Home | History | Annotate | Download | only in x86_64
      1 ;
      2 ; jfdctint.asm - accurate integer FDCT (64-bit AVX2)
      3 ;
      4 ; Copyright 2009 Pierre Ossman <ossman (a] cendio.se> for Cendio AB
      5 ; Copyright (C) 2009, 2016, 2018, D. R. Commander.
      6 ;
      7 ; Based on the x86 SIMD extension for IJG JPEG library
      8 ; Copyright (C) 1999-2006, MIYASAKA Masaru.
      9 ; For conditions of distribution and use, see copyright notice in jsimdext.inc
     10 ;
     11 ; This file should be assembled with NASM (Netwide Assembler),
     12 ; can *not* be assembled with Microsoft's MASM or any compatible
     13 ; assembler (including Borland's Turbo Assembler).
     14 ; NASM is available from http://nasm.sourceforge.net/ or
     15 ; http://sourceforge.net/project/showfiles.php?group_id=6208
     16 ;
     17 ; This file contains a slow-but-accurate integer implementation of the
     18 ; forward DCT (Discrete Cosine Transform). The following code is based
     19 ; directly on the IJG's original jfdctint.c; see the jfdctint.c for
     20 ; more details.
     21 ;
     22 ; [TAB8]
     23 
     24 %include "jsimdext.inc"
     25 %include "jdct.inc"
     26 
     27 ; --------------------------------------------------------------------------
     28 
     29 %define CONST_BITS  13
     30 %define PASS1_BITS  2
     31 
     32 %define DESCALE_P1  (CONST_BITS - PASS1_BITS)
     33 %define DESCALE_P2  (CONST_BITS + PASS1_BITS)
     34 
     35 %if CONST_BITS == 13
     36 F_0_298 equ  2446  ; FIX(0.298631336)
     37 F_0_390 equ  3196  ; FIX(0.390180644)
     38 F_0_541 equ  4433  ; FIX(0.541196100)
     39 F_0_765 equ  6270  ; FIX(0.765366865)
     40 F_0_899 equ  7373  ; FIX(0.899976223)
     41 F_1_175 equ  9633  ; FIX(1.175875602)
     42 F_1_501 equ 12299  ; FIX(1.501321110)
     43 F_1_847 equ 15137  ; FIX(1.847759065)
     44 F_1_961 equ 16069  ; FIX(1.961570560)
     45 F_2_053 equ 16819  ; FIX(2.053119869)
     46 F_2_562 equ 20995  ; FIX(2.562915447)
     47 F_3_072 equ 25172  ; FIX(3.072711026)
     48 %else
     49 ; NASM cannot do compile-time arithmetic on floating-point constants.
     50 %define DESCALE(x, n)  (((x) + (1 << ((n) - 1))) >> (n))
     51 F_0_298 equ DESCALE( 320652955, 30 - CONST_BITS)  ; FIX(0.298631336)
     52 F_0_390 equ DESCALE( 418953276, 30 - CONST_BITS)  ; FIX(0.390180644)
     53 F_0_541 equ DESCALE( 581104887, 30 - CONST_BITS)  ; FIX(0.541196100)
     54 F_0_765 equ DESCALE( 821806413, 30 - CONST_BITS)  ; FIX(0.765366865)
     55 F_0_899 equ DESCALE( 966342111, 30 - CONST_BITS)  ; FIX(0.899976223)
     56 F_1_175 equ DESCALE(1262586813, 30 - CONST_BITS)  ; FIX(1.175875602)
     57 F_1_501 equ DESCALE(1612031267, 30 - CONST_BITS)  ; FIX(1.501321110)
     58 F_1_847 equ DESCALE(1984016188, 30 - CONST_BITS)  ; FIX(1.847759065)
     59 F_1_961 equ DESCALE(2106220350, 30 - CONST_BITS)  ; FIX(1.961570560)
     60 F_2_053 equ DESCALE(2204520673, 30 - CONST_BITS)  ; FIX(2.053119869)
     61 F_2_562 equ DESCALE(2751909506, 30 - CONST_BITS)  ; FIX(2.562915447)
     62 F_3_072 equ DESCALE(3299298341, 30 - CONST_BITS)  ; FIX(3.072711026)
     63 %endif
     64 
     65 ; --------------------------------------------------------------------------
     66 ; In-place 8x8x16-bit matrix transpose using AVX2 instructions
     67 ; %1-%4: Input/output registers
     68 ; %5-%8: Temp registers
     69 
     70 %macro dotranspose 8
     71     ; %1=(00 01 02 03 04 05 06 07  40 41 42 43 44 45 46 47)
     72     ; %2=(10 11 12 13 14 15 16 17  50 51 52 53 54 55 56 57)
     73     ; %3=(20 21 22 23 24 25 26 27  60 61 62 63 64 65 66 67)
     74     ; %4=(30 31 32 33 34 35 36 37  70 71 72 73 74 75 76 77)
     75 
     76     vpunpcklwd  %5, %1, %2
     77     vpunpckhwd  %6, %1, %2
     78     vpunpcklwd  %7, %3, %4
     79     vpunpckhwd  %8, %3, %4
     80     ; transpose coefficients(phase 1)
     81     ; %5=(00 10 01 11 02 12 03 13  40 50 41 51 42 52 43 53)
     82     ; %6=(04 14 05 15 06 16 07 17  44 54 45 55 46 56 47 57)
     83     ; %7=(20 30 21 31 22 32 23 33  60 70 61 71 62 72 63 73)
     84     ; %8=(24 34 25 35 26 36 27 37  64 74 65 75 66 76 67 77)
     85 
     86     vpunpckldq  %1, %5, %7
     87     vpunpckhdq  %2, %5, %7
     88     vpunpckldq  %3, %6, %8
     89     vpunpckhdq  %4, %6, %8
     90     ; transpose coefficients(phase 2)
     91     ; %1=(00 10 20 30 01 11 21 31  40 50 60 70 41 51 61 71)
     92     ; %2=(02 12 22 32 03 13 23 33  42 52 62 72 43 53 63 73)
     93     ; %3=(04 14 24 34 05 15 25 35  44 54 64 74 45 55 65 75)
     94     ; %4=(06 16 26 36 07 17 27 37  46 56 66 76 47 57 67 77)
     95 
     96     vpermq      %1, %1, 0x8D
     97     vpermq      %2, %2, 0x8D
     98     vpermq      %3, %3, 0xD8
     99     vpermq      %4, %4, 0xD8
    100     ; transpose coefficients(phase 3)
    101     ; %1=(01 11 21 31 41 51 61 71  00 10 20 30 40 50 60 70)
    102     ; %2=(03 13 23 33 43 53 63 73  02 12 22 32 42 52 62 72)
    103     ; %3=(04 14 24 34 44 54 64 74  05 15 25 35 45 55 65 75)
    104     ; %4=(06 16 26 36 46 56 66 76  07 17 27 37 47 57 67 77)
    105 %endmacro
    106 
    107 ; --------------------------------------------------------------------------
    108 ; In-place 8x8x16-bit slow integer forward DCT using AVX2 instructions
    109 ; %1-%4: Input/output registers
    110 ; %5-%8: Temp registers
    111 ; %9:    Pass (1 or 2)
    112 
    113 %macro dodct 9
    114     vpsubw      %5, %1, %4              ; %5=data1_0-data6_7=tmp6_7
    115     vpaddw      %6, %1, %4              ; %6=data1_0+data6_7=tmp1_0
    116     vpaddw      %7, %2, %3              ; %7=data3_2+data4_5=tmp3_2
    117     vpsubw      %8, %2, %3              ; %8=data3_2-data4_5=tmp4_5
    118 
    119     ; -- Even part
    120 
    121     vperm2i128  %6, %6, %6, 0x01        ; %6=tmp0_1
    122     vpaddw      %1, %6, %7              ; %1=tmp0_1+tmp3_2=tmp10_11
    123     vpsubw      %6, %6, %7              ; %6=tmp0_1-tmp3_2=tmp13_12
    124 
    125     vperm2i128  %7, %1, %1, 0x01        ; %7=tmp11_10
    126     vpsignw     %1, %1, [rel PW_1_NEG1]  ; %1=tmp10_neg11
    127     vpaddw      %7, %7, %1              ; %7=(tmp10+tmp11)_(tmp10-tmp11)
    128 %if %9 == 1
    129     vpsllw      %1, %7, PASS1_BITS      ; %1=data0_4
    130 %else
    131     vpaddw      %7, %7, [rel PW_DESCALE_P2X]
    132     vpsraw      %1, %7, PASS1_BITS      ; %1=data0_4
    133 %endif
    134 
    135     ; (Original)
    136     ; z1 = (tmp12 + tmp13) * 0.541196100;
    137     ; data2 = z1 + tmp13 * 0.765366865;
    138     ; data6 = z1 + tmp12 * -1.847759065;
    139     ;
    140     ; (This implementation)
    141     ; data2 = tmp13 * (0.541196100 + 0.765366865) + tmp12 * 0.541196100;
    142     ; data6 = tmp13 * 0.541196100 + tmp12 * (0.541196100 - 1.847759065);
    143 
    144     vperm2i128  %7, %6, %6, 0x01        ; %7=tmp12_13
    145     vpunpcklwd  %2, %6, %7
    146     vpunpckhwd  %6, %6, %7
    147     vpmaddwd    %2, %2, [rel PW_F130_F054_MF130_F054]  ; %2=data2_6L
    148     vpmaddwd    %6, %6, [rel PW_F130_F054_MF130_F054]  ; %6=data2_6H
    149 
    150     vpaddd      %2, %2, [rel PD_DESCALE_P %+ %9]
    151     vpaddd      %6, %6, [rel PD_DESCALE_P %+ %9]
    152     vpsrad      %2, %2, DESCALE_P %+ %9
    153     vpsrad      %6, %6, DESCALE_P %+ %9
    154 
    155     vpackssdw   %3, %2, %6              ; %6=data2_6
    156 
    157     ; -- Odd part
    158 
    159     vpaddw      %7, %8, %5              ; %7=tmp4_5+tmp6_7=z3_4
    160 
    161     ; (Original)
    162     ; z5 = (z3 + z4) * 1.175875602;
    163     ; z3 = z3 * -1.961570560;  z4 = z4 * -0.390180644;
    164     ; z3 += z5;  z4 += z5;
    165     ;
    166     ; (This implementation)
    167     ; z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
    168     ; z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
    169 
    170     vperm2i128  %2, %7, %7, 0x01        ; %2=z4_3
    171     vpunpcklwd  %6, %7, %2
    172     vpunpckhwd  %7, %7, %2
    173     vpmaddwd    %6, %6, [rel PW_MF078_F117_F078_F117]  ; %6=z3_4L
    174     vpmaddwd    %7, %7, [rel PW_MF078_F117_F078_F117]  ; %7=z3_4H
    175 
    176     ; (Original)
    177     ; z1 = tmp4 + tmp7;  z2 = tmp5 + tmp6;
    178     ; tmp4 = tmp4 * 0.298631336;  tmp5 = tmp5 * 2.053119869;
    179     ; tmp6 = tmp6 * 3.072711026;  tmp7 = tmp7 * 1.501321110;
    180     ; z1 = z1 * -0.899976223;  z2 = z2 * -2.562915447;
    181     ; data7 = tmp4 + z1 + z3;  data5 = tmp5 + z2 + z4;
    182     ; data3 = tmp6 + z2 + z3;  data1 = tmp7 + z1 + z4;
    183     ;
    184     ; (This implementation)
    185     ; tmp4 = tmp4 * (0.298631336 - 0.899976223) + tmp7 * -0.899976223;
    186     ; tmp5 = tmp5 * (2.053119869 - 2.562915447) + tmp6 * -2.562915447;
    187     ; tmp6 = tmp5 * -2.562915447 + tmp6 * (3.072711026 - 2.562915447);
    188     ; tmp7 = tmp4 * -0.899976223 + tmp7 * (1.501321110 - 0.899976223);
    189     ; data7 = tmp4 + z3;  data5 = tmp5 + z4;
    190     ; data3 = tmp6 + z3;  data1 = tmp7 + z4;
    191 
    192     vperm2i128  %4, %5, %5, 0x01        ; %4=tmp7_6
    193     vpunpcklwd  %2, %8, %4
    194     vpunpckhwd  %4, %8, %4
    195     vpmaddwd    %2, %2, [rel PW_MF060_MF089_MF050_MF256]  ; %2=tmp4_5L
    196     vpmaddwd    %4, %4, [rel PW_MF060_MF089_MF050_MF256]  ; %4=tmp4_5H
    197 
    198     vpaddd      %2, %2, %6              ; %2=data7_5L
    199     vpaddd      %4, %4, %7              ; %4=data7_5H
    200 
    201     vpaddd      %2, %2, [rel PD_DESCALE_P %+ %9]
    202     vpaddd      %4, %4, [rel PD_DESCALE_P %+ %9]
    203     vpsrad      %2, %2, DESCALE_P %+ %9
    204     vpsrad      %4, %4, DESCALE_P %+ %9
    205 
    206     vpackssdw   %4, %2, %4              ; %4=data7_5
    207 
    208     vperm2i128  %2, %8, %8, 0x01        ; %2=tmp5_4
    209     vpunpcklwd  %8, %5, %2
    210     vpunpckhwd  %5, %5, %2
    211     vpmaddwd    %8, %8, [rel PW_F050_MF256_F060_MF089]  ; %8=tmp6_7L
    212     vpmaddwd    %5, %5, [rel PW_F050_MF256_F060_MF089]  ; %5=tmp6_7H
    213 
    214     vpaddd      %8, %8, %6              ; %8=data3_1L
    215     vpaddd      %5, %5, %7              ; %5=data3_1H
    216 
    217     vpaddd      %8, %8, [rel PD_DESCALE_P %+ %9]
    218     vpaddd      %5, %5, [rel PD_DESCALE_P %+ %9]
    219     vpsrad      %8, %8, DESCALE_P %+ %9
    220     vpsrad      %5, %5, DESCALE_P %+ %9
    221 
    222     vpackssdw   %2, %8, %5              ; %2=data3_1
    223 %endmacro
    224 
    225 ; --------------------------------------------------------------------------
    226     SECTION     SEG_CONST
    227 
    228     alignz      32
    229     GLOBAL_DATA(jconst_fdct_islow_avx2)
    230 
    231 EXTN(jconst_fdct_islow_avx2):
    232 
    233 PW_F130_F054_MF130_F054    times 4  dw  (F_0_541 + F_0_765),  F_0_541
    234                            times 4  dw  (F_0_541 - F_1_847),  F_0_541
    235 PW_MF078_F117_F078_F117    times 4  dw  (F_1_175 - F_1_961),  F_1_175
    236                            times 4  dw  (F_1_175 - F_0_390),  F_1_175
    237 PW_MF060_MF089_MF050_MF256 times 4  dw  (F_0_298 - F_0_899), -F_0_899
    238                            times 4  dw  (F_2_053 - F_2_562), -F_2_562
    239 PW_F050_MF256_F060_MF089   times 4  dw  (F_3_072 - F_2_562), -F_2_562
    240                            times 4  dw  (F_1_501 - F_0_899), -F_0_899
    241 PD_DESCALE_P1              times 8  dd  1 << (DESCALE_P1 - 1)
    242 PD_DESCALE_P2              times 8  dd  1 << (DESCALE_P2 - 1)
    243 PW_DESCALE_P2X             times 16 dw  1 << (PASS1_BITS - 1)
    244 PW_1_NEG1                  times 8  dw  1
    245                            times 8  dw -1
    246 
    247     alignz      32
    248 
    249 ; --------------------------------------------------------------------------
    250     SECTION     SEG_TEXT
    251     BITS        64
    252 ;
    253 ; Perform the forward DCT on one block of samples.
    254 ;
    255 ; GLOBAL(void)
    256 ; jsimd_fdct_islow_avx2(DCTELEM *data)
    257 ;
    258 
    259 ; r10 = DCTELEM *data
    260 
    261     align       32
    262     GLOBAL_FUNCTION(jsimd_fdct_islow_avx2)
    263 
    264 EXTN(jsimd_fdct_islow_avx2):
    265     push        rbp
    266     mov         rax, rsp
    267     mov         rbp, rsp
    268     collect_args 1
    269 
    270     ; ---- Pass 1: process rows.
    271 
    272     vmovdqu     ymm4, YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)]
    273     vmovdqu     ymm5, YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)]
    274     vmovdqu     ymm6, YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)]
    275     vmovdqu     ymm7, YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)]
    276     ; ymm4=(00 01 02 03 04 05 06 07  10 11 12 13 14 15 16 17)
    277     ; ymm5=(20 21 22 23 24 25 26 27  30 31 32 33 34 35 36 37)
    278     ; ymm6=(40 41 42 43 44 45 46 47  50 51 52 53 54 55 56 57)
    279     ; ymm7=(60 61 62 63 64 65 66 67  70 71 72 73 74 75 76 77)
    280 
    281     vperm2i128  ymm0, ymm4, ymm6, 0x20
    282     vperm2i128  ymm1, ymm4, ymm6, 0x31
    283     vperm2i128  ymm2, ymm5, ymm7, 0x20
    284     vperm2i128  ymm3, ymm5, ymm7, 0x31
    285     ; ymm0=(00 01 02 03 04 05 06 07  40 41 42 43 44 45 46 47)
    286     ; ymm1=(10 11 12 13 14 15 16 17  50 51 52 53 54 55 56 57)
    287     ; ymm2=(20 21 22 23 24 25 26 27  60 61 62 63 64 65 66 67)
    288     ; ymm3=(30 31 32 33 34 35 36 37  70 71 72 73 74 75 76 77)
    289 
    290     dotranspose ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7
    291 
    292     dodct       ymm0, ymm1, ymm2, ymm3, ymm4, ymm5, ymm6, ymm7, 1
    293     ; ymm0=data0_4, ymm1=data3_1, ymm2=data2_6, ymm3=data7_5
    294 
    295     ; ---- Pass 2: process columns.
    296 
    297     vperm2i128  ymm4, ymm1, ymm3, 0x20  ; ymm4=data3_7
    298     vperm2i128  ymm1, ymm1, ymm3, 0x31  ; ymm1=data1_5
    299 
    300     dotranspose ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7
    301 
    302     dodct       ymm0, ymm1, ymm2, ymm4, ymm3, ymm5, ymm6, ymm7, 2
    303     ; ymm0=data0_4, ymm1=data3_1, ymm2=data2_6, ymm4=data7_5
    304 
    305     vperm2i128 ymm3, ymm0, ymm1, 0x30   ; ymm3=data0_1
    306     vperm2i128 ymm5, ymm2, ymm1, 0x20   ; ymm5=data2_3
    307     vperm2i128 ymm6, ymm0, ymm4, 0x31   ; ymm6=data4_5
    308     vperm2i128 ymm7, ymm2, ymm4, 0x21   ; ymm7=data6_7
    309 
    310     vmovdqu     YMMWORD [YMMBLOCK(0,0,r10,SIZEOF_DCTELEM)], ymm3
    311     vmovdqu     YMMWORD [YMMBLOCK(2,0,r10,SIZEOF_DCTELEM)], ymm5
    312     vmovdqu     YMMWORD [YMMBLOCK(4,0,r10,SIZEOF_DCTELEM)], ymm6
    313     vmovdqu     YMMWORD [YMMBLOCK(6,0,r10,SIZEOF_DCTELEM)], ymm7
    314 
    315     vzeroupper
    316     uncollect_args 1
    317     pop         rbp
    318     ret
    319 
    320 ; For some reason, the OS X linker does not honor the request to align the
    321 ; segment unless we do this.
    322     align       32
    323