the
    400    * average pixel value, which is one-eighth of the DC coefficient.
    401    */
    402   quantptr = (ISLOW_MULT_TYPE *)compptr->dct_table;
    403   dcval = DEQUANTIZE(coef_block[0], quantptr[0]);
    404   dcval = (int)DESCALE((JLONG)dcval, 3);
    405 
    406   output_buf[0][output_col] = range_limit[dcval & RANGE_MASK];
    407 }
    408 
    409 #endif /* IDCT_SCALING_SUPPORTED */
    410