Home | History | Annotate | Download | only in silk
      1 /***********************************************************************
      2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
      3 Redistribution and use in source and binary forms, with or without
      4 modification, are permitted provided that the following conditions
      5 are met:
      6 - Redistributions of source code must retain the above copyright notice,
      7 this list of conditions and the following disclaimer.
      8 - Redistributions in binary form must reproduce the above copyright
      9 notice, this list of conditions and the following disclaimer in the
     10 documentation and/or other materials provided with the distribution.
     11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
     12 names of specific contributors, may be used to endorse or promote
     13 products derived from this software without specific prior written
     14 permission.
     15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     25 POSSIBILITY OF SUCH DAMAGE.
     26 ***********************************************************************/
     27 
     28 #ifdef HAVE_CONFIG_H
     29 #include "config.h"
     30 #endif
     31 
     32 #include "main.h"
     33 #include "stack_alloc.h"
     34 
     35 /* Silk VAD noise level estimation */
     36 # if !defined(OPUS_X86_MAY_HAVE_SSE4_1)
     37 static OPUS_INLINE void silk_VAD_GetNoiseLevels(
     38     const opus_int32             pX[ VAD_N_BANDS ], /* I    subband energies                            */
     39     silk_VAD_state              *psSilk_VAD         /* I/O  Pointer to Silk VAD state                   */
     40 );
     41 #endif
     42 
     43 /**********************************/
     44 /* Initialization of the Silk VAD */
     45 /**********************************/
     46 opus_int silk_VAD_Init(                                         /* O    Return value, 0 if success                  */
     47     silk_VAD_state              *psSilk_VAD                     /* I/O  Pointer to Silk VAD state                   */
     48 )
     49 {
     50     opus_int b, ret = 0;
     51 
     52     /* reset state memory */
     53     silk_memset( psSilk_VAD, 0, sizeof( silk_VAD_state ) );
     54 
     55     /* init noise levels */
     56     /* Initialize array with approx pink noise levels (psd proportional to inverse of frequency) */
     57     for( b = 0; b < VAD_N_BANDS; b++ ) {
     58         psSilk_VAD->NoiseLevelBias[ b ] = silk_max_32( silk_DIV32_16( VAD_NOISE_LEVELS_BIAS, b + 1 ), 1 );
     59     }
     60 
     61     /* Initialize state */
     62     for( b = 0; b < VAD_N_BANDS; b++ ) {
     63         psSilk_VAD->NL[ b ]     = silk_MUL( 100, psSilk_VAD->NoiseLevelBias[ b ] );
     64         psSilk_VAD->inv_NL[ b ] = silk_DIV32( silk_int32_MAX, psSilk_VAD->NL[ b ] );
     65     }
     66     psSilk_VAD->counter = 15;
     67 
     68     /* init smoothed energy-to-noise ratio*/
     69     for( b = 0; b < VAD_N_BANDS; b++ ) {
     70         psSilk_VAD->NrgRatioSmth_Q8[ b ] = 100 * 256;       /* 100 * 256 --> 20 dB SNR */
     71     }
     72 
     73     return( ret );
     74 }
     75 
     76 /* Weighting factors for tilt measure */
     77 static const opus_int32 tiltWeights[ VAD_N_BANDS ] = { 30000, 6000, -12000, -12000 };
     78 
     79 /***************************************/
     80 /* Get the speech activity level in Q8 */
     81 /***************************************/
     82 opus_int silk_VAD_GetSA_Q8_c(                                   /* O    Return value, 0 if success                  */
     83     silk_encoder_state          *psEncC,                        /* I/O  Encoder state                               */
     84     const opus_int16            pIn[]                           /* I    PCM input                                   */
     85 )
     86 {
     87     opus_int   SA_Q15, pSNR_dB_Q7, input_tilt;
     88     opus_int   decimated_framelength1, decimated_framelength2;
     89     opus_int   decimated_framelength;
     90     opus_int   dec_subframe_length, dec_subframe_offset, SNR_Q7, i, b, s;
     91     opus_int32 sumSquared, smooth_coef_Q16;
     92     opus_int16 HPstateTmp;
     93     VARDECL( opus_int16, X );
     94     opus_int32 Xnrg[ VAD_N_BANDS ];
     95     opus_int32 NrgToNoiseRatio_Q8[ VAD_N_BANDS ];
     96     opus_int32 speech_nrg, x_tmp;
     97     opus_int   X_offset[ VAD_N_BANDS ];
     98     opus_int   ret = 0;
     99     silk_VAD_state *psSilk_VAD = &psEncC->sVAD;
    100     SAVE_STACK;
    101 
    102     /* Safety checks */
    103     silk_assert( VAD_N_BANDS == 4 );
    104     celt_assert( MAX_FRAME_LENGTH >= psEncC->frame_length );
    105     celt_assert( psEncC->frame_length <= 512 );
    106     celt_assert( psEncC->frame_length == 8 * silk_RSHIFT( psEncC->frame_length, 3 ) );
    107 
    108     /***********************/
    109     /* Filter and Decimate */
    110     /***********************/
    111     decimated_framelength1 = silk_RSHIFT( psEncC->frame_length, 1 );
    112     decimated_framelength2 = silk_RSHIFT( psEncC->frame_length, 2 );
    113     decimated_framelength = silk_RSHIFT( psEncC->frame_length, 3 );
    114     /* Decimate into 4 bands:
    115        0       L      3L       L              3L                             5L
    116                -      --       -              --                             --
    117                8       8       2               4                              4
    118 
    119        [0-1 kHz| temp. |1-2 kHz|    2-4 kHz    |            4-8 kHz           |
    120 
    121        They're arranged to allow the minimal ( frame_length / 4 ) extra
    122        scratch space during the downsampling process */
    123     X_offset[ 0 ] = 0;
    124     X_offset[ 1 ] = decimated_framelength + decimated_framelength2;
    125     X_offset[ 2 ] = X_offset[ 1 ] + decimated_framelength;
    126     X_offset[ 3 ] = X_offset[ 2 ] + decimated_framelength2;
    127     ALLOC( X, X_offset[ 3 ] + decimated_framelength1, opus_int16 );
    128 
    129     /* 0-8 kHz to 0-4 kHz and 4-8 kHz */
    130     silk_ana_filt_bank_1( pIn, &psSilk_VAD->AnaState[  0 ],
    131         X, &X[ X_offset[ 3 ] ], psEncC->frame_length );
    132 
    133     /* 0-4 kHz to 0-2 kHz and 2-4 kHz */
    134     silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState1[ 0 ],
    135         X, &X[ X_offset[ 2 ] ], decimated_framelength1 );
    136 
    137     /* 0-2 kHz to 0-1 kHz and 1-2 kHz */
    138     silk_ana_filt_bank_1( X, &psSilk_VAD->AnaState2[ 0 ],
    139         X, &X[ X_offset[ 1 ] ], decimated_framelength2 );
    140 
    141     /*********************************************/
    142     /* HP filter on lowest band (differentiator) */
    143     /*********************************************/
    144     X[ decimated_framelength - 1 ] = silk_RSHIFT( X[ decimated_framelength - 1 ], 1 );
    145     HPstateTmp = X[ decimated_framelength - 1 ];
    146     for( i = decimated_framelength - 1; i > 0; i-- ) {
    147         X[ i - 1 ]  = silk_RSHIFT( X[ i - 1 ], 1 );
    148         X[ i ]     -= X[ i - 1 ];
    149     }
    150     X[ 0 ] -= psSilk_VAD->HPstate;
    151     psSilk_VAD->HPstate = HPstateTmp;
    152 
    153     /*************************************/
    154     /* Calculate the energy in each band */
    155     /*************************************/
    156     for( b = 0; b < VAD_N_BANDS; b++ ) {
    157         /* Find the decimated framelength in the non-uniformly divided bands */
    158         decimated_framelength = silk_RSHIFT( psEncC->frame_length, silk_min_int( VAD_N_BANDS - b, VAD_N_BANDS - 1 ) );
    159 
    160         /* Split length into subframe lengths */
    161         dec_subframe_length = silk_RSHIFT( decimated_framelength, VAD_INTERNAL_SUBFRAMES_LOG2 );
    162         dec_subframe_offset = 0;
    163 
    164         /* Compute energy per sub-frame */
    165         /* initialize with summed energy of last subframe */
    166         Xnrg[ b ] = psSilk_VAD->XnrgSubfr[ b ];
    167         for( s = 0; s < VAD_INTERNAL_SUBFRAMES; s++ ) {
    168             sumSquared = 0;
    169             for( i = 0; i < dec_subframe_length; i++ ) {
    170                 /* The energy will be less than dec_subframe_length * ( silk_int16_MIN / 8 ) ^ 2.            */
    171                 /* Therefore we can accumulate with no risk of overflow (unless dec_subframe_length > 128)  */
    172                 x_tmp = silk_RSHIFT(
    173                     X[ X_offset[ b ] + i + dec_subframe_offset ], 3 );
    174                 sumSquared = silk_SMLABB( sumSquared, x_tmp, x_tmp );
    175 
    176                 /* Safety check */
    177                 silk_assert( sumSquared >= 0 );
    178             }
    179 
    180             /* Add/saturate summed energy of current subframe */
    181             if( s < VAD_INTERNAL_SUBFRAMES - 1 ) {
    182                 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], sumSquared );
    183             } else {
    184                 /* Look-ahead subframe */
    185                 Xnrg[ b ] = silk_ADD_POS_SAT32( Xnrg[ b ], silk_RSHIFT( sumSquared, 1 ) );
    186             }
    187 
    188             dec_subframe_offset += dec_subframe_length;
    189         }
    190         psSilk_VAD->XnrgSubfr[ b ] = sumSquared;
    191     }
    192 
    193     /********************/
    194     /* Noise estimation */
    195     /********************/
    196     silk_VAD_GetNoiseLevels( &Xnrg[ 0 ], psSilk_VAD );
    197 
    198     /***********************************************/
    199     /* Signal-plus-noise to noise ratio estimation */
    200     /***********************************************/
    201     sumSquared = 0;
    202     input_tilt = 0;
    203     for( b = 0; b < VAD_N_BANDS; b++ ) {
    204         speech_nrg = Xnrg[ b ] - psSilk_VAD->NL[ b ];
    205         if( speech_nrg > 0 ) {
    206             /* Divide, with sufficient resolution */
    207             if( ( Xnrg[ b ] & 0xFF800000 ) == 0 ) {
    208                 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( silk_LSHIFT( Xnrg[ b ], 8 ), psSilk_VAD->NL[ b ] + 1 );
    209             } else {
    210                 NrgToNoiseRatio_Q8[ b ] = silk_DIV32( Xnrg[ b ], silk_RSHIFT( psSilk_VAD->NL[ b ], 8 ) + 1 );
    211             }
    212 
    213             /* Convert to log domain */
    214             SNR_Q7 = silk_lin2log( NrgToNoiseRatio_Q8[ b ] ) - 8 * 128;
    215 
    216             /* Sum-of-squares */
    217             sumSquared = silk_SMLABB( sumSquared, SNR_Q7, SNR_Q7 );          /* Q14 */
    218 
    219             /* Tilt measure */
    220             if( speech_nrg < ( (opus_int32)1 << 20 ) ) {
    221                 /* Scale down SNR value for small subband speech energies */
    222                 SNR_Q7 = silk_SMULWB( silk_LSHIFT( silk_SQRT_APPROX( speech_nrg ), 6 ), SNR_Q7 );
    223             }
    224             input_tilt = silk_SMLAWB( input_tilt, tiltWeights[ b ], SNR_Q7 );
    225         } else {
    226             NrgToNoiseRatio_Q8[ b ] = 256;
    227         }
    228     }
    229 
    230     /* Mean-of-squares */
    231     sumSquared = silk_DIV32_16( sumSquared, VAD_N_BANDS ); /* Q14 */
    232 
    233     /* Root-mean-square approximation, scale to dBs, and write to output pointer */
    234     pSNR_dB_Q7 = (opus_int16)( 3 * silk_SQRT_APPROX( sumSquared ) ); /* Q7 */
    235 
    236     /*********************************/
    237     /* Speech Probability Estimation */
    238     /*********************************/
    239     SA_Q15 = silk_sigm_Q15( silk_SMULWB( VAD_SNR_FACTOR_Q16, pSNR_dB_Q7 ) - VAD_NEGATIVE_OFFSET_Q5 );
    240 
    241     /**************************/
    242     /* Frequency Tilt Measure */
    243     /**************************/
    244     psEncC->input_tilt_Q15 = silk_LSHIFT( silk_sigm_Q15( input_tilt ) - 16384, 1 );
    245 
    246     /**************************************************/
    247     /* Scale the sigmoid output based on power levels */
    248     /**************************************************/
    249     speech_nrg = 0;
    250     for( b = 0; b < VAD_N_BANDS; b++ ) {
    251         /* Accumulate signal-without-noise energies, higher frequency bands have more weight */
    252         speech_nrg += ( b + 1 ) * silk_RSHIFT( Xnrg[ b ] - psSilk_VAD->NL[ b ], 4 );
    253     }
    254 
    255     if( psEncC->frame_length == 20 * psEncC->fs_kHz ) {
    256         speech_nrg = silk_RSHIFT32( speech_nrg, 1 );
    257     }
    258     /* Power scaling */
    259     if( speech_nrg <= 0 ) {
    260         SA_Q15 = silk_RSHIFT( SA_Q15, 1 );
    261     } else if( speech_nrg < 16384 ) {
    262         speech_nrg = silk_LSHIFT32( speech_nrg, 16 );
    263 
    264         /* square-root */
    265         speech_nrg = silk_SQRT_APPROX( speech_nrg );
    266         SA_Q15 = silk_SMULWB( 32768 + speech_nrg, SA_Q15 );
    267     }
    268 
    269     /* Copy the resulting speech activity in Q8 */
    270     psEncC->speech_activity_Q8 = silk_min_int( silk_RSHIFT( SA_Q15, 7 ), silk_uint8_MAX );
    271 
    272     /***********************************/
    273     /* Energy Level and SNR estimation */
    274     /***********************************/
    275     /* Smoothing coefficient */
    276     smooth_coef_Q16 = silk_SMULWB( VAD_SNR_SMOOTH_COEF_Q18, silk_SMULWB( (opus_int32)SA_Q15, SA_Q15 ) );
    277 
    278     if( psEncC->frame_length == 10 * psEncC->fs_kHz ) {
    279         smooth_coef_Q16 >>= 1;
    280     }
    281 
    282     for( b = 0; b < VAD_N_BANDS; b++ ) {
    283         /* compute smoothed energy-to-noise ratio per band */
    284         psSilk_VAD->NrgRatioSmth_Q8[ b ] = silk_SMLAWB( psSilk_VAD->NrgRatioSmth_Q8[ b ],
    285             NrgToNoiseRatio_Q8[ b ] - psSilk_VAD->NrgRatioSmth_Q8[ b ], smooth_coef_Q16 );
    286 
    287         /* signal to noise ratio in dB per band */
    288         SNR_Q7 = 3 * ( silk_lin2log( psSilk_VAD->NrgRatioSmth_Q8[b] ) - 8 * 128 );
    289         /* quality = sigmoid( 0.25 * ( SNR_dB - 16 ) ); */
    290         psEncC->input_quality_bands_Q15[ b ] = silk_sigm_Q15( silk_RSHIFT( SNR_Q7 - 16 * 128, 4 ) );
    291     }
    292 
    293     RESTORE_STACK;
    294     return( ret );
    295 }
    296 
    297 /**************************/
    298 /* Noise level estimation */
    299 /**************************/
    300 # if  !defined(OPUS_X86_MAY_HAVE_SSE4_1)
    301 static OPUS_INLINE
    302 #endif
    303 void silk_VAD_GetNoiseLevels(
    304     const opus_int32            pX[ VAD_N_BANDS ],  /* I    subband energies                            */
    305     silk_VAD_state              *psSilk_VAD         /* I/O  Pointer to Silk VAD state                   */
    306 )
    307 {
    308     opus_int   k;
    309     opus_int32 nl, nrg, inv_nrg;
    310     opus_int   coef, min_coef;
    311 
    312     /* Initially faster smoothing */
    313     if( psSilk_VAD->counter < 1000 ) { /* 1000 = 20 sec */
    314         min_coef = silk_DIV32_16( silk_int16_MAX, silk_RSHIFT( psSilk_VAD->counter, 4 ) + 1 );
    315         /* Increment frame counter */
    316         psSilk_VAD->counter++;
    317     } else {
    318         min_coef = 0;
    319     }
    320 
    321     for( k = 0; k < VAD_N_BANDS; k++ ) {
    322         /* Get old noise level estimate for current band */
    323         nl = psSilk_VAD->NL[ k ];
    324         silk_assert( nl >= 0 );
    325 
    326         /* Add bias */
    327         nrg = silk_ADD_POS_SAT32( pX[ k ], psSilk_VAD->NoiseLevelBias[ k ] );
    328         silk_assert( nrg > 0 );
    329 
    330         /* Invert energies */
    331         inv_nrg = silk_DIV32( silk_int32_MAX, nrg );
    332         silk_assert( inv_nrg >= 0 );
    333 
    334         /* Less update when subband energy is high */
    335         if( nrg > silk_LSHIFT( nl, 3 ) ) {
    336             coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 >> 3;
    337         } else if( nrg < nl ) {
    338             coef = VAD_NOISE_LEVEL_SMOOTH_COEF_Q16;
    339         } else {
    340             coef = silk_SMULWB( silk_SMULWW( inv_nrg, nl ), VAD_NOISE_LEVEL_SMOOTH_COEF_Q16 << 1 );
    341         }
    342 
    343         /* Initially faster smoothing */
    344         coef = silk_max_int( coef, min_coef );
    345 
    346         /* Smooth inverse energies */
    347         psSilk_VAD->inv_NL[ k ] = silk_SMLAWB( psSilk_VAD->inv_NL[ k ], inv_nrg - psSilk_VAD->inv_NL[ k ], coef );
    348         silk_assert( psSilk_VAD->inv_NL[ k ] >= 0 );
    349 
    350         /* Compute noise level by inverting again */
    351         nl = silk_DIV32( silk_int32_MAX, psSilk_VAD->inv_NL[ k ] );
    352         silk_assert( nl >= 0 );
    353 
    354         /* Limit noise levels (guarantee 7 bits of head room) */
    355         nl = silk_min( nl, 0x00FFFFFF );
    356 
    357         /* Store as part of state */
    358         psSilk_VAD->NL[ k ] = nl;
    359     }
    360 }
    361