Home | History | Annotate | Download | only in source
      1 /*
      2  *  Copyright 2011 The LibYuv Project Authors. All rights reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS. All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include "libyuv/compare.h"
     12 
     13 #include <float.h>
     14 #include <math.h>
     15 #ifdef _OPENMP
     16 #include <omp.h>
     17 #endif
     18 
     19 #include "libyuv/basic_types.h"
     20 #include "libyuv/compare_row.h"
     21 #include "libyuv/cpu_id.h"
     22 #include "libyuv/row.h"
     23 #include "libyuv/video_common.h"
     24 
     25 #ifdef __cplusplus
     26 namespace libyuv {
     27 extern "C" {
     28 #endif
     29 
     30 // hash seed of 5381 recommended.
     31 LIBYUV_API
     32 uint32_t HashDjb2(const uint8_t* src, uint64_t count, uint32_t seed) {
     33   const int kBlockSize = 1 << 15;  // 32768;
     34   int remainder;
     35   uint32_t (*HashDjb2_SSE)(const uint8_t* src, int count, uint32_t seed) =
     36       HashDjb2_C;
     37 #if defined(HAS_HASHDJB2_SSE41)
     38   if (TestCpuFlag(kCpuHasSSE41)) {
     39     HashDjb2_SSE = HashDjb2_SSE41;
     40   }
     41 #endif
     42 #if defined(HAS_HASHDJB2_AVX2)
     43   if (TestCpuFlag(kCpuHasAVX2)) {
     44     HashDjb2_SSE = HashDjb2_AVX2;
     45   }
     46 #endif
     47 
     48   while (count >= (uint64_t)(kBlockSize)) {
     49     seed = HashDjb2_SSE(src, kBlockSize, seed);
     50     src += kBlockSize;
     51     count -= kBlockSize;
     52   }
     53   remainder = (int)count & ~15;
     54   if (remainder) {
     55     seed = HashDjb2_SSE(src, remainder, seed);
     56     src += remainder;
     57     count -= remainder;
     58   }
     59   remainder = (int)count & 15;
     60   if (remainder) {
     61     seed = HashDjb2_C(src, remainder, seed);
     62   }
     63   return seed;
     64 }
     65 
     66 static uint32_t ARGBDetectRow_C(const uint8_t* argb, int width) {
     67   int x;
     68   for (x = 0; x < width - 1; x += 2) {
     69     if (argb[0] != 255) {  // First byte is not Alpha of 255, so not ARGB.
     70       return FOURCC_BGRA;
     71     }
     72     if (argb[3] != 255) {  // 4th byte is not Alpha of 255, so not BGRA.
     73       return FOURCC_ARGB;
     74     }
     75     if (argb[4] != 255) {  // Second pixel first byte is not Alpha of 255.
     76       return FOURCC_BGRA;
     77     }
     78     if (argb[7] != 255) {  // Second pixel 4th byte is not Alpha of 255.
     79       return FOURCC_ARGB;
     80     }
     81     argb += 8;
     82   }
     83   if (width & 1) {
     84     if (argb[0] != 255) {  // First byte is not Alpha of 255, so not ARGB.
     85       return FOURCC_BGRA;
     86     }
     87     if (argb[3] != 255) {  // 4th byte is not Alpha of 255, so not BGRA.
     88       return FOURCC_ARGB;
     89     }
     90   }
     91   return 0;
     92 }
     93 
     94 // Scan an opaque argb image and return fourcc based on alpha offset.
     95 // Returns FOURCC_ARGB, FOURCC_BGRA, or 0 if unknown.
     96 LIBYUV_API
     97 uint32_t ARGBDetect(const uint8_t* argb,
     98                     int stride_argb,
     99                     int width,
    100                     int height) {
    101   uint32_t fourcc = 0;
    102   int h;
    103 
    104   // Coalesce rows.
    105   if (stride_argb == width * 4) {
    106     width *= height;
    107     height = 1;
    108     stride_argb = 0;
    109   }
    110   for (h = 0; h < height && fourcc == 0; ++h) {
    111     fourcc = ARGBDetectRow_C(argb, width);
    112     argb += stride_argb;
    113   }
    114   return fourcc;
    115 }
    116 
    117 // NEON version accumulates in 16 bit shorts which overflow at 65536 bytes.
    118 // So actual maximum is 1 less loop, which is 64436 - 32 bytes.
    119 
    120 LIBYUV_API
    121 uint64_t ComputeHammingDistance(const uint8_t* src_a,
    122                                 const uint8_t* src_b,
    123                                 int count) {
    124   const int kBlockSize = 1 << 15;  // 32768;
    125   const int kSimdSize = 64;
    126   // SIMD for multiple of 64, and C for remainder
    127   int remainder = count & (kBlockSize - 1) & ~(kSimdSize - 1);
    128   uint64_t diff = 0;
    129   int i;
    130   uint32_t (*HammingDistance)(const uint8_t* src_a, const uint8_t* src_b,
    131                               int count) = HammingDistance_C;
    132 #if defined(HAS_HAMMINGDISTANCE_NEON)
    133   if (TestCpuFlag(kCpuHasNEON)) {
    134     HammingDistance = HammingDistance_NEON;
    135   }
    136 #endif
    137 #if defined(HAS_HAMMINGDISTANCE_SSSE3)
    138   if (TestCpuFlag(kCpuHasSSSE3)) {
    139     HammingDistance = HammingDistance_SSSE3;
    140   }
    141 #endif
    142 #if defined(HAS_HAMMINGDISTANCE_SSE42)
    143   if (TestCpuFlag(kCpuHasSSE42)) {
    144     HammingDistance = HammingDistance_SSE42;
    145   }
    146 #endif
    147 #if defined(HAS_HAMMINGDISTANCE_AVX2)
    148   if (TestCpuFlag(kCpuHasAVX2)) {
    149     HammingDistance = HammingDistance_AVX2;
    150   }
    151 #endif
    152 #if defined(HAS_HAMMINGDISTANCE_MSA)
    153   if (TestCpuFlag(kCpuHasMSA)) {
    154     HammingDistance = HammingDistance_MSA;
    155   }
    156 #endif
    157 #ifdef _OPENMP
    158 #pragma omp parallel for reduction(+ : diff)
    159 #endif
    160   for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) {
    161     diff += HammingDistance(src_a + i, src_b + i, kBlockSize);
    162   }
    163   src_a += count & ~(kBlockSize - 1);
    164   src_b += count & ~(kBlockSize - 1);
    165   if (remainder) {
    166     diff += HammingDistance(src_a, src_b, remainder);
    167     src_a += remainder;
    168     src_b += remainder;
    169   }
    170   remainder = count & (kSimdSize - 1);
    171   if (remainder) {
    172     diff += HammingDistance_C(src_a, src_b, remainder);
    173   }
    174   return diff;
    175 }
    176 
    177 // TODO(fbarchard): Refactor into row function.
    178 LIBYUV_API
    179 uint64_t ComputeSumSquareError(const uint8_t* src_a,
    180                                const uint8_t* src_b,
    181                                int count) {
    182   // SumSquareError returns values 0 to 65535 for each squared difference.
    183   // Up to 65536 of those can be summed and remain within a uint32_t.
    184   // After each block of 65536 pixels, accumulate into a uint64_t.
    185   const int kBlockSize = 65536;
    186   int remainder = count & (kBlockSize - 1) & ~31;
    187   uint64_t sse = 0;
    188   int i;
    189   uint32_t (*SumSquareError)(const uint8_t* src_a, const uint8_t* src_b,
    190                              int count) = SumSquareError_C;
    191 #if defined(HAS_SUMSQUAREERROR_NEON)
    192   if (TestCpuFlag(kCpuHasNEON)) {
    193     SumSquareError = SumSquareError_NEON;
    194   }
    195 #endif
    196 #if defined(HAS_SUMSQUAREERROR_SSE2)
    197   if (TestCpuFlag(kCpuHasSSE2)) {
    198     // Note only used for multiples of 16 so count is not checked.
    199     SumSquareError = SumSquareError_SSE2;
    200   }
    201 #endif
    202 #if defined(HAS_SUMSQUAREERROR_AVX2)
    203   if (TestCpuFlag(kCpuHasAVX2)) {
    204     // Note only used for multiples of 32 so count is not checked.
    205     SumSquareError = SumSquareError_AVX2;
    206   }
    207 #endif
    208 #if defined(HAS_SUMSQUAREERROR_MSA)
    209   if (TestCpuFlag(kCpuHasMSA)) {
    210     SumSquareError = SumSquareError_MSA;
    211   }
    212 #endif
    213 #ifdef _OPENMP
    214 #pragma omp parallel for reduction(+ : sse)
    215 #endif
    216   for (i = 0; i < (count - (kBlockSize - 1)); i += kBlockSize) {
    217     sse += SumSquareError(src_a + i, src_b + i, kBlockSize);
    218   }
    219   src_a += count & ~(kBlockSize - 1);
    220   src_b += count & ~(kBlockSize - 1);
    221   if (remainder) {
    222     sse += SumSquareError(src_a, src_b, remainder);
    223     src_a += remainder;
    224     src_b += remainder;
    225   }
    226   remainder = count & 31;
    227   if (remainder) {
    228     sse += SumSquareError_C(src_a, src_b, remainder);
    229   }
    230   return sse;
    231 }
    232 
    233 LIBYUV_API
    234 uint64_t ComputeSumSquareErrorPlane(const uint8_t* src_a,
    235                                     int stride_a,
    236                                     const uint8_t* src_b,
    237                                     int stride_b,
    238                                     int width,
    239                                     int height) {
    240   uint64_t sse = 0;
    241   int h;
    242   // Coalesce rows.
    243   if (stride_a == width && stride_b == width) {
    244     width *= height;
    245     height = 1;
    246     stride_a = stride_b = 0;
    247   }
    248   for (h = 0; h < height; ++h) {
    249     sse += ComputeSumSquareError(src_a, src_b, width);
    250     src_a += stride_a;
    251     src_b += stride_b;
    252   }
    253   return sse;
    254 }
    255 
    256 LIBYUV_API
    257 double SumSquareErrorToPsnr(uint64_t sse, uint64_t count) {
    258   double psnr;
    259   if (sse > 0) {
    260     double mse = (double)count / (double)sse;
    261     psnr = 10.0 * log10(255.0 * 255.0 * mse);
    262   } else {
    263     psnr = kMaxPsnr;  // Limit to prevent divide by 0
    264   }
    265 
    266   if (psnr > kMaxPsnr) {
    267     psnr = kMaxPsnr;
    268   }
    269 
    270   return psnr;
    271 }
    272 
    273 LIBYUV_API
    274 double CalcFramePsnr(const uint8_t* src_a,
    275                      int stride_a,
    276                      const uint8_t* src_b,
    277                      int stride_b,
    278                      int width,
    279                      int height) {
    280   const uint64_t samples = (uint64_t)width * (uint64_t)height;
    281   const uint64_t sse = ComputeSumSquareErrorPlane(src_a, stride_a, src_b,
    282                                                   stride_b, width, height);
    283   return SumSquareErrorToPsnr(sse, samples);
    284 }
    285 
    286 LIBYUV_API
    287 double I420Psnr(const uint8_t* src_y_a,
    288                 int stride_y_a,
    289                 const uint8_t* src_u_a,
    290                 int stride_u_a,
    291                 const uint8_t* src_v_a,
    292                 int stride_v_a,
    293                 const uint8_t* src_y_b,
    294                 int stride_y_b,
    295                 const uint8_t* src_u_b,
    296                 int stride_u_b,
    297                 const uint8_t* src_v_b,
    298                 int stride_v_b,
    299                 int width,
    300                 int height) {
    301   const uint64_t sse_y = ComputeSumSquareErrorPlane(
    302       src_y_a, stride_y_a, src_y_b, stride_y_b, width, height);
    303   const int width_uv = (width + 1) >> 1;
    304   const int height_uv = (height + 1) >> 1;
    305   const uint64_t sse_u = ComputeSumSquareErrorPlane(
    306       src_u_a, stride_u_a, src_u_b, stride_u_b, width_uv, height_uv);
    307   const uint64_t sse_v = ComputeSumSquareErrorPlane(
    308       src_v_a, stride_v_a, src_v_b, stride_v_b, width_uv, height_uv);
    309   const uint64_t samples = (uint64_t)width * (uint64_t)height +
    310                            2 * ((uint64_t)width_uv * (uint64_t)height_uv);
    311   const uint64_t sse = sse_y + sse_u + sse_v;
    312   return SumSquareErrorToPsnr(sse, samples);
    313 }
    314 
    315 static const int64_t cc1 = 26634;   // (64^2*(.01*255)^2
    316 static const int64_t cc2 = 239708;  // (64^2*(.03*255)^2
    317 
    318 static double Ssim8x8_C(const uint8_t* src_a,
    319                         int stride_a,
    320                         const uint8_t* src_b,
    321                         int stride_b) {
    322   int64_t sum_a = 0;
    323   int64_t sum_b = 0;
    324   int64_t sum_sq_a = 0;
    325   int64_t sum_sq_b = 0;
    326   int64_t sum_axb = 0;
    327 
    328   int i;
    329   for (i = 0; i < 8; ++i) {
    330     int j;
    331     for (j = 0; j < 8; ++j) {
    332       sum_a += src_a[j];
    333       sum_b += src_b[j];
    334       sum_sq_a += src_a[j] * src_a[j];
    335       sum_sq_b += src_b[j] * src_b[j];
    336       sum_axb += src_a[j] * src_b[j];
    337     }
    338 
    339     src_a += stride_a;
    340     src_b += stride_b;
    341   }
    342 
    343   {
    344     const int64_t count = 64;
    345     // scale the constants by number of pixels
    346     const int64_t c1 = (cc1 * count * count) >> 12;
    347     const int64_t c2 = (cc2 * count * count) >> 12;
    348 
    349     const int64_t sum_a_x_sum_b = sum_a * sum_b;
    350 
    351     const int64_t ssim_n = (2 * sum_a_x_sum_b + c1) *
    352                            (2 * count * sum_axb - 2 * sum_a_x_sum_b + c2);
    353 
    354     const int64_t sum_a_sq = sum_a * sum_a;
    355     const int64_t sum_b_sq = sum_b * sum_b;
    356 
    357     const int64_t ssim_d =
    358         (sum_a_sq + sum_b_sq + c1) *
    359         (count * sum_sq_a - sum_a_sq + count * sum_sq_b - sum_b_sq + c2);
    360 
    361     if (ssim_d == 0.0) {
    362       return DBL_MAX;
    363     }
    364     return ssim_n * 1.0 / ssim_d;
    365   }
    366 }
    367 
    368 // We are using a 8x8 moving window with starting location of each 8x8 window
    369 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
    370 // block boundaries to penalize blocking artifacts.
    371 LIBYUV_API
    372 double CalcFrameSsim(const uint8_t* src_a,
    373                      int stride_a,
    374                      const uint8_t* src_b,
    375                      int stride_b,
    376                      int width,
    377                      int height) {
    378   int samples = 0;
    379   double ssim_total = 0;
    380   double (*Ssim8x8)(const uint8_t* src_a, int stride_a, const uint8_t* src_b,
    381                     int stride_b) = Ssim8x8_C;
    382 
    383   // sample point start with each 4x4 location
    384   int i;
    385   for (i = 0; i < height - 8; i += 4) {
    386     int j;
    387     for (j = 0; j < width - 8; j += 4) {
    388       ssim_total += Ssim8x8(src_a + j, stride_a, src_b + j, stride_b);
    389       samples++;
    390     }
    391 
    392     src_a += stride_a * 4;
    393     src_b += stride_b * 4;
    394   }
    395 
    396   ssim_total /= samples;
    397   return ssim_total;
    398 }
    399 
    400 LIBYUV_API
    401 double I420Ssim(const uint8_t* src_y_a,
    402                 int stride_y_a,
    403                 const uint8_t* src_u_a,
    404                 int stride_u_a,
    405                 const uint8_t* src_v_a,
    406                 int stride_v_a,
    407                 const uint8_t* src_y_b,
    408                 int stride_y_b,
    409                 const uint8_t* src_u_b,
    410                 int stride_u_b,
    411                 const uint8_t* src_v_b,
    412                 int stride_v_b,
    413                 int width,
    414                 int height) {
    415   const double ssim_y =
    416       CalcFrameSsim(src_y_a, stride_y_a, src_y_b, stride_y_b, width, height);
    417   const int width_uv = (width + 1) >> 1;
    418   const int height_uv = (height + 1) >> 1;
    419   const double ssim_u = CalcFrameSsim(src_u_a, stride_u_a, src_u_b, stride_u_b,
    420                                       width_uv, height_uv);
    421   const double ssim_v = CalcFrameSsim(src_v_a, stride_v_a, src_v_b, stride_v_b,
    422                                       width_uv, height_uv);
    423   return ssim_y * 0.8 + 0.1 * (ssim_u + ssim_v);
    424 }
    425 
    426 #ifdef __cplusplus
    427 }  // extern "C"
    428 }  // namespace libyuv
    429 #endif
    430