1 #define MINIMAL_STDERR_OUTPUT 2 3 #include "llvm/Analysis/Passes.h" 4 #include "llvm/ExecutionEngine/ExecutionEngine.h" 5 #include "llvm/IR/DataLayout.h" 6 #include "llvm/IR/DerivedTypes.h" 7 #include "llvm/IR/IRBuilder.h" 8 #include "llvm/IR/LLVMContext.h" 9 #include "llvm/IR/LegacyPassManager.h" 10 #include "llvm/IR/Module.h" 11 #include "llvm/IR/Verifier.h" 12 #include "llvm/Support/TargetSelect.h" 13 #include "llvm/Transforms/Scalar.h" 14 #include <cctype> 15 #include <cstdio> 16 #include <map> 17 #include <string> 18 #include <vector> 19 20 using namespace llvm; 21 22 //===----------------------------------------------------------------------===// 23 // Lexer 24 //===----------------------------------------------------------------------===// 25 26 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 27 // of these for known things. 28 enum Token { 29 tok_eof = -1, 30 31 // commands 32 tok_def = -2, tok_extern = -3, 33 34 // primary 35 tok_identifier = -4, tok_number = -5, 36 37 // control 38 tok_if = -6, tok_then = -7, tok_else = -8, 39 tok_for = -9, tok_in = -10, 40 41 // operators 42 tok_binary = -11, tok_unary = -12, 43 44 // var definition 45 tok_var = -13 46 }; 47 48 static std::string IdentifierStr; // Filled in if tok_identifier 49 static double NumVal; // Filled in if tok_number 50 51 /// gettok - Return the next token from standard input. 52 static int gettok() { 53 static int LastChar = ' '; 54 55 // Skip any whitespace. 56 while (isspace(LastChar)) 57 LastChar = getchar(); 58 59 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 60 IdentifierStr = LastChar; 61 while (isalnum((LastChar = getchar()))) 62 IdentifierStr += LastChar; 63 64 if (IdentifierStr == "def") return tok_def; 65 if (IdentifierStr == "extern") return tok_extern; 66 if (IdentifierStr == "if") return tok_if; 67 if (IdentifierStr == "then") return tok_then; 68 if (IdentifierStr == "else") return tok_else; 69 if (IdentifierStr == "for") return tok_for; 70 if (IdentifierStr == "in") return tok_in; 71 if (IdentifierStr == "binary") return tok_binary; 72 if (IdentifierStr == "unary") return tok_unary; 73 if (IdentifierStr == "var") return tok_var; 74 return tok_identifier; 75 } 76 77 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 78 std::string NumStr; 79 do { 80 NumStr += LastChar; 81 LastChar = getchar(); 82 } while (isdigit(LastChar) || LastChar == '.'); 83 84 NumVal = strtod(NumStr.c_str(), 0); 85 return tok_number; 86 } 87 88 if (LastChar == '#') { 89 // Comment until end of line. 90 do LastChar = getchar(); 91 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 92 93 if (LastChar != EOF) 94 return gettok(); 95 } 96 97 // Check for end of file. Don't eat the EOF. 98 if (LastChar == EOF) 99 return tok_eof; 100 101 // Otherwise, just return the character as its ascii value. 102 int ThisChar = LastChar; 103 LastChar = getchar(); 104 return ThisChar; 105 } 106 107 //===----------------------------------------------------------------------===// 108 // Abstract Syntax Tree (aka Parse Tree) 109 //===----------------------------------------------------------------------===// 110 111 /// ExprAST - Base class for all expression nodes. 112 class ExprAST { 113 public: 114 virtual ~ExprAST() {} 115 virtual Value *Codegen() = 0; 116 }; 117 118 /// NumberExprAST - Expression class for numeric literals like "1.0". 119 class NumberExprAST : public ExprAST { 120 double Val; 121 public: 122 NumberExprAST(double val) : Val(val) {} 123 virtual Value *Codegen(); 124 }; 125 126 /// VariableExprAST - Expression class for referencing a variable, like "a". 127 class VariableExprAST : public ExprAST { 128 std::string Name; 129 public: 130 VariableExprAST(const std::string &name) : Name(name) {} 131 const std::string &getName() const { return Name; } 132 virtual Value *Codegen(); 133 }; 134 135 /// UnaryExprAST - Expression class for a unary operator. 136 class UnaryExprAST : public ExprAST { 137 char Opcode; 138 ExprAST *Operand; 139 public: 140 UnaryExprAST(char opcode, ExprAST *operand) 141 : Opcode(opcode), Operand(operand) {} 142 virtual Value *Codegen(); 143 }; 144 145 /// BinaryExprAST - Expression class for a binary operator. 146 class BinaryExprAST : public ExprAST { 147 char Op; 148 ExprAST *LHS, *RHS; 149 public: 150 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 151 : Op(op), LHS(lhs), RHS(rhs) {} 152 virtual Value *Codegen(); 153 }; 154 155 /// CallExprAST - Expression class for function calls. 156 class CallExprAST : public ExprAST { 157 std::string Callee; 158 std::vector<ExprAST*> Args; 159 public: 160 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 161 : Callee(callee), Args(args) {} 162 virtual Value *Codegen(); 163 }; 164 165 /// IfExprAST - Expression class for if/then/else. 166 class IfExprAST : public ExprAST { 167 ExprAST *Cond, *Then, *Else; 168 public: 169 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 170 : Cond(cond), Then(then), Else(_else) {} 171 virtual Value *Codegen(); 172 }; 173 174 /// ForExprAST - Expression class for for/in. 175 class ForExprAST : public ExprAST { 176 std::string VarName; 177 ExprAST *Start, *End, *Step, *Body; 178 public: 179 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 180 ExprAST *step, ExprAST *body) 181 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 182 virtual Value *Codegen(); 183 }; 184 185 /// VarExprAST - Expression class for var/in 186 class VarExprAST : public ExprAST { 187 std::vector<std::pair<std::string, ExprAST*> > VarNames; 188 ExprAST *Body; 189 public: 190 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, 191 ExprAST *body) 192 : VarNames(varnames), Body(body) {} 193 194 virtual Value *Codegen(); 195 }; 196 197 /// PrototypeAST - This class represents the "prototype" for a function, 198 /// which captures its argument names as well as if it is an operator. 199 class PrototypeAST { 200 std::string Name; 201 std::vector<std::string> Args; 202 bool isOperator; 203 unsigned Precedence; // Precedence if a binary op. 204 public: 205 PrototypeAST(const std::string &name, const std::vector<std::string> &args, 206 bool isoperator = false, unsigned prec = 0) 207 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} 208 209 bool isUnaryOp() const { return isOperator && Args.size() == 1; } 210 bool isBinaryOp() const { return isOperator && Args.size() == 2; } 211 212 char getOperatorName() const { 213 assert(isUnaryOp() || isBinaryOp()); 214 return Name[Name.size()-1]; 215 } 216 217 unsigned getBinaryPrecedence() const { return Precedence; } 218 219 Function *Codegen(); 220 221 void CreateArgumentAllocas(Function *F); 222 }; 223 224 /// FunctionAST - This class represents a function definition itself. 225 class FunctionAST { 226 PrototypeAST *Proto; 227 ExprAST *Body; 228 public: 229 FunctionAST(PrototypeAST *proto, ExprAST *body) 230 : Proto(proto), Body(body) {} 231 232 Function *Codegen(); 233 }; 234 235 //===----------------------------------------------------------------------===// 236 // Parser 237 //===----------------------------------------------------------------------===// 238 239 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 240 /// token the parser is looking at. getNextToken reads another token from the 241 /// lexer and updates CurTok with its results. 242 static int CurTok; 243 static int getNextToken() { 244 return CurTok = gettok(); 245 } 246 247 /// BinopPrecedence - This holds the precedence for each binary operator that is 248 /// defined. 249 static std::map<char, int> BinopPrecedence; 250 251 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 252 static int GetTokPrecedence() { 253 if (!isascii(CurTok)) 254 return -1; 255 256 // Make sure it's a declared binop. 257 int TokPrec = BinopPrecedence[CurTok]; 258 if (TokPrec <= 0) return -1; 259 return TokPrec; 260 } 261 262 /// Error* - These are little helper functions for error handling. 263 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 264 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 265 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 266 267 static ExprAST *ParseExpression(); 268 269 /// identifierexpr 270 /// ::= identifier 271 /// ::= identifier '(' expression* ')' 272 static ExprAST *ParseIdentifierExpr() { 273 std::string IdName = IdentifierStr; 274 275 getNextToken(); // eat identifier. 276 277 if (CurTok != '(') // Simple variable ref. 278 return new VariableExprAST(IdName); 279 280 // Call. 281 getNextToken(); // eat ( 282 std::vector<ExprAST*> Args; 283 if (CurTok != ')') { 284 while (1) { 285 ExprAST *Arg = ParseExpression(); 286 if (!Arg) return 0; 287 Args.push_back(Arg); 288 289 if (CurTok == ')') break; 290 291 if (CurTok != ',') 292 return Error("Expected ')' or ',' in argument list"); 293 getNextToken(); 294 } 295 } 296 297 // Eat the ')'. 298 getNextToken(); 299 300 return new CallExprAST(IdName, Args); 301 } 302 303 /// numberexpr ::= number 304 static ExprAST *ParseNumberExpr() { 305 ExprAST *Result = new NumberExprAST(NumVal); 306 getNextToken(); // consume the number 307 return Result; 308 } 309 310 /// parenexpr ::= '(' expression ')' 311 static ExprAST *ParseParenExpr() { 312 getNextToken(); // eat (. 313 ExprAST *V = ParseExpression(); 314 if (!V) return 0; 315 316 if (CurTok != ')') 317 return Error("expected ')'"); 318 getNextToken(); // eat ). 319 return V; 320 } 321 322 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 323 static ExprAST *ParseIfExpr() { 324 getNextToken(); // eat the if. 325 326 // condition. 327 ExprAST *Cond = ParseExpression(); 328 if (!Cond) return 0; 329 330 if (CurTok != tok_then) 331 return Error("expected then"); 332 getNextToken(); // eat the then 333 334 ExprAST *Then = ParseExpression(); 335 if (Then == 0) return 0; 336 337 if (CurTok != tok_else) 338 return Error("expected else"); 339 340 getNextToken(); 341 342 ExprAST *Else = ParseExpression(); 343 if (!Else) return 0; 344 345 return new IfExprAST(Cond, Then, Else); 346 } 347 348 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 349 static ExprAST *ParseForExpr() { 350 getNextToken(); // eat the for. 351 352 if (CurTok != tok_identifier) 353 return Error("expected identifier after for"); 354 355 std::string IdName = IdentifierStr; 356 getNextToken(); // eat identifier. 357 358 if (CurTok != '=') 359 return Error("expected '=' after for"); 360 getNextToken(); // eat '='. 361 362 363 ExprAST *Start = ParseExpression(); 364 if (Start == 0) return 0; 365 if (CurTok != ',') 366 return Error("expected ',' after for start value"); 367 getNextToken(); 368 369 ExprAST *End = ParseExpression(); 370 if (End == 0) return 0; 371 372 // The step value is optional. 373 ExprAST *Step = 0; 374 if (CurTok == ',') { 375 getNextToken(); 376 Step = ParseExpression(); 377 if (Step == 0) return 0; 378 } 379 380 if (CurTok != tok_in) 381 return Error("expected 'in' after for"); 382 getNextToken(); // eat 'in'. 383 384 ExprAST *Body = ParseExpression(); 385 if (Body == 0) return 0; 386 387 return new ForExprAST(IdName, Start, End, Step, Body); 388 } 389 390 /// varexpr ::= 'var' identifier ('=' expression)? 391 // (',' identifier ('=' expression)?)* 'in' expression 392 static ExprAST *ParseVarExpr() { 393 getNextToken(); // eat the var. 394 395 std::vector<std::pair<std::string, ExprAST*> > VarNames; 396 397 // At least one variable name is required. 398 if (CurTok != tok_identifier) 399 return Error("expected identifier after var"); 400 401 while (1) { 402 std::string Name = IdentifierStr; 403 getNextToken(); // eat identifier. 404 405 // Read the optional initializer. 406 ExprAST *Init = 0; 407 if (CurTok == '=') { 408 getNextToken(); // eat the '='. 409 410 Init = ParseExpression(); 411 if (Init == 0) return 0; 412 } 413 414 VarNames.push_back(std::make_pair(Name, Init)); 415 416 // End of var list, exit loop. 417 if (CurTok != ',') break; 418 getNextToken(); // eat the ','. 419 420 if (CurTok != tok_identifier) 421 return Error("expected identifier list after var"); 422 } 423 424 // At this point, we have to have 'in'. 425 if (CurTok != tok_in) 426 return Error("expected 'in' keyword after 'var'"); 427 getNextToken(); // eat 'in'. 428 429 ExprAST *Body = ParseExpression(); 430 if (Body == 0) return 0; 431 432 return new VarExprAST(VarNames, Body); 433 } 434 435 /// primary 436 /// ::= identifierexpr 437 /// ::= numberexpr 438 /// ::= parenexpr 439 /// ::= ifexpr 440 /// ::= forexpr 441 /// ::= varexpr 442 static ExprAST *ParsePrimary() { 443 switch (CurTok) { 444 default: return Error("unknown token when expecting an expression"); 445 case tok_identifier: return ParseIdentifierExpr(); 446 case tok_number: return ParseNumberExpr(); 447 case '(': return ParseParenExpr(); 448 case tok_if: return ParseIfExpr(); 449 case tok_for: return ParseForExpr(); 450 case tok_var: return ParseVarExpr(); 451 } 452 } 453 454 /// unary 455 /// ::= primary 456 /// ::= '!' unary 457 static ExprAST *ParseUnary() { 458 // If the current token is not an operator, it must be a primary expr. 459 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 460 return ParsePrimary(); 461 462 // If this is a unary operator, read it. 463 int Opc = CurTok; 464 getNextToken(); 465 if (ExprAST *Operand = ParseUnary()) 466 return new UnaryExprAST(Opc, Operand); 467 return 0; 468 } 469 470 /// binoprhs 471 /// ::= ('+' unary)* 472 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 473 // If this is a binop, find its precedence. 474 while (1) { 475 int TokPrec = GetTokPrecedence(); 476 477 // If this is a binop that binds at least as tightly as the current binop, 478 // consume it, otherwise we are done. 479 if (TokPrec < ExprPrec) 480 return LHS; 481 482 // Okay, we know this is a binop. 483 int BinOp = CurTok; 484 getNextToken(); // eat binop 485 486 // Parse the unary expression after the binary operator. 487 ExprAST *RHS = ParseUnary(); 488 if (!RHS) return 0; 489 490 // If BinOp binds less tightly with RHS than the operator after RHS, let 491 // the pending operator take RHS as its LHS. 492 int NextPrec = GetTokPrecedence(); 493 if (TokPrec < NextPrec) { 494 RHS = ParseBinOpRHS(TokPrec+1, RHS); 495 if (RHS == 0) return 0; 496 } 497 498 // Merge LHS/RHS. 499 LHS = new BinaryExprAST(BinOp, LHS, RHS); 500 } 501 } 502 503 /// expression 504 /// ::= unary binoprhs 505 /// 506 static ExprAST *ParseExpression() { 507 ExprAST *LHS = ParseUnary(); 508 if (!LHS) return 0; 509 510 return ParseBinOpRHS(0, LHS); 511 } 512 513 /// prototype 514 /// ::= id '(' id* ')' 515 /// ::= binary LETTER number? (id, id) 516 /// ::= unary LETTER (id) 517 static PrototypeAST *ParsePrototype() { 518 std::string FnName; 519 520 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 521 unsigned BinaryPrecedence = 30; 522 523 switch (CurTok) { 524 default: 525 return ErrorP("Expected function name in prototype"); 526 case tok_identifier: 527 FnName = IdentifierStr; 528 Kind = 0; 529 getNextToken(); 530 break; 531 case tok_unary: 532 getNextToken(); 533 if (!isascii(CurTok)) 534 return ErrorP("Expected unary operator"); 535 FnName = "unary"; 536 FnName += (char)CurTok; 537 Kind = 1; 538 getNextToken(); 539 break; 540 case tok_binary: 541 getNextToken(); 542 if (!isascii(CurTok)) 543 return ErrorP("Expected binary operator"); 544 FnName = "binary"; 545 FnName += (char)CurTok; 546 Kind = 2; 547 getNextToken(); 548 549 // Read the precedence if present. 550 if (CurTok == tok_number) { 551 if (NumVal < 1 || NumVal > 100) 552 return ErrorP("Invalid precedecnce: must be 1..100"); 553 BinaryPrecedence = (unsigned)NumVal; 554 getNextToken(); 555 } 556 break; 557 } 558 559 if (CurTok != '(') 560 return ErrorP("Expected '(' in prototype"); 561 562 std::vector<std::string> ArgNames; 563 while (getNextToken() == tok_identifier) 564 ArgNames.push_back(IdentifierStr); 565 if (CurTok != ')') 566 return ErrorP("Expected ')' in prototype"); 567 568 // success. 569 getNextToken(); // eat ')'. 570 571 // Verify right number of names for operator. 572 if (Kind && ArgNames.size() != Kind) 573 return ErrorP("Invalid number of operands for operator"); 574 575 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); 576 } 577 578 /// definition ::= 'def' prototype expression 579 static FunctionAST *ParseDefinition() { 580 getNextToken(); // eat def. 581 PrototypeAST *Proto = ParsePrototype(); 582 if (Proto == 0) return 0; 583 584 if (ExprAST *E = ParseExpression()) 585 return new FunctionAST(Proto, E); 586 return 0; 587 } 588 589 /// toplevelexpr ::= expression 590 static FunctionAST *ParseTopLevelExpr() { 591 if (ExprAST *E = ParseExpression()) { 592 // Make an anonymous proto. 593 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 594 return new FunctionAST(Proto, E); 595 } 596 return 0; 597 } 598 599 /// external ::= 'extern' prototype 600 static PrototypeAST *ParseExtern() { 601 getNextToken(); // eat extern. 602 return ParsePrototype(); 603 } 604 605 //===----------------------------------------------------------------------===// 606 // Code Generation 607 //===----------------------------------------------------------------------===// 608 609 static Module *TheModule; 610 static FunctionPassManager *TheFPM; 611 static LLVMContext TheContext; 612 static IRBuilder<> Builder(TheContext); 613 static std::map<std::string, AllocaInst*> NamedValues; 614 615 Value *ErrorV(const char *Str) { Error(Str); return 0; } 616 617 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 618 /// the function. This is used for mutable variables etc. 619 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 620 const std::string &VarName) { 621 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 622 TheFunction->getEntryBlock().begin()); 623 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str()); 624 } 625 626 Value *NumberExprAST::Codegen() { 627 return ConstantFP::get(TheContext, APFloat(Val)); 628 } 629 630 Value *VariableExprAST::Codegen() { 631 // Look this variable up in the function. 632 Value *V = NamedValues[Name]; 633 if (V == 0) return ErrorV("Unknown variable name"); 634 635 // Load the value. 636 return Builder.CreateLoad(V, Name.c_str()); 637 } 638 639 Value *UnaryExprAST::Codegen() { 640 Value *OperandV = Operand->Codegen(); 641 if (OperandV == 0) return 0; 642 #ifdef USE_MCJIT 643 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode)); 644 #else 645 Function *F = TheModule->getFunction(std::string("unary")+Opcode); 646 #endif 647 if (F == 0) 648 return ErrorV("Unknown unary operator"); 649 650 return Builder.CreateCall(F, OperandV, "unop"); 651 } 652 653 Value *BinaryExprAST::Codegen() { 654 // Special case '=' because we don't want to emit the LHS as an expression. 655 if (Op == '=') { 656 // Assignment requires the LHS to be an identifier. 657 VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); 658 if (!LHSE) 659 return ErrorV("destination of '=' must be a variable"); 660 // Codegen the RHS. 661 Value *Val = RHS->Codegen(); 662 if (Val == 0) return 0; 663 664 // Look up the name. 665 Value *Variable = NamedValues[LHSE->getName()]; 666 if (Variable == 0) return ErrorV("Unknown variable name"); 667 668 Builder.CreateStore(Val, Variable); 669 return Val; 670 } 671 672 Value *L = LHS->Codegen(); 673 Value *R = RHS->Codegen(); 674 if (L == 0 || R == 0) return 0; 675 676 switch (Op) { 677 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 678 case '-': return Builder.CreateFSub(L, R, "subtmp"); 679 case '*': return Builder.CreateFMul(L, R, "multmp"); 680 case '/': return Builder.CreateFDiv(L, R, "divtmp"); 681 case '<': 682 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 683 // Convert bool 0/1 to double 0.0 or 1.0 684 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp"); 685 default: break; 686 } 687 688 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 689 // a call to it. 690 Function *F = TheModule->getFunction(std::string("binary")+Op); 691 assert(F && "binary operator not found!"); 692 693 Value *Ops[] = { L, R }; 694 return Builder.CreateCall(F, Ops, "binop"); 695 } 696 697 Value *CallExprAST::Codegen() { 698 // Look up the name in the global module table. 699 Function *CalleeF = TheModule->getFunction(Callee); 700 if (CalleeF == 0) { 701 char error_str[64]; 702 sprintf(error_str, "Unknown function referenced %s", Callee.c_str()); 703 return ErrorV(error_str); 704 } 705 706 // If argument mismatch error. 707 if (CalleeF->arg_size() != Args.size()) 708 return ErrorV("Incorrect # arguments passed"); 709 710 std::vector<Value*> ArgsV; 711 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 712 ArgsV.push_back(Args[i]->Codegen()); 713 if (ArgsV.back() == 0) return 0; 714 } 715 716 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 717 } 718 719 Value *IfExprAST::Codegen() { 720 Value *CondV = Cond->Codegen(); 721 if (CondV == 0) return 0; 722 723 // Convert condition to a bool by comparing equal to 0.0. 724 CondV = Builder.CreateFCmpONE( 725 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); 726 727 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 728 729 // Create blocks for the then and else cases. Insert the 'then' block at the 730 // end of the function. 731 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction); 732 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else"); 733 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); 734 735 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 736 737 // Emit then value. 738 Builder.SetInsertPoint(ThenBB); 739 740 Value *ThenV = Then->Codegen(); 741 if (ThenV == 0) return 0; 742 743 Builder.CreateBr(MergeBB); 744 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 745 ThenBB = Builder.GetInsertBlock(); 746 747 // Emit else block. 748 TheFunction->getBasicBlockList().push_back(ElseBB); 749 Builder.SetInsertPoint(ElseBB); 750 751 Value *ElseV = Else->Codegen(); 752 if (ElseV == 0) return 0; 753 754 Builder.CreateBr(MergeBB); 755 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 756 ElseBB = Builder.GetInsertBlock(); 757 758 // Emit merge block. 759 TheFunction->getBasicBlockList().push_back(MergeBB); 760 Builder.SetInsertPoint(MergeBB); 761 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp"); 762 763 PN->addIncoming(ThenV, ThenBB); 764 PN->addIncoming(ElseV, ElseBB); 765 return PN; 766 } 767 768 Value *ForExprAST::Codegen() { 769 // Output this as: 770 // var = alloca double 771 // ... 772 // start = startexpr 773 // store start -> var 774 // goto loop 775 // loop: 776 // ... 777 // bodyexpr 778 // ... 779 // loopend: 780 // step = stepexpr 781 // endcond = endexpr 782 // 783 // curvar = load var 784 // nextvar = curvar + step 785 // store nextvar -> var 786 // br endcond, loop, endloop 787 // outloop: 788 789 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 790 791 // Create an alloca for the variable in the entry block. 792 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 793 794 // Emit the start code first, without 'variable' in scope. 795 Value *StartVal = Start->Codegen(); 796 if (StartVal == 0) return 0; 797 798 // Store the value into the alloca. 799 Builder.CreateStore(StartVal, Alloca); 800 801 // Make the new basic block for the loop header, inserting after current 802 // block. 803 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction); 804 805 // Insert an explicit fall through from the current block to the LoopBB. 806 Builder.CreateBr(LoopBB); 807 808 // Start insertion in LoopBB. 809 Builder.SetInsertPoint(LoopBB); 810 811 // Within the loop, the variable is defined equal to the PHI node. If it 812 // shadows an existing variable, we have to restore it, so save it now. 813 AllocaInst *OldVal = NamedValues[VarName]; 814 NamedValues[VarName] = Alloca; 815 816 // Emit the body of the loop. This, like any other expr, can change the 817 // current BB. Note that we ignore the value computed by the body, but don't 818 // allow an error. 819 if (Body->Codegen() == 0) 820 return 0; 821 822 // Emit the step value. 823 Value *StepVal; 824 if (Step) { 825 StepVal = Step->Codegen(); 826 if (StepVal == 0) return 0; 827 } else { 828 // If not specified, use 1.0. 829 StepVal = ConstantFP::get(TheContext, APFloat(1.0)); 830 } 831 832 // Compute the end condition. 833 Value *EndCond = End->Codegen(); 834 if (EndCond == 0) return EndCond; 835 836 // Reload, increment, and restore the alloca. This handles the case where 837 // the body of the loop mutates the variable. 838 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); 839 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); 840 Builder.CreateStore(NextVar, Alloca); 841 842 // Convert condition to a bool by comparing equal to 0.0. 843 EndCond = Builder.CreateFCmpONE( 844 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); 845 846 // Create the "after loop" block and insert it. 847 BasicBlock *AfterBB = 848 BasicBlock::Create(TheContext, "afterloop", TheFunction); 849 850 // Insert the conditional branch into the end of LoopEndBB. 851 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 852 853 // Any new code will be inserted in AfterBB. 854 Builder.SetInsertPoint(AfterBB); 855 856 // Restore the unshadowed variable. 857 if (OldVal) 858 NamedValues[VarName] = OldVal; 859 else 860 NamedValues.erase(VarName); 861 862 863 // for expr always returns 0.0. 864 return Constant::getNullValue(Type::getDoubleTy(TheContext)); 865 } 866 867 Value *VarExprAST::Codegen() { 868 std::vector<AllocaInst *> OldBindings; 869 870 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 871 872 // Register all variables and emit their initializer. 873 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 874 const std::string &VarName = VarNames[i].first; 875 ExprAST *Init = VarNames[i].second; 876 877 // Emit the initializer before adding the variable to scope, this prevents 878 // the initializer from referencing the variable itself, and permits stuff 879 // like this: 880 // var a = 1 in 881 // var a = a in ... # refers to outer 'a'. 882 Value *InitVal; 883 if (Init) { 884 InitVal = Init->Codegen(); 885 if (InitVal == 0) return 0; 886 } else { // If not specified, use 0.0. 887 InitVal = ConstantFP::get(TheContext, APFloat(0.0)); 888 } 889 890 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 891 Builder.CreateStore(InitVal, Alloca); 892 893 // Remember the old variable binding so that we can restore the binding when 894 // we unrecurse. 895 OldBindings.push_back(NamedValues[VarName]); 896 897 // Remember this binding. 898 NamedValues[VarName] = Alloca; 899 } 900 901 // Codegen the body, now that all vars are in scope. 902 Value *BodyVal = Body->Codegen(); 903 if (BodyVal == 0) return 0; 904 905 // Pop all our variables from scope. 906 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 907 NamedValues[VarNames[i].first] = OldBindings[i]; 908 909 // Return the body computation. 910 return BodyVal; 911 } 912 913 Function *PrototypeAST::Codegen() { 914 // Make the function type: double(double,double) etc. 915 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext)); 916 FunctionType *FT = 917 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false); 918 919 Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); 920 // If F conflicted, there was already something named 'Name'. If it has a 921 // body, don't allow redefinition or reextern. 922 if (F->getName() != Name) { 923 // Delete the one we just made and get the existing one. 924 F->eraseFromParent(); 925 F = TheModule->getFunction(Name); 926 // If F already has a body, reject this. 927 if (!F->empty()) { 928 ErrorF("redefinition of function"); 929 return 0; 930 } 931 // If F took a different number of args, reject. 932 if (F->arg_size() != Args.size()) { 933 ErrorF("redefinition of function with different # args"); 934 return 0; 935 } 936 } 937 938 // Set names for all arguments. 939 unsigned Idx = 0; 940 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 941 ++AI, ++Idx) 942 AI->setName(Args[Idx]); 943 944 return F; 945 } 946 947 /// CreateArgumentAllocas - Create an alloca for each argument and register the 948 /// argument in the symbol table so that references to it will succeed. 949 void PrototypeAST::CreateArgumentAllocas(Function *F) { 950 Function::arg_iterator AI = F->arg_begin(); 951 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { 952 // Create an alloca for this variable. 953 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); 954 955 // Store the initial value into the alloca. 956 Builder.CreateStore(AI, Alloca); 957 958 // Add arguments to variable symbol table. 959 NamedValues[Args[Idx]] = Alloca; 960 } 961 } 962 963 Function *FunctionAST::Codegen() { 964 NamedValues.clear(); 965 966 Function *TheFunction = Proto->Codegen(); 967 if (TheFunction == 0) 968 return 0; 969 970 // If this is an operator, install it. 971 if (Proto->isBinaryOp()) 972 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 973 974 // Create a new basic block to start insertion into. 975 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); 976 Builder.SetInsertPoint(BB); 977 978 // Add all arguments to the symbol table and create their allocas. 979 Proto->CreateArgumentAllocas(TheFunction); 980 981 if (Value *RetVal = Body->Codegen()) { 982 // Finish off the function. 983 Builder.CreateRet(RetVal); 984 985 // Validate the generated code, checking for consistency. 986 verifyFunction(*TheFunction); 987 988 // Optimize the function. 989 TheFPM->run(*TheFunction); 990 991 return TheFunction; 992 } 993 994 // Error reading body, remove function. 995 TheFunction->eraseFromParent(); 996 997 if (Proto->isBinaryOp()) 998 BinopPrecedence.erase(Proto->getOperatorName()); 999 return 0; 1000 } 1001 1002 //===----------------------------------------------------------------------===// 1003 // Top-Level parsing and JIT Driver 1004 //===----------------------------------------------------------------------===// 1005 1006 static ExecutionEngine *TheExecutionEngine; 1007 1008 static void HandleDefinition() { 1009 if (FunctionAST *F = ParseDefinition()) { 1010 if (Function *LF = F->Codegen()) { 1011 #ifndef MINIMAL_STDERR_OUTPUT 1012 fprintf(stderr, "Read function definition:"); 1013 LF->dump(); 1014 #endif 1015 } 1016 } else { 1017 // Skip token for error recovery. 1018 getNextToken(); 1019 } 1020 } 1021 1022 static void HandleExtern() { 1023 if (PrototypeAST *P = ParseExtern()) { 1024 if (Function *F = P->Codegen()) { 1025 #ifndef MINIMAL_STDERR_OUTPUT 1026 fprintf(stderr, "Read extern: "); 1027 F->dump(); 1028 #endif 1029 } 1030 } else { 1031 // Skip token for error recovery. 1032 getNextToken(); 1033 } 1034 } 1035 1036 static void HandleTopLevelExpression() { 1037 // Evaluate a top-level expression into an anonymous function. 1038 if (FunctionAST *F = ParseTopLevelExpr()) { 1039 if (Function *LF = F->Codegen()) { 1040 // JIT the function, returning a function pointer. 1041 void *FPtr = TheExecutionEngine->getPointerToFunction(LF); 1042 // Cast it to the right type (takes no arguments, returns a double) so we 1043 // can call it as a native function. 1044 double (*FP)() = (double (*)())(intptr_t)FPtr; 1045 #ifdef MINIMAL_STDERR_OUTPUT 1046 FP(); 1047 #else 1048 fprintf(stderr, "Evaluated to %f\n", FP()); 1049 #endif 1050 } 1051 } else { 1052 // Skip token for error recovery. 1053 getNextToken(); 1054 } 1055 } 1056 1057 /// top ::= definition | external | expression | ';' 1058 static void MainLoop() { 1059 while (1) { 1060 #ifndef MINIMAL_STDERR_OUTPUT 1061 fprintf(stderr, "ready> "); 1062 #endif 1063 switch (CurTok) { 1064 case tok_eof: return; 1065 case ';': getNextToken(); break; // ignore top-level semicolons. 1066 case tok_def: HandleDefinition(); break; 1067 case tok_extern: HandleExtern(); break; 1068 default: HandleTopLevelExpression(); break; 1069 } 1070 } 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // "Library" functions that can be "extern'd" from user code. 1075 //===----------------------------------------------------------------------===// 1076 1077 /// putchard - putchar that takes a double and returns 0. 1078 extern "C" 1079 double putchard(double X) { 1080 putchar((char)X); 1081 return 0; 1082 } 1083 1084 /// printd - printf that takes a double prints it as "%f\n", returning 0. 1085 extern "C" 1086 double printd(double X) { 1087 printf("%f", X); 1088 return 0; 1089 } 1090 1091 extern "C" 1092 double printlf() { 1093 printf("\n"); 1094 return 0; 1095 } 1096 1097 //===----------------------------------------------------------------------===// 1098 // Main driver code. 1099 //===----------------------------------------------------------------------===// 1100 1101 int main(int argc, char **argv) { 1102 InitializeNativeTarget(); 1103 LLVMContext &Context = TheContext; 1104 1105 // Install standard binary operators. 1106 // 1 is lowest precedence. 1107 BinopPrecedence['='] = 2; 1108 BinopPrecedence['<'] = 10; 1109 BinopPrecedence['+'] = 20; 1110 BinopPrecedence['-'] = 20; 1111 BinopPrecedence['/'] = 40; 1112 BinopPrecedence['*'] = 40; // highest. 1113 1114 // Make the module, which holds all the code. 1115 TheModule = new Module("my cool jit", Context); 1116 1117 // Create the JIT. This takes ownership of the module. 1118 std::string ErrStr; 1119 TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); 1120 if (!TheExecutionEngine) { 1121 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 1122 exit(1); 1123 } 1124 1125 FunctionPassManager OurFPM(TheModule); 1126 1127 // Set up the optimizer pipeline. Start with registering info about how the 1128 // target lays out data structures. 1129 OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); 1130 // Provide basic AliasAnalysis support for GVN. 1131 OurFPM.add(createBasicAliasAnalysisPass()); 1132 // Promote allocas to registers. 1133 OurFPM.add(createPromoteMemoryToRegisterPass()); 1134 // Do simple "peephole" optimizations and bit-twiddling optzns. 1135 OurFPM.add(createInstructionCombiningPass()); 1136 // Reassociate expressions. 1137 OurFPM.add(createReassociatePass()); 1138 // Eliminate Common SubExpressions. 1139 OurFPM.add(createGVNPass()); 1140 // Simplify the control flow graph (deleting unreachable blocks, etc). 1141 OurFPM.add(createCFGSimplificationPass()); 1142 1143 OurFPM.doInitialization(); 1144 1145 // Set the global so the code gen can use this. 1146 TheFPM = &OurFPM; 1147 1148 // Prime the first token. 1149 #ifndef MINIMAL_STDERR_OUTPUT 1150 fprintf(stderr, "ready> "); 1151 #endif 1152 getNextToken(); 1153 1154 // Run the main "interpreter loop" now. 1155 MainLoop(); 1156 1157 // Print out all of the generated code. 1158 TheFPM = 0; 1159 #ifndef MINIMAL_STDERR_OUTPUT 1160 TheModule->dump(); 1161 #endif 1162 return 0; 1163 } 1164