Home | History | Annotate | Download | only in i386
      1 ;
      2 ; jquant.asm - sample data conversion and quantization (MMX)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ; Copyright (C) 2016, D. R. Commander.
      6 ;
      7 ; Based on the x86 SIMD extension for IJG JPEG library
      8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
      9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
     10 ;
     11 ; This file should be assembled with NASM (Netwide Assembler),
     12 ; can *not* be assembled with Microsoft's MASM or any compatible
     13 ; assembler (including Borland's Turbo Assembler).
     14 ; NASM is available from http://nasm.sourceforge.net/ or
     15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     16 ;
     17 ; [TAB8]
     18 
     19 %include "jsimdext.inc"
     20 %include "jdct.inc"
     21 
     22 ; --------------------------------------------------------------------------
     23     SECTION     SEG_TEXT
     24     BITS        32
     25 ;
     26 ; Load data into workspace, applying unsigned->signed conversion
     27 ;
     28 ; GLOBAL(void)
     29 ; jsimd_convsamp_mmx(JSAMPARRAY sample_data, JDIMENSION start_col,
     30 ;                    DCTELEM *workspace);
     31 ;
     32 
     33 %define sample_data  ebp + 8            ; JSAMPARRAY sample_data
     34 %define start_col    ebp + 12           ; JDIMENSION start_col
     35 %define workspace    ebp + 16           ; DCTELEM *workspace
     36 
     37     align       32
     38     GLOBAL_FUNCTION(jsimd_convsamp_mmx)
     39 
     40 EXTN(jsimd_convsamp_mmx):
     41     push        ebp
     42     mov         ebp, esp
     43     push        ebx
     44 ;   push        ecx                     ; need not be preserved
     45 ;   push        edx                     ; need not be preserved
     46     push        esi
     47     push        edi
     48 
     49     pxor        mm6, mm6                ; mm6=(all 0's)
     50     pcmpeqw     mm7, mm7
     51     psllw       mm7, 7                  ; mm7={0xFF80 0xFF80 0xFF80 0xFF80}
     52 
     53     mov         esi, JSAMPARRAY [sample_data]  ; (JSAMPROW *)
     54     mov         eax, JDIMENSION [start_col]
     55     mov         edi, POINTER [workspace]       ; (DCTELEM *)
     56     mov         ecx, DCTSIZE/4
     57     alignx      16, 7
     58 .convloop:
     59     mov         ebx, JSAMPROW [esi+0*SIZEOF_JSAMPROW]  ; (JSAMPLE *)
     60     mov         edx, JSAMPROW [esi+1*SIZEOF_JSAMPROW]  ; (JSAMPLE *)
     61 
     62     movq        mm0, MMWORD [ebx+eax*SIZEOF_JSAMPLE]   ; mm0=(01234567)
     63     movq        mm1, MMWORD [edx+eax*SIZEOF_JSAMPLE]   ; mm1=(89ABCDEF)
     64 
     65     mov         ebx, JSAMPROW [esi+2*SIZEOF_JSAMPROW]  ; (JSAMPLE *)
     66     mov         edx, JSAMPROW [esi+3*SIZEOF_JSAMPROW]  ; (JSAMPLE *)
     67 
     68     movq        mm2, MMWORD [ebx+eax*SIZEOF_JSAMPLE]   ; mm2=(GHIJKLMN)
     69     movq        mm3, MMWORD [edx+eax*SIZEOF_JSAMPLE]   ; mm3=(OPQRSTUV)
     70 
     71     movq        mm4, mm0
     72     punpcklbw   mm0, mm6                ; mm0=(0123)
     73     punpckhbw   mm4, mm6                ; mm4=(4567)
     74     movq        mm5, mm1
     75     punpcklbw   mm1, mm6                ; mm1=(89AB)
     76     punpckhbw   mm5, mm6                ; mm5=(CDEF)
     77 
     78     paddw       mm0, mm7
     79     paddw       mm4, mm7
     80     paddw       mm1, mm7
     81     paddw       mm5, mm7
     82 
     83     movq        MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
     84     movq        MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm4
     85     movq        MMWORD [MMBLOCK(1,0,edi,SIZEOF_DCTELEM)], mm1
     86     movq        MMWORD [MMBLOCK(1,1,edi,SIZEOF_DCTELEM)], mm5
     87 
     88     movq        mm0, mm2
     89     punpcklbw   mm2, mm6                ; mm2=(GHIJ)
     90     punpckhbw   mm0, mm6                ; mm0=(KLMN)
     91     movq        mm4, mm3
     92     punpcklbw   mm3, mm6                ; mm3=(OPQR)
     93     punpckhbw   mm4, mm6                ; mm4=(STUV)
     94 
     95     paddw       mm2, mm7
     96     paddw       mm0, mm7
     97     paddw       mm3, mm7
     98     paddw       mm4, mm7
     99 
    100     movq        MMWORD [MMBLOCK(2,0,edi,SIZEOF_DCTELEM)], mm2
    101     movq        MMWORD [MMBLOCK(2,1,edi,SIZEOF_DCTELEM)], mm0
    102     movq        MMWORD [MMBLOCK(3,0,edi,SIZEOF_DCTELEM)], mm3
    103     movq        MMWORD [MMBLOCK(3,1,edi,SIZEOF_DCTELEM)], mm4
    104 
    105     add         esi, byte 4*SIZEOF_JSAMPROW
    106     add         edi, byte 4*DCTSIZE*SIZEOF_DCTELEM
    107     dec         ecx
    108     jnz         short .convloop
    109 
    110     emms                                ; empty MMX state
    111 
    112     pop         edi
    113     pop         esi
    114 ;   pop         edx                     ; need not be preserved
    115 ;   pop         ecx                     ; need not be preserved
    116     pop         ebx
    117     pop         ebp
    118     ret
    119 
    120 ; --------------------------------------------------------------------------
    121 ;
    122 ; Quantize/descale the coefficients, and store into coef_block
    123 ;
    124 ; This implementation is based on an algorithm described in
    125 ;   "How to optimize for the Pentium family of microprocessors"
    126 ;   (http://www.agner.org/assem/).
    127 ;
    128 ; GLOBAL(void)
    129 ; jsimd_quantize_mmx(JCOEFPTR coef_block, DCTELEM *divisors,
    130 ;                    DCTELEM *workspace);
    131 ;
    132 
    133 %define RECIPROCAL(m, n, b) \
    134   MMBLOCK(DCTSIZE * 0 + (m), (n), (b), SIZEOF_DCTELEM)
    135 %define CORRECTION(m, n, b) \
    136   MMBLOCK(DCTSIZE * 1 + (m), (n), (b), SIZEOF_DCTELEM)
    137 %define SCALE(m, n, b) \
    138   MMBLOCK(DCTSIZE * 2 + (m), (n), (b), SIZEOF_DCTELEM)
    139 %define SHIFT(m, n, b) \
    140   MMBLOCK(DCTSIZE * 3 + (m), (n), (b), SIZEOF_DCTELEM)
    141 
    142 %define coef_block  ebp + 8             ; JCOEFPTR coef_block
    143 %define divisors    ebp + 12            ; DCTELEM *divisors
    144 %define workspace   ebp + 16            ; DCTELEM *workspace
    145 
    146     align       32
    147     GLOBAL_FUNCTION(jsimd_quantize_mmx)
    148 
    149 EXTN(jsimd_quantize_mmx):
    150     push        ebp
    151     mov         ebp, esp
    152 ;   push        ebx                     ; unused
    153 ;   push        ecx                     ; unused
    154 ;   push        edx                     ; need not be preserved
    155     push        esi
    156     push        edi
    157 
    158     mov         esi, POINTER [workspace]
    159     mov         edx, POINTER [divisors]
    160     mov         edi, JCOEFPTR [coef_block]
    161     mov         ah, 2
    162     alignx      16, 7
    163 .quantloop1:
    164     mov         al, DCTSIZE2/8/2
    165     alignx      16, 7
    166 .quantloop2:
    167     movq        mm2, MMWORD [MMBLOCK(0,0,esi,SIZEOF_DCTELEM)]
    168     movq        mm3, MMWORD [MMBLOCK(0,1,esi,SIZEOF_DCTELEM)]
    169 
    170     movq        mm0, mm2
    171     movq        mm1, mm3
    172 
    173     psraw       mm2, (WORD_BIT-1)       ; -1 if value < 0, 0 otherwise
    174     psraw       mm3, (WORD_BIT-1)
    175 
    176     pxor        mm0, mm2                ; val = -val
    177     pxor        mm1, mm3
    178     psubw       mm0, mm2
    179     psubw       mm1, mm3
    180 
    181     ;
    182     ; MMX is an annoyingly crappy instruction set. It has two
    183     ; misfeatures that are causing problems here:
    184     ;
    185     ; - All multiplications are signed.
    186     ;
    187     ; - The second operand for the shifts is not treated as packed.
    188     ;
    189     ;
    190     ; We work around the first problem by implementing this algorithm:
    191     ;
    192     ; unsigned long unsigned_multiply(unsigned short x, unsigned short y)
    193     ; {
    194     ;   enum { SHORT_BIT = 16 };
    195     ;   signed short sx = (signed short)x;
    196     ;   signed short sy = (signed short)y;
    197     ;   signed long sz;
    198     ;
    199     ;   sz = (long)sx * (long)sy;    /* signed multiply */
    200     ;
    201     ;   if (sx < 0) sz += (long)sy << SHORT_BIT;
    202     ;   if (sy < 0) sz += (long)sx << SHORT_BIT;
    203     ;
    204     ;   return (unsigned long)sz;
    205     ; }
    206     ;
    207     ; (note that a negative sx adds _sy_ and vice versa)
    208     ;
    209     ; For the second problem, we replace the shift by a multiplication.
    210     ; Unfortunately that means we have to deal with the signed issue again.
    211     ;
    212 
    213     paddw       mm0, MMWORD [CORRECTION(0,0,edx)]  ; correction + roundfactor
    214     paddw       mm1, MMWORD [CORRECTION(0,1,edx)]
    215 
    216     movq        mm4, mm0                ; store current value for later
    217     movq        mm5, mm1
    218     pmulhw      mm0, MMWORD [RECIPROCAL(0,0,edx)]  ; reciprocal
    219     pmulhw      mm1, MMWORD [RECIPROCAL(0,1,edx)]
    220     paddw       mm0, mm4  ; reciprocal is always negative (MSB=1),
    221     paddw       mm1, mm5  ; so we always need to add the initial value
    222                           ; (input value is never negative as we
    223                           ; inverted it at the start of this routine)
    224 
    225     ; here it gets a bit tricky as both scale
    226     ; and mm0/mm1 can be negative
    227     movq        mm6, MMWORD [SCALE(0,0,edx)]  ; scale
    228     movq        mm7, MMWORD [SCALE(0,1,edx)]
    229     movq        mm4, mm0
    230     movq        mm5, mm1
    231     pmulhw      mm0, mm6
    232     pmulhw      mm1, mm7
    233 
    234     psraw       mm6, (WORD_BIT-1)       ; determine if scale is negative
    235     psraw       mm7, (WORD_BIT-1)
    236 
    237     pand        mm6, mm4                ; and add input if it is
    238     pand        mm7, mm5
    239     paddw       mm0, mm6
    240     paddw       mm1, mm7
    241 
    242     psraw       mm4, (WORD_BIT-1)       ; then check if negative input
    243     psraw       mm5, (WORD_BIT-1)
    244 
    245     pand        mm4, MMWORD [SCALE(0,0,edx)]  ; and add scale if it is
    246     pand        mm5, MMWORD [SCALE(0,1,edx)]
    247     paddw       mm0, mm4
    248     paddw       mm1, mm5
    249 
    250     pxor        mm0, mm2                ; val = -val
    251     pxor        mm1, mm3
    252     psubw       mm0, mm2
    253     psubw       mm1, mm3
    254 
    255     movq        MMWORD [MMBLOCK(0,0,edi,SIZEOF_DCTELEM)], mm0
    256     movq        MMWORD [MMBLOCK(0,1,edi,SIZEOF_DCTELEM)], mm1
    257 
    258     add         esi, byte 8*SIZEOF_DCTELEM
    259     add         edx, byte 8*SIZEOF_DCTELEM
    260     add         edi, byte 8*SIZEOF_JCOEF
    261     dec         al
    262     jnz         near .quantloop2
    263     dec         ah
    264     jnz         near .quantloop1        ; to avoid branch misprediction
    265 
    266     emms                                ; empty MMX state
    267 
    268     pop         edi
    269     pop         esi
    270 ;   pop         edx                     ; need not be preserved
    271 ;   pop         ecx                     ; unused
    272 ;   pop         ebx                     ; unused
    273     pop         ebp
    274     ret
    275 
    276 ; For some reason, the OS X linker does not honor the request to align the
    277 ; segment unless we do this.
    278     align       32
    279