Home | History | Annotate | Download | only in Analysis
      1 //===- PHITransAddr.cpp - PHI Translation for Addresses -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the PHITransAddr class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Analysis/PHITransAddr.h"
     15 #include "llvm/Analysis/InstructionSimplify.h"
     16 #include "llvm/Analysis/ValueTracking.h"
     17 #include "llvm/IR/Constants.h"
     18 #include "llvm/IR/Dominators.h"
     19 #include "llvm/IR/Instructions.h"
     20 #include "llvm/Support/Debug.h"
     21 #include "llvm/Support/ErrorHandling.h"
     22 #include "llvm/Support/raw_ostream.h"
     23 using namespace llvm;
     24 
     25 static bool CanPHITrans(Instruction *Inst) {
     26   if (isa<PHINode>(Inst) ||
     27       isa<GetElementPtrInst>(Inst))
     28     return true;
     29 
     30   if (isa<CastInst>(Inst) &&
     31       isSafeToSpeculativelyExecute(Inst))
     32     return true;
     33 
     34   if (Inst->getOpcode() == Instruction::Add &&
     35       isa<ConstantInt>(Inst->getOperand(1)))
     36     return true;
     37 
     38   //   cerr << "MEMDEP: Could not PHI translate: " << *Pointer;
     39   //   if (isa<BitCastInst>(PtrInst) || isa<GetElementPtrInst>(PtrInst))
     40   //     cerr << "OP:\t\t\t\t" << *PtrInst->getOperand(0);
     41   return false;
     42 }
     43 
     44 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
     45 LLVM_DUMP_METHOD void PHITransAddr::dump() const {
     46   if (!Addr) {
     47     dbgs() << "PHITransAddr: null\n";
     48     return;
     49   }
     50   dbgs() << "PHITransAddr: " << *Addr << "\n";
     51   for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
     52     dbgs() << "  Input #" << i << " is " << *InstInputs[i] << "\n";
     53 }
     54 #endif
     55 
     56 
     57 static bool VerifySubExpr(Value *Expr,
     58                           SmallVectorImpl<Instruction*> &InstInputs) {
     59   // If this is a non-instruction value, there is nothing to do.
     60   Instruction *I = dyn_cast<Instruction>(Expr);
     61   if (!I) return true;
     62 
     63   // If it's an instruction, it is either in Tmp or its operands recursively
     64   // are.
     65   SmallVectorImpl<Instruction*>::iterator Entry =
     66     std::find(InstInputs.begin(), InstInputs.end(), I);
     67   if (Entry != InstInputs.end()) {
     68     InstInputs.erase(Entry);
     69     return true;
     70   }
     71 
     72   // If it isn't in the InstInputs list it is a subexpr incorporated into the
     73   // address.  Sanity check that it is phi translatable.
     74   if (!CanPHITrans(I)) {
     75     errs() << "Instruction in PHITransAddr is not phi-translatable:\n";
     76     errs() << *I << '\n';
     77     llvm_unreachable("Either something is missing from InstInputs or "
     78                      "CanPHITrans is wrong.");
     79   }
     80 
     81   // Validate the operands of the instruction.
     82   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
     83     if (!VerifySubExpr(I->getOperand(i), InstInputs))
     84       return false;
     85 
     86   return true;
     87 }
     88 
     89 /// Verify - Check internal consistency of this data structure.  If the
     90 /// structure is valid, it returns true.  If invalid, it prints errors and
     91 /// returns false.
     92 bool PHITransAddr::Verify() const {
     93   if (!Addr) return true;
     94 
     95   SmallVector<Instruction*, 8> Tmp(InstInputs.begin(), InstInputs.end());
     96 
     97   if (!VerifySubExpr(Addr, Tmp))
     98     return false;
     99 
    100   if (!Tmp.empty()) {
    101     errs() << "PHITransAddr contains extra instructions:\n";
    102     for (unsigned i = 0, e = InstInputs.size(); i != e; ++i)
    103       errs() << "  InstInput #" << i << " is " << *InstInputs[i] << "\n";
    104     llvm_unreachable("This is unexpected.");
    105   }
    106 
    107   // a-ok.
    108   return true;
    109 }
    110 
    111 
    112 /// IsPotentiallyPHITranslatable - If this needs PHI translation, return true
    113 /// if we have some hope of doing it.  This should be used as a filter to
    114 /// avoid calling PHITranslateValue in hopeless situations.
    115 bool PHITransAddr::IsPotentiallyPHITranslatable() const {
    116   // If the input value is not an instruction, or if it is not defined in CurBB,
    117   // then we don't need to phi translate it.
    118   Instruction *Inst = dyn_cast<Instruction>(Addr);
    119   return !Inst || CanPHITrans(Inst);
    120 }
    121 
    122 
    123 static void RemoveInstInputs(Value *V,
    124                              SmallVectorImpl<Instruction*> &InstInputs) {
    125   Instruction *I = dyn_cast<Instruction>(V);
    126   if (!I) return;
    127 
    128   // If the instruction is in the InstInputs list, remove it.
    129   SmallVectorImpl<Instruction*>::iterator Entry =
    130     std::find(InstInputs.begin(), InstInputs.end(), I);
    131   if (Entry != InstInputs.end()) {
    132     InstInputs.erase(Entry);
    133     return;
    134   }
    135 
    136   assert(!isa<PHINode>(I) && "Error, removing something that isn't an input");
    137 
    138   // Otherwise, it must have instruction inputs itself.  Zap them recursively.
    139   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
    140     if (Instruction *Op = dyn_cast<Instruction>(I->getOperand(i)))
    141       RemoveInstInputs(Op, InstInputs);
    142   }
    143 }
    144 
    145 Value *PHITransAddr::PHITranslateSubExpr(Value *V, BasicBlock *CurBB,
    146                                          BasicBlock *PredBB,
    147                                          const DominatorTree *DT) {
    148   // If this is a non-instruction value, it can't require PHI translation.
    149   Instruction *Inst = dyn_cast<Instruction>(V);
    150   if (!Inst) return V;
    151 
    152   // Determine whether 'Inst' is an input to our PHI translatable expression.
    153   bool isInput =
    154       std::find(InstInputs.begin(), InstInputs.end(), Inst) != InstInputs.end();
    155 
    156   // Handle inputs instructions if needed.
    157   if (isInput) {
    158     if (Inst->getParent() != CurBB) {
    159       // If it is an input defined in a different block, then it remains an
    160       // input.
    161       return Inst;
    162     }
    163 
    164     // If 'Inst' is defined in this block and is an input that needs to be phi
    165     // translated, we need to incorporate the value into the expression or fail.
    166 
    167     // In either case, the instruction itself isn't an input any longer.
    168     InstInputs.erase(std::find(InstInputs.begin(), InstInputs.end(), Inst));
    169 
    170     // If this is a PHI, go ahead and translate it.
    171     if (PHINode *PN = dyn_cast<PHINode>(Inst))
    172       return AddAsInput(PN->getIncomingValueForBlock(PredBB));
    173 
    174     // If this is a non-phi value, and it is analyzable, we can incorporate it
    175     // into the expression by making all instruction operands be inputs.
    176     if (!CanPHITrans(Inst))
    177       return nullptr;
    178 
    179     // All instruction operands are now inputs (and of course, they may also be
    180     // defined in this block, so they may need to be phi translated themselves.
    181     for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
    182       if (Instruction *Op = dyn_cast<Instruction>(Inst->getOperand(i)))
    183         InstInputs.push_back(Op);
    184   }
    185 
    186   // Ok, it must be an intermediate result (either because it started that way
    187   // or because we just incorporated it into the expression).  See if its
    188   // operands need to be phi translated, and if so, reconstruct it.
    189 
    190   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    191     if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
    192     Value *PHIIn = PHITranslateSubExpr(Cast->getOperand(0), CurBB, PredBB, DT);
    193     if (!PHIIn) return nullptr;
    194     if (PHIIn == Cast->getOperand(0))
    195       return Cast;
    196 
    197     // Find an available version of this cast.
    198 
    199     // Constants are trivial to find.
    200     if (Constant *C = dyn_cast<Constant>(PHIIn))
    201       return AddAsInput(ConstantExpr::getCast(Cast->getOpcode(),
    202                                               C, Cast->getType()));
    203 
    204     // Otherwise we have to see if a casted version of the incoming pointer
    205     // is available.  If so, we can use it, otherwise we have to fail.
    206     for (User *U : PHIIn->users()) {
    207       if (CastInst *CastI = dyn_cast<CastInst>(U))
    208         if (CastI->getOpcode() == Cast->getOpcode() &&
    209             CastI->getType() == Cast->getType() &&
    210             (!DT || DT->dominates(CastI->getParent(), PredBB)))
    211           return CastI;
    212     }
    213     return nullptr;
    214   }
    215 
    216   // Handle getelementptr with at least one PHI translatable operand.
    217   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    218     SmallVector<Value*, 8> GEPOps;
    219     bool AnyChanged = false;
    220     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
    221       Value *GEPOp = PHITranslateSubExpr(GEP->getOperand(i), CurBB, PredBB, DT);
    222       if (!GEPOp) return nullptr;
    223 
    224       AnyChanged |= GEPOp != GEP->getOperand(i);
    225       GEPOps.push_back(GEPOp);
    226     }
    227 
    228     if (!AnyChanged)
    229       return GEP;
    230 
    231     // Simplify the GEP to handle 'gep x, 0' -> x etc.
    232     if (Value *V = SimplifyGEPInst(GEP->getSourceElementType(),
    233                                    GEPOps, DL, TLI, DT, AC)) {
    234       for (unsigned i = 0, e = GEPOps.size(); i != e; ++i)
    235         RemoveInstInputs(GEPOps[i], InstInputs);
    236 
    237       return AddAsInput(V);
    238     }
    239 
    240     // Scan to see if we have this GEP available.
    241     Value *APHIOp = GEPOps[0];
    242     for (User *U : APHIOp->users()) {
    243       if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U))
    244         if (GEPI->getType() == GEP->getType() &&
    245             GEPI->getNumOperands() == GEPOps.size() &&
    246             GEPI->getParent()->getParent() == CurBB->getParent() &&
    247             (!DT || DT->dominates(GEPI->getParent(), PredBB))) {
    248           if (std::equal(GEPOps.begin(), GEPOps.end(), GEPI->op_begin()))
    249             return GEPI;
    250         }
    251     }
    252     return nullptr;
    253   }
    254 
    255   // Handle add with a constant RHS.
    256   if (Inst->getOpcode() == Instruction::Add &&
    257       isa<ConstantInt>(Inst->getOperand(1))) {
    258     // PHI translate the LHS.
    259     Constant *RHS = cast<ConstantInt>(Inst->getOperand(1));
    260     bool isNSW = cast<BinaryOperator>(Inst)->hasNoSignedWrap();
    261     bool isNUW = cast<BinaryOperator>(Inst)->hasNoUnsignedWrap();
    262 
    263     Value *LHS = PHITranslateSubExpr(Inst->getOperand(0), CurBB, PredBB, DT);
    264     if (!LHS) return nullptr;
    265 
    266     // If the PHI translated LHS is an add of a constant, fold the immediates.
    267     if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(LHS))
    268       if (BOp->getOpcode() == Instruction::Add)
    269         if (ConstantInt *CI = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
    270           LHS = BOp->getOperand(0);
    271           RHS = ConstantExpr::getAdd(RHS, CI);
    272           isNSW = isNUW = false;
    273 
    274           // If the old 'LHS' was an input, add the new 'LHS' as an input.
    275           if (std::find(InstInputs.begin(), InstInputs.end(), BOp) !=
    276               InstInputs.end()) {
    277             RemoveInstInputs(BOp, InstInputs);
    278             AddAsInput(LHS);
    279           }
    280         }
    281 
    282     // See if the add simplifies away.
    283     if (Value *Res = SimplifyAddInst(LHS, RHS, isNSW, isNUW, DL, TLI, DT, AC)) {
    284       // If we simplified the operands, the LHS is no longer an input, but Res
    285       // is.
    286       RemoveInstInputs(LHS, InstInputs);
    287       return AddAsInput(Res);
    288     }
    289 
    290     // If we didn't modify the add, just return it.
    291     if (LHS == Inst->getOperand(0) && RHS == Inst->getOperand(1))
    292       return Inst;
    293 
    294     // Otherwise, see if we have this add available somewhere.
    295     for (User *U : LHS->users()) {
    296       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U))
    297         if (BO->getOpcode() == Instruction::Add &&
    298             BO->getOperand(0) == LHS && BO->getOperand(1) == RHS &&
    299             BO->getParent()->getParent() == CurBB->getParent() &&
    300             (!DT || DT->dominates(BO->getParent(), PredBB)))
    301           return BO;
    302     }
    303 
    304     return nullptr;
    305   }
    306 
    307   // Otherwise, we failed.
    308   return nullptr;
    309 }
    310 
    311 
    312 /// PHITranslateValue - PHI translate the current address up the CFG from
    313 /// CurBB to Pred, updating our state to reflect any needed changes.  If
    314 /// 'MustDominate' is true, the translated value must dominate
    315 /// PredBB.  This returns true on failure and sets Addr to null.
    316 bool PHITransAddr::PHITranslateValue(BasicBlock *CurBB, BasicBlock *PredBB,
    317                                      const DominatorTree *DT,
    318                                      bool MustDominate) {
    319   assert(DT || !MustDominate);
    320   assert(Verify() && "Invalid PHITransAddr!");
    321   if (DT && DT->isReachableFromEntry(PredBB))
    322     Addr =
    323         PHITranslateSubExpr(Addr, CurBB, PredBB, MustDominate ? DT : nullptr);
    324   else
    325     Addr = nullptr;
    326   assert(Verify() && "Invalid PHITransAddr!");
    327 
    328   if (MustDominate)
    329     // Make sure the value is live in the predecessor.
    330     if (Instruction *Inst = dyn_cast_or_null<Instruction>(Addr))
    331       if (!DT->dominates(Inst->getParent(), PredBB))
    332         Addr = nullptr;
    333 
    334   return Addr == nullptr;
    335 }
    336 
    337 /// PHITranslateWithInsertion - PHI translate this value into the specified
    338 /// predecessor block, inserting a computation of the value if it is
    339 /// unavailable.
    340 ///
    341 /// All newly created instructions are added to the NewInsts list.  This
    342 /// returns null on failure.
    343 ///
    344 Value *PHITransAddr::
    345 PHITranslateWithInsertion(BasicBlock *CurBB, BasicBlock *PredBB,
    346                           const DominatorTree &DT,
    347                           SmallVectorImpl<Instruction*> &NewInsts) {
    348   unsigned NISize = NewInsts.size();
    349 
    350   // Attempt to PHI translate with insertion.
    351   Addr = InsertPHITranslatedSubExpr(Addr, CurBB, PredBB, DT, NewInsts);
    352 
    353   // If successful, return the new value.
    354   if (Addr) return Addr;
    355 
    356   // If not, destroy any intermediate instructions inserted.
    357   while (NewInsts.size() != NISize)
    358     NewInsts.pop_back_val()->eraseFromParent();
    359   return nullptr;
    360 }
    361 
    362 
    363 /// InsertPHITranslatedPointer - Insert a computation of the PHI translated
    364 /// version of 'V' for the edge PredBB->CurBB into the end of the PredBB
    365 /// block.  All newly created instructions are added to the NewInsts list.
    366 /// This returns null on failure.
    367 ///
    368 Value *PHITransAddr::
    369 InsertPHITranslatedSubExpr(Value *InVal, BasicBlock *CurBB,
    370                            BasicBlock *PredBB, const DominatorTree &DT,
    371                            SmallVectorImpl<Instruction*> &NewInsts) {
    372   // See if we have a version of this value already available and dominating
    373   // PredBB.  If so, there is no need to insert a new instance of it.
    374   PHITransAddr Tmp(InVal, DL, AC);
    375   if (!Tmp.PHITranslateValue(CurBB, PredBB, &DT, /*MustDominate=*/true))
    376     return Tmp.getAddr();
    377 
    378   // We don't need to PHI translate values which aren't instructions.
    379   auto *Inst = dyn_cast<Instruction>(InVal);
    380   if (!Inst)
    381     return nullptr;
    382 
    383   // Handle cast of PHI translatable value.
    384   if (CastInst *Cast = dyn_cast<CastInst>(Inst)) {
    385     if (!isSafeToSpeculativelyExecute(Cast)) return nullptr;
    386     Value *OpVal = InsertPHITranslatedSubExpr(Cast->getOperand(0),
    387                                               CurBB, PredBB, DT, NewInsts);
    388     if (!OpVal) return nullptr;
    389 
    390     // Otherwise insert a cast at the end of PredBB.
    391     CastInst *New = CastInst::Create(Cast->getOpcode(), OpVal, InVal->getType(),
    392                                      InVal->getName() + ".phi.trans.insert",
    393                                      PredBB->getTerminator());
    394     New->setDebugLoc(Inst->getDebugLoc());
    395     NewInsts.push_back(New);
    396     return New;
    397   }
    398 
    399   // Handle getelementptr with at least one PHI operand.
    400   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Inst)) {
    401     SmallVector<Value*, 8> GEPOps;
    402     BasicBlock *CurBB = GEP->getParent();
    403     for (unsigned i = 0, e = GEP->getNumOperands(); i != e; ++i) {
    404       Value *OpVal = InsertPHITranslatedSubExpr(GEP->getOperand(i),
    405                                                 CurBB, PredBB, DT, NewInsts);
    406       if (!OpVal) return nullptr;
    407       GEPOps.push_back(OpVal);
    408     }
    409 
    410     GetElementPtrInst *Result = GetElementPtrInst::Create(
    411         GEP->getSourceElementType(), GEPOps[0], makeArrayRef(GEPOps).slice(1),
    412         InVal->getName() + ".phi.trans.insert", PredBB->getTerminator());
    413     Result->setDebugLoc(Inst->getDebugLoc());
    414     Result->setIsInBounds(GEP->isInBounds());
    415     NewInsts.push_back(Result);
    416     return Result;
    417   }
    418 
    419 #if 0
    420   // FIXME: This code works, but it is unclear that we actually want to insert
    421   // a big chain of computation in order to make a value available in a block.
    422   // This needs to be evaluated carefully to consider its cost trade offs.
    423 
    424   // Handle add with a constant RHS.
    425   if (Inst->getOpcode() == Instruction::Add &&
    426       isa<ConstantInt>(Inst->getOperand(1))) {
    427     // PHI translate the LHS.
    428     Value *OpVal = InsertPHITranslatedSubExpr(Inst->getOperand(0),
    429                                               CurBB, PredBB, DT, NewInsts);
    430     if (OpVal == 0) return 0;
    431 
    432     BinaryOperator *Res = BinaryOperator::CreateAdd(OpVal, Inst->getOperand(1),
    433                                            InVal->getName()+".phi.trans.insert",
    434                                                     PredBB->getTerminator());
    435     Res->setHasNoSignedWrap(cast<BinaryOperator>(Inst)->hasNoSignedWrap());
    436     Res->setHasNoUnsignedWrap(cast<BinaryOperator>(Inst)->hasNoUnsignedWrap());
    437     NewInsts.push_back(Res);
    438     return Res;
    439   }
    440 #endif
    441 
    442   return nullptr;
    443 }
    444