1 #define MINIMAL_STDERR_OUTPUT 2 3 #include "llvm/Analysis/Passes.h" 4 #include "llvm/ExecutionEngine/ExecutionEngine.h" 5 #include "llvm/ExecutionEngine/MCJIT.h" 6 #include "llvm/ExecutionEngine/SectionMemoryManager.h" 7 #include "llvm/IR/DataLayout.h" 8 #include "llvm/IR/DerivedTypes.h" 9 #include "llvm/IR/IRBuilder.h" 10 #include "llvm/IR/LLVMContext.h" 11 #include "llvm/IR/LegacyPassManager.h" 12 #include "llvm/IR/Module.h" 13 #include "llvm/IR/Verifier.h" 14 #include "llvm/Support/TargetSelect.h" 15 #include "llvm/Transforms/Scalar.h" 16 #include <cctype> 17 #include <cstdio> 18 #include <map> 19 #include <string> 20 #include <vector> 21 using namespace llvm; 22 23 //===----------------------------------------------------------------------===// 24 // Lexer 25 //===----------------------------------------------------------------------===// 26 27 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one 28 // of these for known things. 29 enum Token { 30 tok_eof = -1, 31 32 // commands 33 tok_def = -2, tok_extern = -3, 34 35 // primary 36 tok_identifier = -4, tok_number = -5, 37 38 // control 39 tok_if = -6, tok_then = -7, tok_else = -8, 40 tok_for = -9, tok_in = -10, 41 42 // operators 43 tok_binary = -11, tok_unary = -12, 44 45 // var definition 46 tok_var = -13 47 }; 48 49 static std::string IdentifierStr; // Filled in if tok_identifier 50 static double NumVal; // Filled in if tok_number 51 52 /// gettok - Return the next token from standard input. 53 static int gettok() { 54 static int LastChar = ' '; 55 56 // Skip any whitespace. 57 while (isspace(LastChar)) 58 LastChar = getchar(); 59 60 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* 61 IdentifierStr = LastChar; 62 while (isalnum((LastChar = getchar()))) 63 IdentifierStr += LastChar; 64 65 if (IdentifierStr == "def") return tok_def; 66 if (IdentifierStr == "extern") return tok_extern; 67 if (IdentifierStr == "if") return tok_if; 68 if (IdentifierStr == "then") return tok_then; 69 if (IdentifierStr == "else") return tok_else; 70 if (IdentifierStr == "for") return tok_for; 71 if (IdentifierStr == "in") return tok_in; 72 if (IdentifierStr == "binary") return tok_binary; 73 if (IdentifierStr == "unary") return tok_unary; 74 if (IdentifierStr == "var") return tok_var; 75 return tok_identifier; 76 } 77 78 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+ 79 std::string NumStr; 80 do { 81 NumStr += LastChar; 82 LastChar = getchar(); 83 } while (isdigit(LastChar) || LastChar == '.'); 84 85 NumVal = strtod(NumStr.c_str(), 0); 86 return tok_number; 87 } 88 89 if (LastChar == '#') { 90 // Comment until end of line. 91 do LastChar = getchar(); 92 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); 93 94 if (LastChar != EOF) 95 return gettok(); 96 } 97 98 // Check for end of file. Don't eat the EOF. 99 if (LastChar == EOF) 100 return tok_eof; 101 102 // Otherwise, just return the character as its ascii value. 103 int ThisChar = LastChar; 104 LastChar = getchar(); 105 return ThisChar; 106 } 107 108 //===----------------------------------------------------------------------===// 109 // Abstract Syntax Tree (aka Parse Tree) 110 //===----------------------------------------------------------------------===// 111 112 /// ExprAST - Base class for all expression nodes. 113 class ExprAST { 114 public: 115 virtual ~ExprAST() {} 116 virtual Value *Codegen() = 0; 117 }; 118 119 /// NumberExprAST - Expression class for numeric literals like "1.0". 120 class NumberExprAST : public ExprAST { 121 double Val; 122 public: 123 NumberExprAST(double val) : Val(val) {} 124 virtual Value *Codegen(); 125 }; 126 127 /// VariableExprAST - Expression class for referencing a variable, like "a". 128 class VariableExprAST : public ExprAST { 129 std::string Name; 130 public: 131 VariableExprAST(const std::string &name) : Name(name) {} 132 const std::string &getName() const { return Name; } 133 virtual Value *Codegen(); 134 }; 135 136 /// UnaryExprAST - Expression class for a unary operator. 137 class UnaryExprAST : public ExprAST { 138 char Opcode; 139 ExprAST *Operand; 140 public: 141 UnaryExprAST(char opcode, ExprAST *operand) 142 : Opcode(opcode), Operand(operand) {} 143 virtual Value *Codegen(); 144 }; 145 146 /// BinaryExprAST - Expression class for a binary operator. 147 class BinaryExprAST : public ExprAST { 148 char Op; 149 ExprAST *LHS, *RHS; 150 public: 151 BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) 152 : Op(op), LHS(lhs), RHS(rhs) {} 153 virtual Value *Codegen(); 154 }; 155 156 /// CallExprAST - Expression class for function calls. 157 class CallExprAST : public ExprAST { 158 std::string Callee; 159 std::vector<ExprAST*> Args; 160 public: 161 CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) 162 : Callee(callee), Args(args) {} 163 virtual Value *Codegen(); 164 }; 165 166 /// IfExprAST - Expression class for if/then/else. 167 class IfExprAST : public ExprAST { 168 ExprAST *Cond, *Then, *Else; 169 public: 170 IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) 171 : Cond(cond), Then(then), Else(_else) {} 172 virtual Value *Codegen(); 173 }; 174 175 /// ForExprAST - Expression class for for/in. 176 class ForExprAST : public ExprAST { 177 std::string VarName; 178 ExprAST *Start, *End, *Step, *Body; 179 public: 180 ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, 181 ExprAST *step, ExprAST *body) 182 : VarName(varname), Start(start), End(end), Step(step), Body(body) {} 183 virtual Value *Codegen(); 184 }; 185 186 /// VarExprAST - Expression class for var/in 187 class VarExprAST : public ExprAST { 188 std::vector<std::pair<std::string, ExprAST*> > VarNames; 189 ExprAST *Body; 190 public: 191 VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, 192 ExprAST *body) 193 : VarNames(varnames), Body(body) {} 194 195 virtual Value *Codegen(); 196 }; 197 198 /// PrototypeAST - This class represents the "prototype" for a function, 199 /// which captures its argument names as well as if it is an operator. 200 class PrototypeAST { 201 std::string Name; 202 std::vector<std::string> Args; 203 bool isOperator; 204 unsigned Precedence; // Precedence if a binary op. 205 public: 206 PrototypeAST(const std::string &name, const std::vector<std::string> &args, 207 bool isoperator = false, unsigned prec = 0) 208 : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} 209 210 bool isUnaryOp() const { return isOperator && Args.size() == 1; } 211 bool isBinaryOp() const { return isOperator && Args.size() == 2; } 212 213 char getOperatorName() const { 214 assert(isUnaryOp() || isBinaryOp()); 215 return Name[Name.size()-1]; 216 } 217 218 unsigned getBinaryPrecedence() const { return Precedence; } 219 220 Function *Codegen(); 221 222 void CreateArgumentAllocas(Function *F); 223 }; 224 225 /// FunctionAST - This class represents a function definition itself. 226 class FunctionAST { 227 PrototypeAST *Proto; 228 ExprAST *Body; 229 public: 230 FunctionAST(PrototypeAST *proto, ExprAST *body) 231 : Proto(proto), Body(body) {} 232 233 Function *Codegen(); 234 }; 235 236 //===----------------------------------------------------------------------===// 237 // Parser 238 //===----------------------------------------------------------------------===// 239 240 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current 241 /// token the parser is looking at. getNextToken reads another token from the 242 /// lexer and updates CurTok with its results. 243 static int CurTok; 244 static int getNextToken() { 245 return CurTok = gettok(); 246 } 247 248 /// BinopPrecedence - This holds the precedence for each binary operator that is 249 /// defined. 250 static std::map<char, int> BinopPrecedence; 251 252 /// GetTokPrecedence - Get the precedence of the pending binary operator token. 253 static int GetTokPrecedence() { 254 if (!isascii(CurTok)) 255 return -1; 256 257 // Make sure it's a declared binop. 258 int TokPrec = BinopPrecedence[CurTok]; 259 if (TokPrec <= 0) return -1; 260 return TokPrec; 261 } 262 263 /// Error* - These are little helper functions for error handling. 264 ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} 265 PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } 266 FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } 267 268 static ExprAST *ParseExpression(); 269 270 /// identifierexpr 271 /// ::= identifier 272 /// ::= identifier '(' expression* ')' 273 static ExprAST *ParseIdentifierExpr() { 274 std::string IdName = IdentifierStr; 275 276 getNextToken(); // eat identifier. 277 278 if (CurTok != '(') // Simple variable ref. 279 return new VariableExprAST(IdName); 280 281 // Call. 282 getNextToken(); // eat ( 283 std::vector<ExprAST*> Args; 284 if (CurTok != ')') { 285 while (1) { 286 ExprAST *Arg = ParseExpression(); 287 if (!Arg) return 0; 288 Args.push_back(Arg); 289 290 if (CurTok == ')') break; 291 292 if (CurTok != ',') 293 return Error("Expected ')' or ',' in argument list"); 294 getNextToken(); 295 } 296 } 297 298 // Eat the ')'. 299 getNextToken(); 300 301 return new CallExprAST(IdName, Args); 302 } 303 304 /// numberexpr ::= number 305 static ExprAST *ParseNumberExpr() { 306 ExprAST *Result = new NumberExprAST(NumVal); 307 getNextToken(); // consume the number 308 return Result; 309 } 310 311 /// parenexpr ::= '(' expression ')' 312 static ExprAST *ParseParenExpr() { 313 getNextToken(); // eat (. 314 ExprAST *V = ParseExpression(); 315 if (!V) return 0; 316 317 if (CurTok != ')') 318 return Error("expected ')'"); 319 getNextToken(); // eat ). 320 return V; 321 } 322 323 /// ifexpr ::= 'if' expression 'then' expression 'else' expression 324 static ExprAST *ParseIfExpr() { 325 getNextToken(); // eat the if. 326 327 // condition. 328 ExprAST *Cond = ParseExpression(); 329 if (!Cond) return 0; 330 331 if (CurTok != tok_then) 332 return Error("expected then"); 333 getNextToken(); // eat the then 334 335 ExprAST *Then = ParseExpression(); 336 if (Then == 0) return 0; 337 338 if (CurTok != tok_else) 339 return Error("expected else"); 340 341 getNextToken(); 342 343 ExprAST *Else = ParseExpression(); 344 if (!Else) return 0; 345 346 return new IfExprAST(Cond, Then, Else); 347 } 348 349 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression 350 static ExprAST *ParseForExpr() { 351 getNextToken(); // eat the for. 352 353 if (CurTok != tok_identifier) 354 return Error("expected identifier after for"); 355 356 std::string IdName = IdentifierStr; 357 getNextToken(); // eat identifier. 358 359 if (CurTok != '=') 360 return Error("expected '=' after for"); 361 getNextToken(); // eat '='. 362 363 364 ExprAST *Start = ParseExpression(); 365 if (Start == 0) return 0; 366 if (CurTok != ',') 367 return Error("expected ',' after for start value"); 368 getNextToken(); 369 370 ExprAST *End = ParseExpression(); 371 if (End == 0) return 0; 372 373 // The step value is optional. 374 ExprAST *Step = 0; 375 if (CurTok == ',') { 376 getNextToken(); 377 Step = ParseExpression(); 378 if (Step == 0) return 0; 379 } 380 381 if (CurTok != tok_in) 382 return Error("expected 'in' after for"); 383 getNextToken(); // eat 'in'. 384 385 ExprAST *Body = ParseExpression(); 386 if (Body == 0) return 0; 387 388 return new ForExprAST(IdName, Start, End, Step, Body); 389 } 390 391 /// varexpr ::= 'var' identifier ('=' expression)? 392 // (',' identifier ('=' expression)?)* 'in' expression 393 static ExprAST *ParseVarExpr() { 394 getNextToken(); // eat the var. 395 396 std::vector<std::pair<std::string, ExprAST*> > VarNames; 397 398 // At least one variable name is required. 399 if (CurTok != tok_identifier) 400 return Error("expected identifier after var"); 401 402 while (1) { 403 std::string Name = IdentifierStr; 404 getNextToken(); // eat identifier. 405 406 // Read the optional initializer. 407 ExprAST *Init = 0; 408 if (CurTok == '=') { 409 getNextToken(); // eat the '='. 410 411 Init = ParseExpression(); 412 if (Init == 0) return 0; 413 } 414 415 VarNames.push_back(std::make_pair(Name, Init)); 416 417 // End of var list, exit loop. 418 if (CurTok != ',') break; 419 getNextToken(); // eat the ','. 420 421 if (CurTok != tok_identifier) 422 return Error("expected identifier list after var"); 423 } 424 425 // At this point, we have to have 'in'. 426 if (CurTok != tok_in) 427 return Error("expected 'in' keyword after 'var'"); 428 getNextToken(); // eat 'in'. 429 430 ExprAST *Body = ParseExpression(); 431 if (Body == 0) return 0; 432 433 return new VarExprAST(VarNames, Body); 434 } 435 436 /// primary 437 /// ::= identifierexpr 438 /// ::= numberexpr 439 /// ::= parenexpr 440 /// ::= ifexpr 441 /// ::= forexpr 442 /// ::= varexpr 443 static ExprAST *ParsePrimary() { 444 switch (CurTok) { 445 default: return Error("unknown token when expecting an expression"); 446 case tok_identifier: return ParseIdentifierExpr(); 447 case tok_number: return ParseNumberExpr(); 448 case '(': return ParseParenExpr(); 449 case tok_if: return ParseIfExpr(); 450 case tok_for: return ParseForExpr(); 451 case tok_var: return ParseVarExpr(); 452 } 453 } 454 455 /// unary 456 /// ::= primary 457 /// ::= '!' unary 458 static ExprAST *ParseUnary() { 459 // If the current token is not an operator, it must be a primary expr. 460 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') 461 return ParsePrimary(); 462 463 // If this is a unary operator, read it. 464 int Opc = CurTok; 465 getNextToken(); 466 if (ExprAST *Operand = ParseUnary()) 467 return new UnaryExprAST(Opc, Operand); 468 return 0; 469 } 470 471 /// binoprhs 472 /// ::= ('+' unary)* 473 static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { 474 // If this is a binop, find its precedence. 475 while (1) { 476 int TokPrec = GetTokPrecedence(); 477 478 // If this is a binop that binds at least as tightly as the current binop, 479 // consume it, otherwise we are done. 480 if (TokPrec < ExprPrec) 481 return LHS; 482 483 // Okay, we know this is a binop. 484 int BinOp = CurTok; 485 getNextToken(); // eat binop 486 487 // Parse the unary expression after the binary operator. 488 ExprAST *RHS = ParseUnary(); 489 if (!RHS) return 0; 490 491 // If BinOp binds less tightly with RHS than the operator after RHS, let 492 // the pending operator take RHS as its LHS. 493 int NextPrec = GetTokPrecedence(); 494 if (TokPrec < NextPrec) { 495 RHS = ParseBinOpRHS(TokPrec+1, RHS); 496 if (RHS == 0) return 0; 497 } 498 499 // Merge LHS/RHS. 500 LHS = new BinaryExprAST(BinOp, LHS, RHS); 501 } 502 } 503 504 /// expression 505 /// ::= unary binoprhs 506 /// 507 static ExprAST *ParseExpression() { 508 ExprAST *LHS = ParseUnary(); 509 if (!LHS) return 0; 510 511 return ParseBinOpRHS(0, LHS); 512 } 513 514 /// prototype 515 /// ::= id '(' id* ')' 516 /// ::= binary LETTER number? (id, id) 517 /// ::= unary LETTER (id) 518 static PrototypeAST *ParsePrototype() { 519 std::string FnName; 520 521 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. 522 unsigned BinaryPrecedence = 30; 523 524 switch (CurTok) { 525 default: 526 return ErrorP("Expected function name in prototype"); 527 case tok_identifier: 528 FnName = IdentifierStr; 529 Kind = 0; 530 getNextToken(); 531 break; 532 case tok_unary: 533 getNextToken(); 534 if (!isascii(CurTok)) 535 return ErrorP("Expected unary operator"); 536 FnName = "unary"; 537 FnName += (char)CurTok; 538 Kind = 1; 539 getNextToken(); 540 break; 541 case tok_binary: 542 getNextToken(); 543 if (!isascii(CurTok)) 544 return ErrorP("Expected binary operator"); 545 FnName = "binary"; 546 FnName += (char)CurTok; 547 Kind = 2; 548 getNextToken(); 549 550 // Read the precedence if present. 551 if (CurTok == tok_number) { 552 if (NumVal < 1 || NumVal > 100) 553 return ErrorP("Invalid precedecnce: must be 1..100"); 554 BinaryPrecedence = (unsigned)NumVal; 555 getNextToken(); 556 } 557 break; 558 } 559 560 if (CurTok != '(') 561 return ErrorP("Expected '(' in prototype"); 562 563 std::vector<std::string> ArgNames; 564 while (getNextToken() == tok_identifier) 565 ArgNames.push_back(IdentifierStr); 566 if (CurTok != ')') 567 return ErrorP("Expected ')' in prototype"); 568 569 // success. 570 getNextToken(); // eat ')'. 571 572 // Verify right number of names for operator. 573 if (Kind && ArgNames.size() != Kind) 574 return ErrorP("Invalid number of operands for operator"); 575 576 return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); 577 } 578 579 /// definition ::= 'def' prototype expression 580 static FunctionAST *ParseDefinition() { 581 getNextToken(); // eat def. 582 PrototypeAST *Proto = ParsePrototype(); 583 if (Proto == 0) return 0; 584 585 if (ExprAST *E = ParseExpression()) 586 return new FunctionAST(Proto, E); 587 return 0; 588 } 589 590 /// toplevelexpr ::= expression 591 static FunctionAST *ParseTopLevelExpr() { 592 if (ExprAST *E = ParseExpression()) { 593 // Make an anonymous proto. 594 PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); 595 return new FunctionAST(Proto, E); 596 } 597 return 0; 598 } 599 600 /// external ::= 'extern' prototype 601 static PrototypeAST *ParseExtern() { 602 getNextToken(); // eat extern. 603 return ParsePrototype(); 604 } 605 606 //===----------------------------------------------------------------------===// 607 // Quick and dirty hack 608 //===----------------------------------------------------------------------===// 609 610 // FIXME: Obviously we can do better than this 611 std::string GenerateUniqueName(const char *root) 612 { 613 static int i = 0; 614 char s[16]; 615 sprintf(s, "%s%d", root, i++); 616 std::string S = s; 617 return S; 618 } 619 620 std::string MakeLegalFunctionName(std::string Name) 621 { 622 std::string NewName; 623 if (!Name.length()) 624 return GenerateUniqueName("anon_func_"); 625 626 // Start with what we have 627 NewName = Name; 628 629 // Look for a numberic first character 630 if (NewName.find_first_of("0123456789") == 0) { 631 NewName.insert(0, 1, 'n'); 632 } 633 634 // Replace illegal characters with their ASCII equivalent 635 std::string legal_elements = "_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"; 636 size_t pos; 637 while ((pos = NewName.find_first_not_of(legal_elements)) != std::string::npos) { 638 char old_c = NewName.at(pos); 639 char new_str[16]; 640 sprintf(new_str, "%d", (int)old_c); 641 NewName = NewName.replace(pos, 1, new_str); 642 } 643 644 return NewName; 645 } 646 647 //===----------------------------------------------------------------------===// 648 // MCJIT helper class 649 //===----------------------------------------------------------------------===// 650 651 class MCJITHelper 652 { 653 public: 654 MCJITHelper(LLVMContext& C) : Context(C), OpenModule(NULL) {} 655 ~MCJITHelper(); 656 657 Function *getFunction(const std::string FnName); 658 Module *getModuleForNewFunction(); 659 void *getPointerToFunction(Function* F); 660 void *getPointerToNamedFunction(const std::string &Name); 661 ExecutionEngine *compileModule(Module *M); 662 void closeCurrentModule(); 663 void dump(); 664 665 private: 666 typedef std::vector<Module*> ModuleVector; 667 668 LLVMContext &Context; 669 Module *OpenModule; 670 ModuleVector Modules; 671 std::map<Module *, ExecutionEngine *> EngineMap; 672 }; 673 674 class HelpingMemoryManager : public SectionMemoryManager 675 { 676 HelpingMemoryManager(const HelpingMemoryManager&) = delete; 677 void operator=(const HelpingMemoryManager&) = delete; 678 679 public: 680 HelpingMemoryManager(MCJITHelper *Helper) : MasterHelper(Helper) {} 681 virtual ~HelpingMemoryManager() {} 682 683 /// This method returns the address of the specified function. 684 /// Our implementation will attempt to find functions in other 685 /// modules associated with the MCJITHelper to cross link functions 686 /// from one generated module to another. 687 /// 688 /// If \p AbortOnFailure is false and no function with the given name is 689 /// found, this function returns a null pointer. Otherwise, it prints a 690 /// message to stderr and aborts. 691 virtual void *getPointerToNamedFunction(const std::string &Name, 692 bool AbortOnFailure = true); 693 private: 694 MCJITHelper *MasterHelper; 695 }; 696 697 void *HelpingMemoryManager::getPointerToNamedFunction(const std::string &Name, 698 bool AbortOnFailure) 699 { 700 // Try the standard symbol resolution first, but ask it not to abort. 701 void *pfn = SectionMemoryManager::getPointerToNamedFunction(Name, false); 702 if (pfn) 703 return pfn; 704 705 pfn = MasterHelper->getPointerToNamedFunction(Name); 706 if (!pfn && AbortOnFailure) 707 report_fatal_error("Program used external function '" + Name + 708 "' which could not be resolved!"); 709 return pfn; 710 } 711 712 MCJITHelper::~MCJITHelper() 713 { 714 // Walk the vector of modules. 715 ModuleVector::iterator it, end; 716 for (it = Modules.begin(), end = Modules.end(); 717 it != end; ++it) { 718 // See if we have an execution engine for this module. 719 std::map<Module*, ExecutionEngine*>::iterator mapIt = EngineMap.find(*it); 720 // If we have an EE, the EE owns the module so just delete the EE. 721 if (mapIt != EngineMap.end()) { 722 delete mapIt->second; 723 } else { 724 // Otherwise, we still own the module. Delete it now. 725 delete *it; 726 } 727 } 728 } 729 730 Function *MCJITHelper::getFunction(const std::string FnName) { 731 ModuleVector::iterator begin = Modules.begin(); 732 ModuleVector::iterator end = Modules.end(); 733 ModuleVector::iterator it; 734 for (it = begin; it != end; ++it) { 735 Function *F = (*it)->getFunction(FnName); 736 if (F) { 737 if (*it == OpenModule) 738 return F; 739 740 assert(OpenModule != NULL); 741 742 // This function is in a module that has already been JITed. 743 // We need to generate a new prototype for external linkage. 744 Function *PF = OpenModule->getFunction(FnName); 745 if (PF && !PF->empty()) { 746 ErrorF("redefinition of function across modules"); 747 return 0; 748 } 749 750 // If we don't have a prototype yet, create one. 751 if (!PF) 752 PF = Function::Create(F->getFunctionType(), 753 Function::ExternalLinkage, 754 FnName, 755 OpenModule); 756 return PF; 757 } 758 } 759 return NULL; 760 } 761 762 Module *MCJITHelper::getModuleForNewFunction() { 763 // If we have a Module that hasn't been JITed, use that. 764 if (OpenModule) 765 return OpenModule; 766 767 // Otherwise create a new Module. 768 std::string ModName = GenerateUniqueName("mcjit_module_"); 769 Module *M = new Module(ModName, Context); 770 Modules.push_back(M); 771 OpenModule = M; 772 return M; 773 } 774 775 void *MCJITHelper::getPointerToFunction(Function* F) { 776 // Look for this function in an existing module 777 ModuleVector::iterator begin = Modules.begin(); 778 ModuleVector::iterator end = Modules.end(); 779 ModuleVector::iterator it; 780 std::string FnName = F->getName(); 781 for (it = begin; it != end; ++it) { 782 Function *MF = (*it)->getFunction(FnName); 783 if (MF == F) { 784 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it); 785 if (eeIt != EngineMap.end()) { 786 void *P = eeIt->second->getPointerToFunction(F); 787 if (P) 788 return P; 789 } else { 790 ExecutionEngine *EE = compileModule(*it); 791 void *P = EE->getPointerToFunction(F); 792 if (P) 793 return P; 794 } 795 } 796 } 797 return NULL; 798 } 799 800 void MCJITHelper::closeCurrentModule() { 801 OpenModule = NULL; 802 } 803 804 ExecutionEngine *MCJITHelper::compileModule(Module *M) { 805 if (M == OpenModule) 806 closeCurrentModule(); 807 808 std::string ErrStr; 809 ExecutionEngine *NewEngine = EngineBuilder(M) 810 .setErrorStr(&ErrStr) 811 .setMCJITMemoryManager(new HelpingMemoryManager(this)) 812 .create(); 813 if (!NewEngine) { 814 fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); 815 exit(1); 816 } 817 818 // Create a function pass manager for this engine 819 FunctionPassManager *FPM = new FunctionPassManager(M); 820 821 // Set up the optimizer pipeline. Start with registering info about how the 822 // target lays out data structures. 823 FPM->add(new DataLayout(*NewEngine->getDataLayout())); 824 // Provide basic AliasAnalysis support for GVN. 825 FPM->add(createBasicAliasAnalysisPass()); 826 // Promote allocas to registers. 827 FPM->add(createPromoteMemoryToRegisterPass()); 828 // Do simple "peephole" optimizations and bit-twiddling optzns. 829 FPM->add(createInstructionCombiningPass()); 830 // Reassociate expressions. 831 FPM->add(createReassociatePass()); 832 // Eliminate Common SubExpressions. 833 FPM->add(createGVNPass()); 834 // Simplify the control flow graph (deleting unreachable blocks, etc). 835 FPM->add(createCFGSimplificationPass()); 836 FPM->doInitialization(); 837 838 // For each function in the module 839 Module::iterator it; 840 Module::iterator end = M->end(); 841 for (it = M->begin(); it != end; ++it) { 842 // Run the FPM on this function 843 FPM->run(*it); 844 } 845 846 // We don't need this anymore 847 delete FPM; 848 849 // Store this engine 850 EngineMap[M] = NewEngine; 851 NewEngine->finalizeObject(); 852 853 return NewEngine; 854 } 855 856 void *MCJITHelper::getPointerToNamedFunction(const std::string &Name) 857 { 858 // Look for the functions in our modules, compiling only as necessary 859 ModuleVector::iterator begin = Modules.begin(); 860 ModuleVector::iterator end = Modules.end(); 861 ModuleVector::iterator it; 862 for (it = begin; it != end; ++it) { 863 Function *F = (*it)->getFunction(Name); 864 if (F && !F->empty()) { 865 std::map<Module*, ExecutionEngine*>::iterator eeIt = EngineMap.find(*it); 866 if (eeIt != EngineMap.end()) { 867 void *P = eeIt->second->getPointerToFunction(F); 868 if (P) 869 return P; 870 } else { 871 ExecutionEngine *EE = compileModule(*it); 872 void *P = EE->getPointerToFunction(F); 873 if (P) 874 return P; 875 } 876 } 877 } 878 return NULL; 879 } 880 881 void MCJITHelper::dump() 882 { 883 ModuleVector::iterator begin = Modules.begin(); 884 ModuleVector::iterator end = Modules.end(); 885 ModuleVector::iterator it; 886 for (it = begin; it != end; ++it) 887 (*it)->dump(); 888 } 889 890 //===----------------------------------------------------------------------===// 891 // Code Generation 892 //===----------------------------------------------------------------------===// 893 894 static MCJITHelper *TheHelper; 895 static LLVMContext TheContext; 896 static IRBuilder<> Builder(TheContext); 897 static std::map<std::string, AllocaInst*> NamedValues; 898 899 Value *ErrorV(const char *Str) { Error(Str); return 0; } 900 901 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of 902 /// the function. This is used for mutable variables etc. 903 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, 904 const std::string &VarName) { 905 IRBuilder<> TmpB(&TheFunction->getEntryBlock(), 906 TheFunction->getEntryBlock().begin()); 907 return TmpB.CreateAlloca(Type::getDoubleTy(TheContext), 0, VarName.c_str()); 908 } 909 910 Value *NumberExprAST::Codegen() { 911 return ConstantFP::get(TheContext, APFloat(Val)); 912 } 913 914 Value *VariableExprAST::Codegen() { 915 // Look this variable up in the function. 916 Value *V = NamedValues[Name]; 917 char ErrStr[256]; 918 sprintf(ErrStr, "Unknown variable name %s", Name.c_str()); 919 if (V == 0) return ErrorV(ErrStr); 920 921 // Load the value. 922 return Builder.CreateLoad(V, Name.c_str()); 923 } 924 925 Value *UnaryExprAST::Codegen() { 926 Value *OperandV = Operand->Codegen(); 927 if (OperandV == 0) return 0; 928 929 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode)); 930 if (F == 0) 931 return ErrorV("Unknown unary operator"); 932 933 return Builder.CreateCall(F, OperandV, "unop"); 934 } 935 936 Value *BinaryExprAST::Codegen() { 937 // Special case '=' because we don't want to emit the LHS as an expression. 938 if (Op == '=') { 939 // Assignment requires the LHS to be an identifier. 940 VariableExprAST *LHSE = static_cast<VariableExprAST*>(LHS); 941 if (!LHSE) 942 return ErrorV("destination of '=' must be a variable"); 943 // Codegen the RHS. 944 Value *Val = RHS->Codegen(); 945 if (Val == 0) return 0; 946 947 // Look up the name. 948 Value *Variable = NamedValues[LHSE->getName()]; 949 if (Variable == 0) return ErrorV("Unknown variable name"); 950 951 Builder.CreateStore(Val, Variable); 952 return Val; 953 } 954 955 Value *L = LHS->Codegen(); 956 Value *R = RHS->Codegen(); 957 if (L == 0 || R == 0) return 0; 958 959 switch (Op) { 960 case '+': return Builder.CreateFAdd(L, R, "addtmp"); 961 case '-': return Builder.CreateFSub(L, R, "subtmp"); 962 case '*': return Builder.CreateFMul(L, R, "multmp"); 963 case '/': return Builder.CreateFDiv(L, R, "divtmp"); 964 case '<': 965 L = Builder.CreateFCmpULT(L, R, "cmptmp"); 966 // Convert bool 0/1 to double 0.0 or 1.0 967 return Builder.CreateUIToFP(L, Type::getDoubleTy(TheContext), "booltmp"); 968 default: break; 969 } 970 971 // If it wasn't a builtin binary operator, it must be a user defined one. Emit 972 // a call to it. 973 Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("binary")+Op)); 974 assert(F && "binary operator not found!"); 975 976 Value *Ops[] = { L, R }; 977 return Builder.CreateCall(F, Ops, "binop"); 978 } 979 980 Value *CallExprAST::Codegen() { 981 // Look up the name in the global module table. 982 Function *CalleeF = TheHelper->getFunction(Callee); 983 if (CalleeF == 0) 984 return ErrorV("Unknown function referenced"); 985 986 // If argument mismatch error. 987 if (CalleeF->arg_size() != Args.size()) 988 return ErrorV("Incorrect # arguments passed"); 989 990 std::vector<Value*> ArgsV; 991 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 992 ArgsV.push_back(Args[i]->Codegen()); 993 if (ArgsV.back() == 0) return 0; 994 } 995 996 return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); 997 } 998 999 Value *IfExprAST::Codegen() { 1000 Value *CondV = Cond->Codegen(); 1001 if (CondV == 0) return 0; 1002 1003 // Convert condition to a bool by comparing equal to 0.0. 1004 CondV = Builder.CreateFCmpONE( 1005 CondV, ConstantFP::get(TheContext, APFloat(0.0)), "ifcond"); 1006 1007 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1008 1009 // Create blocks for the then and else cases. Insert the 'then' block at the 1010 // end of the function. 1011 BasicBlock *ThenBB = BasicBlock::Create(TheContext, "then", TheFunction); 1012 BasicBlock *ElseBB = BasicBlock::Create(TheContext, "else"); 1013 BasicBlock *MergeBB = BasicBlock::Create(TheContext, "ifcont"); 1014 1015 Builder.CreateCondBr(CondV, ThenBB, ElseBB); 1016 1017 // Emit then value. 1018 Builder.SetInsertPoint(ThenBB); 1019 1020 Value *ThenV = Then->Codegen(); 1021 if (ThenV == 0) return 0; 1022 1023 Builder.CreateBr(MergeBB); 1024 // Codegen of 'Then' can change the current block, update ThenBB for the PHI. 1025 ThenBB = Builder.GetInsertBlock(); 1026 1027 // Emit else block. 1028 TheFunction->getBasicBlockList().push_back(ElseBB); 1029 Builder.SetInsertPoint(ElseBB); 1030 1031 Value *ElseV = Else->Codegen(); 1032 if (ElseV == 0) return 0; 1033 1034 Builder.CreateBr(MergeBB); 1035 // Codegen of 'Else' can change the current block, update ElseBB for the PHI. 1036 ElseBB = Builder.GetInsertBlock(); 1037 1038 // Emit merge block. 1039 TheFunction->getBasicBlockList().push_back(MergeBB); 1040 Builder.SetInsertPoint(MergeBB); 1041 PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(TheContext), 2, "iftmp"); 1042 1043 PN->addIncoming(ThenV, ThenBB); 1044 PN->addIncoming(ElseV, ElseBB); 1045 return PN; 1046 } 1047 1048 Value *ForExprAST::Codegen() { 1049 // Output this as: 1050 // var = alloca double 1051 // ... 1052 // start = startexpr 1053 // store start -> var 1054 // goto loop 1055 // loop: 1056 // ... 1057 // bodyexpr 1058 // ... 1059 // loopend: 1060 // step = stepexpr 1061 // endcond = endexpr 1062 // 1063 // curvar = load var 1064 // nextvar = curvar + step 1065 // store nextvar -> var 1066 // br endcond, loop, endloop 1067 // outloop: 1068 1069 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1070 1071 // Create an alloca for the variable in the entry block. 1072 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1073 1074 // Emit the start code first, without 'variable' in scope. 1075 Value *StartVal = Start->Codegen(); 1076 if (StartVal == 0) return 0; 1077 1078 // Store the value into the alloca. 1079 Builder.CreateStore(StartVal, Alloca); 1080 1081 // Make the new basic block for the loop header, inserting after current 1082 // block. 1083 BasicBlock *LoopBB = BasicBlock::Create(TheContext, "loop", TheFunction); 1084 1085 // Insert an explicit fall through from the current block to the LoopBB. 1086 Builder.CreateBr(LoopBB); 1087 1088 // Start insertion in LoopBB. 1089 Builder.SetInsertPoint(LoopBB); 1090 1091 // Within the loop, the variable is defined equal to the PHI node. If it 1092 // shadows an existing variable, we have to restore it, so save it now. 1093 AllocaInst *OldVal = NamedValues[VarName]; 1094 NamedValues[VarName] = Alloca; 1095 1096 // Emit the body of the loop. This, like any other expr, can change the 1097 // current BB. Note that we ignore the value computed by the body, but don't 1098 // allow an error. 1099 if (Body->Codegen() == 0) 1100 return 0; 1101 1102 // Emit the step value. 1103 Value *StepVal; 1104 if (Step) { 1105 StepVal = Step->Codegen(); 1106 if (StepVal == 0) return 0; 1107 } else { 1108 // If not specified, use 1.0. 1109 StepVal = ConstantFP::get(TheContext, APFloat(1.0)); 1110 } 1111 1112 // Compute the end condition. 1113 Value *EndCond = End->Codegen(); 1114 if (EndCond == 0) return EndCond; 1115 1116 // Reload, increment, and restore the alloca. This handles the case where 1117 // the body of the loop mutates the variable. 1118 Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); 1119 Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); 1120 Builder.CreateStore(NextVar, Alloca); 1121 1122 // Convert condition to a bool by comparing equal to 0.0. 1123 EndCond = Builder.CreateFCmpONE( 1124 EndCond, ConstantFP::get(TheContext, APFloat(0.0)), "loopcond"); 1125 1126 // Create the "after loop" block and insert it. 1127 BasicBlock *AfterBB = 1128 BasicBlock::Create(TheContext, "afterloop", TheFunction); 1129 1130 // Insert the conditional branch into the end of LoopEndBB. 1131 Builder.CreateCondBr(EndCond, LoopBB, AfterBB); 1132 1133 // Any new code will be inserted in AfterBB. 1134 Builder.SetInsertPoint(AfterBB); 1135 1136 // Restore the unshadowed variable. 1137 if (OldVal) 1138 NamedValues[VarName] = OldVal; 1139 else 1140 NamedValues.erase(VarName); 1141 1142 1143 // for expr always returns 0.0. 1144 return Constant::getNullValue(Type::getDoubleTy(TheContext)); 1145 } 1146 1147 Value *VarExprAST::Codegen() { 1148 std::vector<AllocaInst *> OldBindings; 1149 1150 Function *TheFunction = Builder.GetInsertBlock()->getParent(); 1151 1152 // Register all variables and emit their initializer. 1153 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { 1154 const std::string &VarName = VarNames[i].first; 1155 ExprAST *Init = VarNames[i].second; 1156 1157 // Emit the initializer before adding the variable to scope, this prevents 1158 // the initializer from referencing the variable itself, and permits stuff 1159 // like this: 1160 // var a = 1 in 1161 // var a = a in ... # refers to outer 'a'. 1162 Value *InitVal; 1163 if (Init) { 1164 InitVal = Init->Codegen(); 1165 if (InitVal == 0) return 0; 1166 } else { // If not specified, use 0.0. 1167 InitVal = ConstantFP::get(TheContext, APFloat(0.0)); 1168 } 1169 1170 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); 1171 Builder.CreateStore(InitVal, Alloca); 1172 1173 // Remember the old variable binding so that we can restore the binding when 1174 // we unrecurse. 1175 OldBindings.push_back(NamedValues[VarName]); 1176 1177 // Remember this binding. 1178 NamedValues[VarName] = Alloca; 1179 } 1180 1181 // Codegen the body, now that all vars are in scope. 1182 Value *BodyVal = Body->Codegen(); 1183 if (BodyVal == 0) return 0; 1184 1185 // Pop all our variables from scope. 1186 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) 1187 NamedValues[VarNames[i].first] = OldBindings[i]; 1188 1189 // Return the body computation. 1190 return BodyVal; 1191 } 1192 1193 Function *PrototypeAST::Codegen() { 1194 // Make the function type: double(double,double) etc. 1195 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(TheContext)); 1196 FunctionType *FT = 1197 FunctionType::get(Type::getDoubleTy(TheContext), Doubles, false); 1198 1199 std::string FnName = MakeLegalFunctionName(Name); 1200 1201 Module* M = TheHelper->getModuleForNewFunction(); 1202 1203 Function *F = Function::Create(FT, Function::ExternalLinkage, FnName, M); 1204 1205 // If F conflicted, there was already something named 'FnName'. If it has a 1206 // body, don't allow redefinition or reextern. 1207 if (F->getName() != FnName) { 1208 // Delete the one we just made and get the existing one. 1209 F->eraseFromParent(); 1210 F = M->getFunction(Name); 1211 1212 // If F already has a body, reject this. 1213 if (!F->empty()) { 1214 ErrorF("redefinition of function"); 1215 return 0; 1216 } 1217 1218 // If F took a different number of args, reject. 1219 if (F->arg_size() != Args.size()) { 1220 ErrorF("redefinition of function with different # args"); 1221 return 0; 1222 } 1223 } 1224 1225 // Set names for all arguments. 1226 unsigned Idx = 0; 1227 for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); 1228 ++AI, ++Idx) 1229 AI->setName(Args[Idx]); 1230 1231 return F; 1232 } 1233 1234 /// CreateArgumentAllocas - Create an alloca for each argument and register the 1235 /// argument in the symbol table so that references to it will succeed. 1236 void PrototypeAST::CreateArgumentAllocas(Function *F) { 1237 Function::arg_iterator AI = F->arg_begin(); 1238 for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { 1239 // Create an alloca for this variable. 1240 AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); 1241 1242 // Store the initial value into the alloca. 1243 Builder.CreateStore(AI, Alloca); 1244 1245 // Add arguments to variable symbol table. 1246 NamedValues[Args[Idx]] = Alloca; 1247 } 1248 } 1249 1250 Function *FunctionAST::Codegen() { 1251 NamedValues.clear(); 1252 1253 Function *TheFunction = Proto->Codegen(); 1254 if (TheFunction == 0) 1255 return 0; 1256 1257 // If this is an operator, install it. 1258 if (Proto->isBinaryOp()) 1259 BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); 1260 1261 // Create a new basic block to start insertion into. 1262 BasicBlock *BB = BasicBlock::Create(TheContext, "entry", TheFunction); 1263 Builder.SetInsertPoint(BB); 1264 1265 // Add all arguments to the symbol table and create their allocas. 1266 Proto->CreateArgumentAllocas(TheFunction); 1267 1268 if (Value *RetVal = Body->Codegen()) { 1269 // Finish off the function. 1270 Builder.CreateRet(RetVal); 1271 1272 // Validate the generated code, checking for consistency. 1273 verifyFunction(*TheFunction); 1274 1275 return TheFunction; 1276 } 1277 1278 // Error reading body, remove function. 1279 TheFunction->eraseFromParent(); 1280 1281 if (Proto->isBinaryOp()) 1282 BinopPrecedence.erase(Proto->getOperatorName()); 1283 return 0; 1284 } 1285 1286 //===----------------------------------------------------------------------===// 1287 // Top-Level parsing and JIT Driver 1288 //===----------------------------------------------------------------------===// 1289 1290 static void HandleDefinition() { 1291 if (FunctionAST *F = ParseDefinition()) { 1292 TheHelper->closeCurrentModule(); 1293 if (Function *LF = F->Codegen()) { 1294 #ifndef MINIMAL_STDERR_OUTPUT 1295 fprintf(stderr, "Read function definition:"); 1296 LF->dump(); 1297 #endif 1298 } 1299 } else { 1300 // Skip token for error recovery. 1301 getNextToken(); 1302 } 1303 } 1304 1305 static void HandleExtern() { 1306 if (PrototypeAST *P = ParseExtern()) { 1307 if (Function *F = P->Codegen()) { 1308 #ifndef MINIMAL_STDERR_OUTPUT 1309 fprintf(stderr, "Read extern: "); 1310 F->dump(); 1311 #endif 1312 } 1313 } else { 1314 // Skip token for error recovery. 1315 getNextToken(); 1316 } 1317 } 1318 1319 static void HandleTopLevelExpression() { 1320 // Evaluate a top-level expression into an anonymous function. 1321 if (FunctionAST *F = ParseTopLevelExpr()) { 1322 if (Function *LF = F->Codegen()) { 1323 // JIT the function, returning a function pointer. 1324 void *FPtr = TheHelper->getPointerToFunction(LF); 1325 1326 // Cast it to the right type (takes no arguments, returns a double) so we 1327 // can call it as a native function. 1328 double (*FP)() = (double (*)())(intptr_t)FPtr; 1329 #ifdef MINIMAL_STDERR_OUTPUT 1330 FP(); 1331 #else 1332 fprintf(stderr, "Evaluated to %f\n", FP()); 1333 #endif 1334 } 1335 } else { 1336 // Skip token for error recovery. 1337 getNextToken(); 1338 } 1339 } 1340 1341 /// top ::= definition | external | expression | ';' 1342 static void MainLoop() { 1343 while (1) { 1344 #ifndef MINIMAL_STDERR_OUTPUT 1345 fprintf(stderr, "ready> "); 1346 #endif 1347 switch (CurTok) { 1348 case tok_eof: return; 1349 case ';': getNextToken(); break; // ignore top-level semicolons. 1350 case tok_def: HandleDefinition(); break; 1351 case tok_extern: HandleExtern(); break; 1352 default: HandleTopLevelExpression(); break; 1353 } 1354 } 1355 } 1356 1357 //===----------------------------------------------------------------------===// 1358 // "Library" functions that can be "extern'd" from user code. 1359 //===----------------------------------------------------------------------===// 1360 1361 /// putchard - putchar that takes a double and returns 0. 1362 extern "C" 1363 double putchard(double X) { 1364 putchar((char)X); 1365 return 0; 1366 } 1367 1368 /// printd - printf that takes a double prints it as "%f\n", returning 0. 1369 extern "C" 1370 double printd(double X) { 1371 printf("%f", X); 1372 return 0; 1373 } 1374 1375 extern "C" 1376 double printlf() { 1377 printf("\n"); 1378 return 0; 1379 } 1380 1381 //===----------------------------------------------------------------------===// 1382 // Main driver code. 1383 //===----------------------------------------------------------------------===// 1384 1385 int main() { 1386 InitializeNativeTarget(); 1387 InitializeNativeTargetAsmPrinter(); 1388 InitializeNativeTargetAsmParser(); 1389 LLVMContext &Context = TheContext; 1390 1391 // Install standard binary operators. 1392 // 1 is lowest precedence. 1393 BinopPrecedence['='] = 2; 1394 BinopPrecedence['<'] = 10; 1395 BinopPrecedence['+'] = 20; 1396 BinopPrecedence['-'] = 20; 1397 BinopPrecedence['/'] = 40; 1398 BinopPrecedence['*'] = 40; // highest. 1399 1400 // Prime the first token. 1401 #ifndef MINIMAL_STDERR_OUTPUT 1402 fprintf(stderr, "ready> "); 1403 #endif 1404 getNextToken(); 1405 1406 // Make the helper, which holds all the code. 1407 TheHelper = new MCJITHelper(Context); 1408 1409 // Run the main "interpreter loop" now. 1410 MainLoop(); 1411 1412 #ifndef MINIMAL_STDERR_OUTPUT 1413 // Print out all of the generated code. 1414 TheHelper->dump(); 1415 #endif 1416 1417 return 0; 1418 } 1419