Home | History | Annotate | Download | only in lazy
      1 #define MINIMAL_STDERR_OUTPUT
      2 
      3 #include "llvm/Analysis/Passes.h"
      4 #include "llvm/ExecutionEngine/ExecutionEngine.h"
      5 #include "llvm/IR/DataLayout.h"
      6 #include "llvm/IR/DerivedTypes.h"
      7 #include "llvm/IR/IRBuilder.h"
      8 #include "llvm/IR/LLVMContext.h"
      9 #include "llvm/IR/LegacyPassManager.h"
     10 #include "llvm/IR/Module.h"
     11 #include "llvm/IR/Verifier.h"
     12 #include "llvm/Support/TargetSelect.h"
     13 #include "llvm/Transforms/Scalar.h"
     14 #include <cctype>
     15 #include <cstdio>
     16 #include <map>
     17 #include <string>
     18 #include <vector>
     19 
     20 using namespace llvm;
     21 
     22 //===----------------------------------------------------------------------===//
     23 // Lexer
     24 //===----------------------------------------------------------------------===//
     25 
     26 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
     27 // of these for known things.
     28 enum Token {
     29   tok_eof = -1,
     30 
     31   // commands
     32   tok_def = -2, tok_extern = -3,
     33 
     34   // primary
     35   tok_identifier = -4, tok_number = -5,
     36 
     37   // control
     38   tok_if = -6, tok_then = -7, tok_else = -8,
     39   tok_for = -9, tok_in = -10,
     40 
     41   // operators
     42   tok_binary = -11, tok_unary = -12,
     43 
     44   // var definition
     45   tok_var = -13
     46 };
     47 
     48 static std::string IdentifierStr;  // Filled in if tok_identifier
     49 static double NumVal;              // Filled in if tok_number
     50 
     51 /// gettok - Return the next token from standard input.
     52 static int gettok() {
     53   static int LastChar = ' ';
     54 
     55   // Skip any whitespace.
     56   while (isspace(LastChar))
     57     LastChar = getchar();
     58 
     59   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
     60     IdentifierStr = LastChar;
     61     while (isalnum((LastChar = getchar())))
     62       IdentifierStr += LastChar;
     63 
     64     if (IdentifierStr == "def") return tok_def;
     65     if (IdentifierStr == "extern") return tok_extern;
     66     if (IdentifierStr == "if") return tok_if;
     67     if (IdentifierStr == "then") return tok_then;
     68     if (IdentifierStr == "else") return tok_else;
     69     if (IdentifierStr == "for") return tok_for;
     70     if (IdentifierStr == "in") return tok_in;
     71     if (IdentifierStr == "binary") return tok_binary;
     72     if (IdentifierStr == "unary") return tok_unary;
     73     if (IdentifierStr == "var") return tok_var;
     74     return tok_identifier;
     75   }
     76 
     77   if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+
     78     std::string NumStr;
     79     do {
     80       NumStr += LastChar;
     81       LastChar = getchar();
     82     } while (isdigit(LastChar) || LastChar == '.');
     83 
     84     NumVal = strtod(NumStr.c_str(), 0);
     85     return tok_number;
     86   }
     87 
     88   if (LastChar == '#') {
     89     // Comment until end of line.
     90     do LastChar = getchar();
     91     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
     92 
     93     if (LastChar != EOF)
     94       return gettok();
     95   }
     96 
     97   // Check for end of file.  Don't eat the EOF.
     98   if (LastChar == EOF)
     99     return tok_eof;
    100 
    101   // Otherwise, just return the character as its ascii value.
    102   int ThisChar = LastChar;
    103   LastChar = getchar();
    104   return ThisChar;
    105 }
    106 
    107 //===----------------------------------------------------------------------===//
    108 // Abstract Syntax Tree (aka Parse Tree)
    109 //===----------------------------------------------------------------------===//
    110 
    111 /// ExprAST - Base class for all expression nodes.
    112 class ExprAST {
    113 public:
    114   virtual ~ExprAST() {}
    115   virtual Value *Codegen() = 0;
    116 };
    117 
    118 /// NumberExprAST - Expression class for numeric literals like "1.0".
    119 class NumberExprAST : public ExprAST {
    120   double Val;
    121 public:
    122   NumberExprAST(double val) : Val(val) {}
    123   virtual Value *Codegen();
    124 };
    125 
    126 /// VariableExprAST - Expression class for referencing a variable, like "a".
    127 class VariableExprAST : public ExprAST {
    128   std::string Name;
    129 public:
    130   VariableExprAST(const std::string &name) : Name(name) {}
    131   const std::string &getName() const { return Name; }
    132   virtual Value *Codegen();
    133 };
    134 
    135 /// UnaryExprAST - Expression class for a unary operator.
    136 class UnaryExprAST : public ExprAST {
    137   char Opcode;
    138   ExprAST *Operand;
    139 public:
    140   UnaryExprAST(char opcode, ExprAST *operand)
    141     : Opcode(opcode), Operand(operand) {}
    142   virtual Value *Codegen();
    143 };
    144 
    145 /// BinaryExprAST - Expression class for a binary operator.
    146 class BinaryExprAST : public ExprAST {
    147   char Op;
    148   ExprAST *LHS, *RHS;
    149 public:
    150   BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs)
    151     : Op(op), LHS(lhs), RHS(rhs) {}
    152   virtual Value *Codegen();
    153 };
    154 
    155 /// CallExprAST - Expression class for function calls.
    156 class CallExprAST : public ExprAST {
    157   std::string Callee;
    158   std::vector<ExprAST*> Args;
    159 public:
    160   CallExprAST(const std::string &callee, std::vector<ExprAST*> &args)
    161     : Callee(callee), Args(args) {}
    162   virtual Value *Codegen();
    163 };
    164 
    165 /// IfExprAST - Expression class for if/then/else.
    166 class IfExprAST : public ExprAST {
    167   ExprAST *Cond, *Then, *Else;
    168 public:
    169   IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else)
    170   : Cond(cond), Then(then), Else(_else) {}
    171   virtual Value *Codegen();
    172 };
    173 
    174 /// ForExprAST - Expression class for for/in.
    175 class ForExprAST : public ExprAST {
    176   std::string VarName;
    177   ExprAST *Start, *End, *Step, *Body;
    178 public:
    179   ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end,
    180              ExprAST *step, ExprAST *body)
    181     : VarName(varname), Start(start), End(end), Step(step), Body(body) {}
    182   virtual Value *Codegen();
    183 };
    184 
    185 /// VarExprAST - Expression class for var/in
    186 class VarExprAST : public ExprAST {
    187   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    188   ExprAST *Body;
    189 public:
    190   VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames,
    191              ExprAST *body)
    192   : VarNames(varnames), Body(body) {}
    193 
    194   virtual Value *Codegen();
    195 };
    196 
    197 /// PrototypeAST - This class represents the "prototype" for a function,
    198 /// which captures its argument names as well as if it is an operator.
    199 class PrototypeAST {
    200   std::string Name;
    201   std::vector<std::string> Args;
    202   bool isOperator;
    203   unsigned Precedence;  // Precedence if a binary op.
    204 public:
    205   PrototypeAST(const std::string &name, const std::vector<std::string> &args,
    206                bool isoperator = false, unsigned prec = 0)
    207   : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {}
    208 
    209   bool isUnaryOp() const { return isOperator && Args.size() == 1; }
    210   bool isBinaryOp() const { return isOperator && Args.size() == 2; }
    211 
    212   char getOperatorName() const {
    213     assert(isUnaryOp() || isBinaryOp());
    214     return Name[Name.size()-1];
    215   }
    216 
    217   unsigned getBinaryPrecedence() const { return Precedence; }
    218 
    219   Function *Codegen();
    220 
    221   void CreateArgumentAllocas(Function *F);
    222 };
    223 
    224 /// FunctionAST - This class represents a function definition itself.
    225 class FunctionAST {
    226   PrototypeAST *Proto;
    227   ExprAST *Body;
    228 public:
    229   FunctionAST(PrototypeAST *proto, ExprAST *body)
    230     : Proto(proto), Body(body) {}
    231 
    232   Function *Codegen();
    233 };
    234 
    235 //===----------------------------------------------------------------------===//
    236 // Parser
    237 //===----------------------------------------------------------------------===//
    238 
    239 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
    240 /// token the parser is looking at.  getNextToken reads another token from the
    241 /// lexer and updates CurTok with its results.
    242 static int CurTok;
    243 static int getNextToken() {
    244   return CurTok = gettok();
    245 }
    246 
    247 /// BinopPrecedence - This holds the precedence for each binary operator that is
    248 /// defined.
    249 static std::map<char, int> BinopPrecedence;
    250 
    251 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
    252 static int GetTokPrecedence() {
    253   if (!isascii(CurTok))
    254     return -1;
    255 
    256   // Make sure it's a declared binop.
    257   int TokPrec = BinopPrecedence[CurTok];
    258   if (TokPrec <= 0) return -1;
    259   return TokPrec;
    260 }
    261 
    262 /// Error* - These are little helper functions for error handling.
    263 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;}
    264 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; }
    265 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; }
    266 
    267 static ExprAST *ParseExpression();
    268 
    269 /// identifierexpr
    270 ///   ::= identifier
    271 ///   ::= identifier '(' expression* ')'
    272 static ExprAST *ParseIdentifierExpr() {
    273   std::string IdName = IdentifierStr;
    274 
    275   getNextToken();  // eat identifier.
    276 
    277   if (CurTok != '(') // Simple variable ref.
    278     return new VariableExprAST(IdName);
    279 
    280   // Call.
    281   getNextToken();  // eat (
    282   std::vector<ExprAST*> Args;
    283   if (CurTok != ')') {
    284     while (1) {
    285       ExprAST *Arg = ParseExpression();
    286       if (!Arg) return 0;
    287       Args.push_back(Arg);
    288 
    289       if (CurTok == ')') break;
    290 
    291       if (CurTok != ',')
    292         return Error("Expected ')' or ',' in argument list");
    293       getNextToken();
    294     }
    295   }
    296 
    297   // Eat the ')'.
    298   getNextToken();
    299 
    300   return new CallExprAST(IdName, Args);
    301 }
    302 
    303 /// numberexpr ::= number
    304 static ExprAST *ParseNumberExpr() {
    305   ExprAST *Result = new NumberExprAST(NumVal);
    306   getNextToken(); // consume the number
    307   return Result;
    308 }
    309 
    310 /// parenexpr ::= '(' expression ')'
    311 static ExprAST *ParseParenExpr() {
    312   getNextToken();  // eat (.
    313   ExprAST *V = ParseExpression();
    314   if (!V) return 0;
    315 
    316   if (CurTok != ')')
    317     return Error("expected ')'");
    318   getNextToken();  // eat ).
    319   return V;
    320 }
    321 
    322 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
    323 static ExprAST *ParseIfExpr() {
    324   getNextToken();  // eat the if.
    325 
    326   // condition.
    327   ExprAST *Cond = ParseExpression();
    328   if (!Cond) return 0;
    329 
    330   if (CurTok != tok_then)
    331     return Error("expected then");
    332   getNextToken();  // eat the then
    333 
    334   ExprAST *Then = ParseExpression();
    335   if (Then == 0) return 0;
    336 
    337   if (CurTok != tok_else)
    338     return Error("expected else");
    339 
    340   getNextToken();
    341 
    342   ExprAST *Else = ParseExpression();
    343   if (!Else) return 0;
    344 
    345   return new IfExprAST(Cond, Then, Else);
    346 }
    347 
    348 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
    349 static ExprAST *ParseForExpr() {
    350   getNextToken();  // eat the for.
    351 
    352   if (CurTok != tok_identifier)
    353     return Error("expected identifier after for");
    354 
    355   std::string IdName = IdentifierStr;
    356   getNextToken();  // eat identifier.
    357 
    358   if (CurTok != '=')
    359     return Error("expected '=' after for");
    360   getNextToken();  // eat '='.
    361 
    362 
    363   ExprAST *Start = ParseExpression();
    364   if (Start == 0) return 0;
    365   if (CurTok != ',')
    366     return Error("expected ',' after for start value");
    367   getNextToken();
    368 
    369   ExprAST *End = ParseExpression();
    370   if (End == 0) return 0;
    371 
    372   // The step value is optional.
    373   ExprAST *Step = 0;
    374   if (CurTok == ',') {
    375     getNextToken();
    376     Step = ParseExpression();
    377     if (Step == 0) return 0;
    378   }
    379 
    380   if (CurTok != tok_in)
    381     return Error("expected 'in' after for");
    382   getNextToken();  // eat 'in'.
    383 
    384   ExprAST *Body = ParseExpression();
    385   if (Body == 0) return 0;
    386 
    387   return new ForExprAST(IdName, Start, End, Step, Body);
    388 }
    389 
    390 /// varexpr ::= 'var' identifier ('=' expression)?
    391 //                    (',' identifier ('=' expression)?)* 'in' expression
    392 static ExprAST *ParseVarExpr() {
    393   getNextToken();  // eat the var.
    394 
    395   std::vector<std::pair<std::string, ExprAST*> > VarNames;
    396 
    397   // At least one variable name is required.
    398   if (CurTok != tok_identifier)
    399     return Error("expected identifier after var");
    400 
    401   while (1) {
    402     std::string Name = IdentifierStr;
    403     getNextToken();  // eat identifier.
    404 
    405     // Read the optional initializer.
    406     ExprAST *Init = 0;
    407     if (CurTok == '=') {
    408       getNextToken(); // eat the '='.
    409 
    410       Init = ParseExpression();
    411       if (Init == 0) return 0;
    412     }
    413 
    414     VarNames.push_back(std::make_pair(Name, Init));
    415 
    416     // End of var list, exit loop.
    417     if (CurTok != ',') break;
    418     getNextToken(); // eat the ','.
    419 
    420     if (CurTok != tok_identifier)
    421       return Error("expected identifier list after var");
    422   }
    423 
    424   // At this point, we have to have 'in'.
    425   if (CurTok != tok_in)
    426     return Error("expected 'in' keyword after 'var'");
    427   getNextToken();  // eat 'in'.
    428 
    429   ExprAST *Body = ParseExpression();
    430   if (Body == 0) return 0;
    431 
    432   return new VarExprAST(VarNames, Body);
    433 }
    434 
    435 /// primary
    436 ///   ::= identifierexpr
    437 ///   ::= numberexpr
    438 ///   ::= parenexpr
    439 ///   ::= ifexpr
    440 ///   ::= forexpr
    441 ///   ::= varexpr
    442 static ExprAST *ParsePrimary() {
    443   switch (CurTok) {
    444   default: return Error("unknown token when expecting an expression");
    445   case tok_identifier: return ParseIdentifierExpr();
    446   case tok_number:     return ParseNumberExpr();
    447   case '(':            return ParseParenExpr();
    448   case tok_if:         return ParseIfExpr();
    449   case tok_for:        return ParseForExpr();
    450   case tok_var:        return ParseVarExpr();
    451   }
    452 }
    453 
    454 /// unary
    455 ///   ::= primary
    456 ///   ::= '!' unary
    457 static ExprAST *ParseUnary() {
    458   // If the current token is not an operator, it must be a primary expr.
    459   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
    460     return ParsePrimary();
    461 
    462   // If this is a unary operator, read it.
    463   int Opc = CurTok;
    464   getNextToken();
    465   if (ExprAST *Operand = ParseUnary())
    466     return new UnaryExprAST(Opc, Operand);
    467   return 0;
    468 }
    469 
    470 /// binoprhs
    471 ///   ::= ('+' unary)*
    472 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) {
    473   // If this is a binop, find its precedence.
    474   while (1) {
    475     int TokPrec = GetTokPrecedence();
    476 
    477     // If this is a binop that binds at least as tightly as the current binop,
    478     // consume it, otherwise we are done.
    479     if (TokPrec < ExprPrec)
    480       return LHS;
    481 
    482     // Okay, we know this is a binop.
    483     int BinOp = CurTok;
    484     getNextToken();  // eat binop
    485 
    486     // Parse the unary expression after the binary operator.
    487     ExprAST *RHS = ParseUnary();
    488     if (!RHS) return 0;
    489 
    490     // If BinOp binds less tightly with RHS than the operator after RHS, let
    491     // the pending operator take RHS as its LHS.
    492     int NextPrec = GetTokPrecedence();
    493     if (TokPrec < NextPrec) {
    494       RHS = ParseBinOpRHS(TokPrec+1, RHS);
    495       if (RHS == 0) return 0;
    496     }
    497 
    498     // Merge LHS/RHS.
    499     LHS = new BinaryExprAST(BinOp, LHS, RHS);
    500   }
    501 }
    502 
    503 /// expression
    504 ///   ::= unary binoprhs
    505 ///
    506 static ExprAST *ParseExpression() {
    507   ExprAST *LHS = ParseUnary();
    508   if (!LHS) return 0;
    509 
    510   return ParseBinOpRHS(0, LHS);
    511 }
    512 
    513 /// prototype
    514 ///   ::= id '(' id* ')'
    515 ///   ::= binary LETTER number? (id, id)
    516 ///   ::= unary LETTER (id)
    517 static PrototypeAST *ParsePrototype() {
    518   std::string FnName;
    519 
    520   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
    521   unsigned BinaryPrecedence = 30;
    522 
    523   switch (CurTok) {
    524   default:
    525     return ErrorP("Expected function name in prototype");
    526   case tok_identifier:
    527     FnName = IdentifierStr;
    528     Kind = 0;
    529     getNextToken();
    530     break;
    531   case tok_unary:
    532     getNextToken();
    533     if (!isascii(CurTok))
    534       return ErrorP("Expected unary operator");
    535     FnName = "unary";
    536     FnName += (char)CurTok;
    537     Kind = 1;
    538     getNextToken();
    539     break;
    540   case tok_binary:
    541     getNextToken();
    542     if (!isascii(CurTok))
    543       return ErrorP("Expected binary operator");
    544     FnName = "binary";
    545     FnName += (char)CurTok;
    546     Kind = 2;
    547     getNextToken();
    548 
    549     // Read the precedence if present.
    550     if (CurTok == tok_number) {
    551       if (NumVal < 1 || NumVal > 100)
    552         return ErrorP("Invalid precedecnce: must be 1..100");
    553       BinaryPrecedence = (unsigned)NumVal;
    554       getNextToken();
    555     }
    556     break;
    557   }
    558 
    559   if (CurTok != '(')
    560     return ErrorP("Expected '(' in prototype");
    561 
    562   std::vector<std::string> ArgNames;
    563   while (getNextToken() == tok_identifier)
    564     ArgNames.push_back(IdentifierStr);
    565   if (CurTok != ')')
    566     return ErrorP("Expected ')' in prototype");
    567 
    568   // success.
    569   getNextToken();  // eat ')'.
    570 
    571   // Verify right number of names for operator.
    572   if (Kind && ArgNames.size() != Kind)
    573     return ErrorP("Invalid number of operands for operator");
    574 
    575   return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence);
    576 }
    577 
    578 /// definition ::= 'def' prototype expression
    579 static FunctionAST *ParseDefinition() {
    580   getNextToken();  // eat def.
    581   PrototypeAST *Proto = ParsePrototype();
    582   if (Proto == 0) return 0;
    583 
    584   if (ExprAST *E = ParseExpression())
    585     return new FunctionAST(Proto, E);
    586   return 0;
    587 }
    588 
    589 /// toplevelexpr ::= expression
    590 static FunctionAST *ParseTopLevelExpr() {
    591   if (ExprAST *E = ParseExpression()) {
    592     // Make an anonymous proto.
    593     PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>());
    594     return new FunctionAST(Proto, E);
    595   }
    596   return 0;
    597 }
    598 
    599 /// external ::= 'extern' prototype
    600 static PrototypeAST *ParseExtern() {
    601   getNextToken();  // eat extern.
    602   return ParsePrototype();
    603 }
    604 
    605 //===----------------------------------------------------------------------===//
    606 // Code Generation
    607 //===----------------------------------------------------------------------===//
    608 
    609 static Module *TheModule;
    610 static FunctionPassManager *TheFPM;
    611 static LLVMContext TheContext;
    612 static IRBuilder<> Builder(TheContext);
    613 static std::map<std::string, AllocaInst*> NamedValues;
    614 
    615 Value *ErrorV(const char *Str) { Error(Str); return 0; }
    616 
    617 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
    618 /// the function.  This is used for mutable variables etc.
    619 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
    620                                           const std::string &VarName) {
    621   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
    622                  TheFunction->getEntryBlock().begin());
    623   return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str());
    624 }
    625 
    626 Value *NumberExprAST::Codegen() {
    627   return ConstantFP::get(TheContext, APFloat(Val));
    628 }
    629 
    630 Value *VariableExprAST::Codegen() {
    631   // Look this variable up in the function.
    632   Value *V = NamedValues[Name];
    633   if (V == 0) return ErrorV("Unknown variable name");
    634 
    635   // Load the value.
    636   return Builder.CreateLoad(V, Name.c_str());
    637 }
    638 
    639 Value *UnaryExprAST::Codegen() {
    640   Value *OperandV = Operand->Codegen();
    641   if (OperandV == 0) return 0;
    642 #ifdef USE_MCJIT
    643   Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode));
    644 #else
    645   Function *F = TheModule->getFunction(std::string("unary")+Opcode);
    646 #endif
    647   if (F == 0)
    648     return ErrorV("Unknown unary operator");
    649 
    650   return Builder.CreateCall(F, OperandV, "unop");
    651 }
    652 
    653 Value *BinaryExprAST::Codegen() {
    654   // Special case '=' because we don't want to emit the LHS as an expression.
    655   if (Op == '=') {
    656     // Assignment requires the LHS to be an identifier.
    657     VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS);
    658     if (!LHSE)
    659       return ErrorV("destination of '=' must be a variable");
    660     // Codegen the RHS.
    661     Value *Val = RHS->Codegen();
    662     if (Val == 0) return 0;
    663 
    664     // Look up the name.
    665     Value *Variable = NamedValues[LHSE->getName()];
    666     if (Variable == 0) return ErrorV("Unknown variable name");
    667 
    668     Builder.CreateStore(Val, Variable);
    669     return Val;
    670   }
    671 
    672   Value *L = LHS->Codegen();
    673   Value *R = RHS->Codegen();
    674   if (L == 0 || R == 0) return 0;
    675 
    676   switch (Op) {
    677   case '+': return Builder.CreateFAdd(L, R, "addtmp");
    678   case '-': return Builder.CreateFSub(L, R, "subtmp");
    679   case '*': return Builder.CreateFMul(L, R, "multmp");
    680   case '/': return Builder.CreateFDiv(L, R, "divtmp");
    681   case '<':
    682     L = Builder.CreateFCmpULT(L, R, "cmptmp");
    683     // Convert bool 0/1 to double 0.0 or 1.0
    684     return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp");
    685   default: break;
    686   }
    687 
    688   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
    689   // a call to it.
    690   Function *F = TheModule->getFunction(std::string("binary")+Op);
    691   assert(F && "binary operator not found!");
    692 
    693   Value *Ops[] = { L, R };
    694   return Builder.CreateCall(F, Ops, "binop");
    695 }
    696 
    697 Value *CallExprAST::Codegen() {
    698   // Look up the name in the global module table.
    699   Function *CalleeF = TheModule->getFunction(Callee);
    700   if (CalleeF == 0) {
    701     char error_str[64];
    702     sprintf(error_str, "Unknown function referenced %s", Callee.c_str());
    703     return ErrorV(error_str);
    704   }
    705 
    706   // If argument mismatch error.
    707   if (CalleeF->arg_size() != Args.size())
    708     return ErrorV("Incorrect # arguments passed");
    709 
    710   std::vector<Value*> ArgsV;
    711   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
    712     ArgsV.push_back(Args[i]->Codegen());
    713     if (ArgsV.back() == 0) return 0;
    714   }
    715 
    716   return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
    717 }
    718 
    719 Value *IfExprAST::Codegen() {
    720   Value *CondV = Cond->Codegen();
    721   if (CondV == 0) return 0;
    722 
    723   // Convert condition to a bool by comparing equal to 0.0.
    724   CondV = Builder.CreateFCmpONE(
    725       CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond");
    726 
    727   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    728 
    729   // Create blocks for the then and else cases.  Insert the 'then' block at the
    730   // end of the function.
    731   BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction);
    732   BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else");
    733   BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont");
    734 
    735   Builder.CreateCondBr(CondV, ThenBB, ElseBB);
    736 
    737   // Emit then value.
    738   Builder.SetInsertPoint(ThenBB);
    739 
    740   Value *ThenV = Then->Codegen();
    741   if (ThenV == 0) return 0;
    742 
    743   Builder.CreateBr(MergeBB);
    744   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
    745   ThenBB = Builder.GetInsertBlock();
    746 
    747   // Emit else block.
    748   TheFunction->getBasicBlockList().push_back(ElseBB);
    749   Builder.SetInsertPoint(ElseBB);
    750 
    751   Value *ElseV = Else->Codegen();
    752   if (ElseV == 0) return 0;
    753 
    754   Builder.CreateBr(MergeBB);
    755   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
    756   ElseBB = Builder.GetInsertBlock();
    757 
    758   // Emit merge block.
    759   TheFunction->getBasicBlockList().push_back(MergeBB);
    760   Builder.SetInsertPoint(MergeBB);
    761   PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp");
    762 
    763   PN->addIncoming(ThenV, ThenBB);
    764   PN->addIncoming(ElseV, ElseBB);
    765   return PN;
    766 }
    767 
    768 Value *ForExprAST::Codegen() {
    769   // Output this as:
    770   //   var = alloca double
    771   //   ...
    772   //   start = startexpr
    773   //   store start -> var
    774   //   goto loop
    775   // loop:
    776   //   ...
    777   //   bodyexpr
    778   //   ...
    779   // loopend:
    780   //   step = stepexpr
    781   //   endcond = endexpr
    782   //
    783   //   curvar = load var
    784   //   nextvar = curvar + step
    785   //   store nextvar -> var
    786   //   br endcond, loop, endloop
    787   // outloop:
    788 
    789   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    790 
    791   // Create an alloca for the variable in the entry block.
    792   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
    793 
    794   // Emit the start code first, without 'variable' in scope.
    795   Value *StartVal = Start->Codegen();
    796   if (StartVal == 0) return 0;
    797 
    798   // Store the value into the alloca.
    799   Builder.CreateStore(StartVal, Alloca);
    800 
    801   // Make the new basic block for the loop header, inserting after current
    802   // block.
    803   BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction);
    804 
    805   // Insert an explicit fall through from the current block to the LoopBB.
    806   Builder.CreateBr(LoopBB);
    807 
    808   // Start insertion in LoopBB.
    809   Builder.SetInsertPoint(LoopBB);
    810 
    811   // Within the loop, the variable is defined equal to the PHI node.  If it
    812   // shadows an existing variable, we have to restore it, so save it now.
    813   AllocaInst *OldVal = NamedValues[VarName];
    814   NamedValues[VarName] = Alloca;
    815 
    816   // Emit the body of the loop.  This, like any other expr, can change the
    817   // current BB.  Note that we ignore the value computed by the body, but don't
    818   // allow an error.
    819   if (Body->Codegen() == 0)
    820     return 0;
    821 
    822   // Emit the step value.
    823   Value *StepVal;
    824   if (Step) {
    825     StepVal = Step->Codegen();
    826     if (StepVal == 0) return 0;
    827   } else {
    828     // If not specified, use 1.0.
    829     StepVal = ConstantFP::get(TheContext, APFloat(1.0));
    830   }
    831 
    832   // Compute the end condition.
    833   Value *EndCond = End->Codegen();
    834   if (EndCond == 0) return EndCond;
    835 
    836   // Reload, increment, and restore the alloca.  This handles the case where
    837   // the body of the loop mutates the variable.
    838   Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str());
    839   Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar");
    840   Builder.CreateStore(NextVar, Alloca);
    841 
    842   // Convert condition to a bool by comparing equal to 0.0.
    843   EndCond = Builder.CreateFCmpONE(
    844       EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond");
    845 
    846   // Create the "after loop" block and insert it.
    847   BasicBlock *AfterBB =
    848       BasicBlock::Create(TheContext, "afterloop", TheFunction);
    849 
    850   // Insert the conditional branch into the end of LoopEndBB.
    851   Builder.CreateCondBr(EndCond, LoopBB, AfterBB);
    852 
    853   // Any new code will be inserted in AfterBB.
    854   Builder.SetInsertPoint(AfterBB);
    855 
    856   // Restore the unshadowed variable.
    857   if (OldVal)
    858     NamedValues[VarName] = OldVal;
    859   else
    860     NamedValues.erase(VarName);
    861 
    862 
    863   // for expr always returns 0.0.
    864   return Constant::getNullValue(Type::getDoubleTy(TheContext));
    865 }
    866 
    867 Value *VarExprAST::Codegen() {
    868   std::vector<AllocaInst *> OldBindings;
    869 
    870   Function *TheFunction = Builder.GetInsertBlock()->getParent();
    871 
    872   // Register all variables and emit their initializer.
    873   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
    874     const std::string &VarName = VarNames[i].first;
    875     ExprAST *Init = VarNames[i].second;
    876 
    877     // Emit the initializer before adding the variable to scope, this prevents
    878     // the initializer from referencing the variable itself, and permits stuff
    879     // like this:
    880     //  var a = 1 in
    881     //    var a = a in ...   # refers to outer 'a'.
    882     Value *InitVal;
    883     if (Init) {
    884       InitVal = Init->Codegen();
    885       if (InitVal == 0) return 0;
    886     } else { // If not specified, use 0.0.
    887       InitVal = ConstantFP::get(TheContext, APFloat(0.0));
    888     }
    889 
    890     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
    891     Builder.CreateStore(InitVal, Alloca);
    892 
    893     // Remember the old variable binding so that we can restore the binding when
    894     // we unrecurse.
    895     OldBindings.push_back(NamedValues[VarName]);
    896 
    897     // Remember this binding.
    898     NamedValues[VarName] = Alloca;
    899   }
    900 
    901   // Codegen the body, now that all vars are in scope.
    902   Value *BodyVal = Body->Codegen();
    903   if (BodyVal == 0) return 0;
    904 
    905   // Pop all our variables from scope.
    906   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
    907     NamedValues[VarNames[i].first] = OldBindings[i];
    908 
    909   // Return the body computation.
    910   return BodyVal;
    911 }
    912 
    913 Function *PrototypeAST::Codegen() {
    914   // Make the function type:  double(double,double) etc.
    915   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext));
    916   FunctionType *FT =
    917       FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false);
    918 
    919   Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule);
    920   // If F conflicted, there was already something named 'Name'.  If it has a
    921   // body, don't allow redefinition or reextern.
    922   if (F->getName() != Name) {
    923     // Delete the one we just made and get the existing one.
    924     F->eraseFromParent();
    925     F = TheModule->getFunction(Name);
    926     // If F already has a body, reject this.
    927     if (!F->empty()) {
    928       ErrorF("redefinition of function");
    929       return 0;
    930     }
    931     // If F took a different number of args, reject.
    932     if (F->arg_size() != Args.size()) {
    933       ErrorF("redefinition of function with different # args");
    934       return 0;
    935     }
    936   }
    937 
    938   // Set names for all arguments.
    939   unsigned Idx = 0;
    940   for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size();
    941        ++AI, ++Idx)
    942     AI->setName(Args[Idx]);
    943 
    944   return F;
    945 }
    946 
    947 /// CreateArgumentAllocas - Create an alloca for each argument and register the
    948 /// argument in the symbol table so that references to it will succeed.
    949 void PrototypeAST::CreateArgumentAllocas(Function *F) {
    950   Function::arg_iterator AI = F->arg_begin();
    951   for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) {
    952     // Create an alloca for this variable.
    953     AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]);
    954 
    955     // Store the initial value into the alloca.
    956     Builder.CreateStore(AI, Alloca);
    957 
    958     // Add arguments to variable symbol table.
    959     NamedValues[Args[Idx]] = Alloca;
    960   }
    961 }
    962 
    963 Function *FunctionAST::Codegen() {
    964   NamedValues.clear();
    965 
    966   Function *TheFunction = Proto->Codegen();
    967   if (TheFunction == 0)
    968     return 0;
    969 
    970   // If this is an operator, install it.
    971   if (Proto->isBinaryOp())
    972     BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence();
    973 
    974   // Create a new basic block to start insertion into.
    975   BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction);
    976   Builder.SetInsertPoint(BB);
    977 
    978   // Add all arguments to the symbol table and create their allocas.
    979   Proto->CreateArgumentAllocas(TheFunction);
    980 
    981   if (Value *RetVal = Body->Codegen()) {
    982     // Finish off the function.
    983     Builder.CreateRet(RetVal);
    984 
    985     // Validate the generated code, checking for consistency.
    986     verifyFunction(*TheFunction);
    987 
    988     // Optimize the function.
    989     TheFPM->run(*TheFunction);
    990 
    991     return TheFunction;
    992   }
    993 
    994   // Error reading body, remove function.
    995   TheFunction->eraseFromParent();
    996 
    997   if (Proto->isBinaryOp())
    998     BinopPrecedence.erase(Proto->getOperatorName());
    999   return 0;
   1000 }
   1001 
   1002 //===----------------------------------------------------------------------===//
   1003 // Top-Level parsing and JIT Driver
   1004 //===----------------------------------------------------------------------===//
   1005 
   1006 static ExecutionEngine *TheExecutionEngine;
   1007 
   1008 static void HandleDefinition() {
   1009   if (FunctionAST *F = ParseDefinition()) {
   1010     if (Function *LF = F->Codegen()) {
   1011 #ifndef MINIMAL_STDERR_OUTPUT
   1012       fprintf(stderr, "Read function definition:");
   1013       LF->dump();
   1014 #endif
   1015     }
   1016   } else {
   1017     // Skip token for error recovery.
   1018     getNextToken();
   1019   }
   1020 }
   1021 
   1022 static void HandleExtern() {
   1023   if (PrototypeAST *P = ParseExtern()) {
   1024     if (Function *F = P->Codegen()) {
   1025 #ifndef MINIMAL_STDERR_OUTPUT
   1026       fprintf(stderr, "Read extern: ");
   1027       F->dump();
   1028 #endif
   1029     }
   1030   } else {
   1031     // Skip token for error recovery.
   1032     getNextToken();
   1033   }
   1034 }
   1035 
   1036 static void HandleTopLevelExpression() {
   1037   // Evaluate a top-level expression into an anonymous function.
   1038   if (FunctionAST *F = ParseTopLevelExpr()) {
   1039     if (Function *LF = F->Codegen()) {
   1040       // JIT the function, returning a function pointer.
   1041       void *FPtr = TheExecutionEngine->getPointerToFunction(LF);
   1042       // Cast it to the right type (takes no arguments, returns a double) so we
   1043       // can call it as a native function.
   1044       double (*FP)() = (double (*)())(intptr_t)FPtr;
   1045 #ifdef MINIMAL_STDERR_OUTPUT
   1046       FP();
   1047 #else
   1048       fprintf(stderr, "Evaluated to %f\n", FP());
   1049 #endif
   1050     }
   1051   } else {
   1052     // Skip token for error recovery.
   1053     getNextToken();
   1054   }
   1055 }
   1056 
   1057 /// top ::= definition | external | expression | ';'
   1058 static void MainLoop() {
   1059   while (1) {
   1060 #ifndef MINIMAL_STDERR_OUTPUT
   1061     fprintf(stderr, "ready> ");
   1062 #endif
   1063     switch (CurTok) {
   1064     case tok_eof:    return;
   1065     case ';':        getNextToken(); break;  // ignore top-level semicolons.
   1066     case tok_def:    HandleDefinition(); break;
   1067     case tok_extern: HandleExtern(); break;
   1068     default:         HandleTopLevelExpression(); break;
   1069     }
   1070   }
   1071 }
   1072 
   1073 //===----------------------------------------------------------------------===//
   1074 // "Library" functions that can be "extern'd" from user code.
   1075 //===----------------------------------------------------------------------===//
   1076 
   1077 /// putchard - putchar that takes a double and returns 0.
   1078 extern "C"
   1079 double putchard(double X) {
   1080   putchar((char)X);
   1081   return 0;
   1082 }
   1083 
   1084 /// printd - printf that takes a double prints it as "%f\n", returning 0.
   1085 extern "C"
   1086 double printd(double X) {
   1087   printf("%f", X);
   1088   return 0;
   1089 }
   1090 
   1091 extern "C"
   1092 double printlf() {
   1093   printf("\n");
   1094   return 0;
   1095 }
   1096 
   1097 //===----------------------------------------------------------------------===//
   1098 // Main driver code.
   1099 //===----------------------------------------------------------------------===//
   1100 
   1101 int main(int argc, char **argv) {
   1102   InitializeNativeTarget();
   1103   LLVMContext &Context = TheContext;
   1104 
   1105   // Install standard binary operators.
   1106   // 1 is lowest precedence.
   1107   BinopPrecedence['='] = 2;
   1108   BinopPrecedence['<'] = 10;
   1109   BinopPrecedence['+'] = 20;
   1110   BinopPrecedence['-'] = 20;
   1111   BinopPrecedence['/'] = 40;
   1112   BinopPrecedence['*'] = 40;  // highest.
   1113 
   1114   // Make the module, which holds all the code.
   1115   TheModule = new Module("my cool jit", Context);
   1116 
   1117   // Create the JIT.  This takes ownership of the module.
   1118   std::string ErrStr;
   1119   TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create();
   1120   if (!TheExecutionEngine) {
   1121     fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str());
   1122     exit(1);
   1123   }
   1124 
   1125   FunctionPassManager OurFPM(TheModule);
   1126 
   1127   // Set up the optimizer pipeline.  Start with registering info about how the
   1128   // target lays out data structures.
   1129   OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout()));
   1130   // Provide basic AliasAnalysis support for GVN.
   1131   OurFPM.add(createBasicAliasAnalysisPass());
   1132   // Promote allocas to registers.
   1133   OurFPM.add(createPromoteMemoryToRegisterPass());
   1134   // Do simple "peephole" optimizations and bit-twiddling optzns.
   1135   OurFPM.add(createInstructionCombiningPass());
   1136   // Reassociate expressions.
   1137   OurFPM.add(createReassociatePass());
   1138   // Eliminate Common SubExpressions.
   1139   OurFPM.add(createGVNPass());
   1140   // Simplify the control flow graph (deleting unreachable blocks, etc).
   1141   OurFPM.add(createCFGSimplificationPass());
   1142 
   1143   OurFPM.doInitialization();
   1144 
   1145   // Set the global so the code gen can use this.
   1146   TheFPM = &OurFPM;
   1147 
   1148   // Prime the first token.
   1149 #ifndef MINIMAL_STDERR_OUTPUT
   1150   fprintf(stderr, "ready> ");
   1151 #endif
   1152   getNextToken();
   1153 
   1154   // Run the main "interpreter loop" now.
   1155   MainLoop();
   1156 
   1157   // Print out all of the generated code.
   1158   TheFPM = 0;
   1159 #ifndef MINIMAL_STDERR_OUTPUT
   1160   TheModule->dump();
   1161 #endif
   1162   return 0;
   1163 }
   1164