Home | History | Annotate | Download | only in GlobalISel
      1 //===- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect -*- C++ -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 /// This file implements the RegBankSelect class.
     11 //===----------------------------------------------------------------------===//
     12 
     13 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
     14 #include "llvm/ADT/PostOrderIterator.h"
     15 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
     16 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
     17 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/IR/Function.h"
     20 #include "llvm/Support/BlockFrequency.h"
     21 #include "llvm/Support/CommandLine.h"
     22 #include "llvm/Support/Debug.h"
     23 #include "llvm/Target/TargetSubtargetInfo.h"
     24 
     25 #define DEBUG_TYPE "regbankselect"
     26 
     27 using namespace llvm;
     28 
     29 static cl::opt<RegBankSelect::Mode> RegBankSelectMode(
     30     cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional,
     31     cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast",
     32                           "Run the Fast mode (default mapping)"),
     33                clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy",
     34                           "Use the Greedy mode (best local mapping)"),
     35                clEnumValEnd));
     36 
     37 char RegBankSelect::ID = 0;
     38 INITIALIZE_PASS_BEGIN(RegBankSelect, "regbankselect",
     39                       "Assign register bank of generic virtual registers",
     40                       false, false);
     41 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
     42 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
     43 INITIALIZE_PASS_END(RegBankSelect, "regbankselect",
     44                     "Assign register bank of generic virtual registers", false,
     45                     false);
     46 
     47 RegBankSelect::RegBankSelect(Mode RunningMode)
     48     : MachineFunctionPass(ID), RBI(nullptr), MRI(nullptr), TRI(nullptr),
     49       MBFI(nullptr), MBPI(nullptr), OptMode(RunningMode) {
     50   initializeRegBankSelectPass(*PassRegistry::getPassRegistry());
     51   if (RegBankSelectMode.getNumOccurrences() != 0) {
     52     OptMode = RegBankSelectMode;
     53     if (RegBankSelectMode != RunningMode)
     54       DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n");
     55   }
     56 }
     57 
     58 void RegBankSelect::init(MachineFunction &MF) {
     59   RBI = MF.getSubtarget().getRegBankInfo();
     60   assert(RBI && "Cannot work without RegisterBankInfo");
     61   MRI = &MF.getRegInfo();
     62   TRI = MF.getSubtarget().getRegisterInfo();
     63   if (OptMode != Mode::Fast) {
     64     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
     65     MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
     66   } else {
     67     MBFI = nullptr;
     68     MBPI = nullptr;
     69   }
     70   MIRBuilder.setMF(MF);
     71 }
     72 
     73 void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const {
     74   if (OptMode != Mode::Fast) {
     75     // We could preserve the information from these two analysis but
     76     // the APIs do not allow to do so yet.
     77     AU.addRequired<MachineBlockFrequencyInfo>();
     78     AU.addRequired<MachineBranchProbabilityInfo>();
     79   }
     80   MachineFunctionPass::getAnalysisUsage(AU);
     81 }
     82 
     83 bool RegBankSelect::assignmentMatch(
     84     unsigned Reg, const RegisterBankInfo::ValueMapping &ValMapping,
     85     bool &OnlyAssign) const {
     86   // By default we assume we will have to repair something.
     87   OnlyAssign = false;
     88   // Each part of a break down needs to end up in a different register.
     89   // In other word, Reg assignement does not match.
     90   if (ValMapping.BreakDown.size() > 1)
     91     return false;
     92 
     93   const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI);
     94   const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
     95   // Reg is free of assignment, a simple assignment will make the
     96   // register bank to match.
     97   OnlyAssign = CurRegBank == nullptr;
     98   DEBUG(dbgs() << "Does assignment already match: ";
     99         if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none";
    100         dbgs() << " against ";
    101         assert(DesiredRegBrank && "The mapping must be valid");
    102         dbgs() << *DesiredRegBrank << '\n';);
    103   return CurRegBank == DesiredRegBrank;
    104 }
    105 
    106 void RegBankSelect::repairReg(
    107     MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping,
    108     RegBankSelect::RepairingPlacement &RepairPt,
    109     const iterator_range<SmallVectorImpl<unsigned>::const_iterator> &NewVRegs) {
    110   assert(ValMapping.BreakDown.size() == 1 && "Not yet implemented");
    111   // An empty range of new register means no repairing.
    112   assert(NewVRegs.begin() != NewVRegs.end() && "We should not have to repair");
    113 
    114   // Assume we are repairing a use and thus, the original reg will be
    115   // the source of the repairing.
    116   unsigned Src = MO.getReg();
    117   unsigned Dst = *NewVRegs.begin();
    118 
    119   // If we repair a definition, swap the source and destination for
    120   // the repairing.
    121   if (MO.isDef())
    122     std::swap(Src, Dst);
    123 
    124   assert((RepairPt.getNumInsertPoints() == 1 ||
    125           TargetRegisterInfo::isPhysicalRegister(Dst)) &&
    126          "We are about to create several defs for Dst");
    127 
    128   // Build the instruction used to repair, then clone it at the right places.
    129   MachineInstr *MI = MIRBuilder.buildInstr(TargetOpcode::COPY, Dst, Src);
    130   MI->removeFromParent();
    131   DEBUG(dbgs() << "Copy: " << PrintReg(Src) << " to: " << PrintReg(Dst)
    132                << '\n');
    133   // TODO:
    134   // Check if MI is legal. if not, we need to legalize all the
    135   // instructions we are going to insert.
    136   std::unique_ptr<MachineInstr *[]> NewInstrs(
    137       new MachineInstr *[RepairPt.getNumInsertPoints()]);
    138   bool IsFirst = true;
    139   unsigned Idx = 0;
    140   for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
    141     MachineInstr *CurMI;
    142     if (IsFirst)
    143       CurMI = MI;
    144     else
    145       CurMI = MIRBuilder.getMF().CloneMachineInstr(MI);
    146     InsertPt->insert(*CurMI);
    147     NewInstrs[Idx++] = CurMI;
    148     IsFirst = false;
    149   }
    150   // TODO:
    151   // Legalize NewInstrs if need be.
    152 }
    153 
    154 uint64_t RegBankSelect::getRepairCost(
    155     const MachineOperand &MO,
    156     const RegisterBankInfo::ValueMapping &ValMapping) const {
    157   assert(MO.isReg() && "We should only repair register operand");
    158   assert(!ValMapping.BreakDown.empty() && "Nothing to map??");
    159 
    160   bool IsSameNumOfValues = ValMapping.BreakDown.size() == 1;
    161   const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI);
    162   // If MO does not have a register bank, we should have just been
    163   // able to set one unless we have to break the value down.
    164   assert((!IsSameNumOfValues || CurRegBank) && "We should not have to repair");
    165   // Def: Val <- NewDefs
    166   //     Same number of values: copy
    167   //     Different number: Val = build_sequence Defs1, Defs2, ...
    168   // Use: NewSources <- Val.
    169   //     Same number of values: copy.
    170   //     Different number: Src1, Src2, ... =
    171   //           extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ...
    172   // We should remember that this value is available somewhere else to
    173   // coalesce the value.
    174 
    175   if (IsSameNumOfValues) {
    176     const RegisterBank *DesiredRegBrank = ValMapping.BreakDown[0].RegBank;
    177     // If we repair a definition, swap the source and destination for
    178     // the repairing.
    179     if (MO.isDef())
    180       std::swap(CurRegBank, DesiredRegBrank);
    181     // TODO: It may be possible to actually avoid the copy.
    182     // If we repair something where the source is defined by a copy
    183     // and the source of that copy is on the right bank, we can reuse
    184     // it for free.
    185     // E.g.,
    186     // RegToRepair<BankA> = copy AlternativeSrc<BankB>
    187     // = op RegToRepair<BankA>
    188     // We can simply propagate AlternativeSrc instead of copying RegToRepair
    189     // into a new virtual register.
    190     // We would also need to propagate this information in the
    191     // repairing placement.
    192     unsigned Cost =
    193         RBI->copyCost(*DesiredRegBrank, *CurRegBank,
    194                       RegisterBankInfo::getSizeInBits(MO.getReg(), *MRI, *TRI));
    195     // TODO: use a dedicated constant for ImpossibleCost.
    196     if (Cost != UINT_MAX)
    197       return Cost;
    198     assert(false && "Legalization not available yet");
    199     // Return the legalization cost of that repairing.
    200   }
    201   assert(false && "Complex repairing not implemented yet");
    202   return 1;
    203 }
    204 
    205 RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping(
    206     MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings,
    207     SmallVectorImpl<RepairingPlacement> &RepairPts) {
    208 
    209   RegisterBankInfo::InstructionMapping *BestMapping = nullptr;
    210   MappingCost Cost = MappingCost::ImpossibleCost();
    211   SmallVector<RepairingPlacement, 4> LocalRepairPts;
    212   for (RegisterBankInfo::InstructionMapping &CurMapping : PossibleMappings) {
    213     MappingCost CurCost = computeMapping(MI, CurMapping, LocalRepairPts, &Cost);
    214     if (CurCost < Cost) {
    215       Cost = CurCost;
    216       BestMapping = &CurMapping;
    217       RepairPts.clear();
    218       for (RepairingPlacement &RepairPt : LocalRepairPts)
    219         RepairPts.emplace_back(std::move(RepairPt));
    220     }
    221   }
    222   assert(BestMapping && "No suitable mapping for instruction");
    223   return *BestMapping;
    224 }
    225 
    226 void RegBankSelect::tryAvoidingSplit(
    227     RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO,
    228     const RegisterBankInfo::ValueMapping &ValMapping) const {
    229   const MachineInstr &MI = *MO.getParent();
    230   assert(RepairPt.hasSplit() && "We should not have to adjust for split");
    231   // Splitting should only occur for PHIs or between terminators,
    232   // because we only do local repairing.
    233   assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?");
    234 
    235   assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO &&
    236          "Repairing placement does not match operand");
    237 
    238   // If we need splitting for phis, that means it is because we
    239   // could not find an insertion point before the terminators of
    240   // the predecessor block for this argument. In other words,
    241   // the input value is defined by one of the terminators.
    242   assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?");
    243 
    244   // We split to repair the use of a phi or a terminator.
    245   if (!MO.isDef()) {
    246     if (MI.isTerminator()) {
    247       assert(&MI != &(*MI.getParent()->getFirstTerminator()) &&
    248              "Need to split for the first terminator?!");
    249     } else {
    250       // For the PHI case, the split may not be actually required.
    251       // In the copy case, a phi is already a copy on the incoming edge,
    252       // therefore there is no need to split.
    253       if (ValMapping.BreakDown.size() == 1)
    254         // This is a already a copy, there is nothing to do.
    255         RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign);
    256     }
    257     return;
    258   }
    259 
    260   // At this point, we need to repair a defintion of a terminator.
    261 
    262   // Technically we need to fix the def of MI on all outgoing
    263   // edges of MI to keep the repairing local. In other words, we
    264   // will create several definitions of the same register. This
    265   // does not work for SSA unless that definition is a physical
    266   // register.
    267   // However, there are other cases where we can get away with
    268   // that while still keeping the repairing local.
    269   assert(MI.isTerminator() && MO.isDef() &&
    270          "This code is for the def of a terminator");
    271 
    272   // Since we use RPO traversal, if we need to repair a definition
    273   // this means this definition could be:
    274   // 1. Used by PHIs (i.e., this VReg has been visited as part of the
    275   //    uses of a phi.), or
    276   // 2. Part of a target specific instruction (i.e., the target applied
    277   //    some register class constraints when creating the instruction.)
    278   // If the constraints come for #2, the target said that another mapping
    279   // is supported so we may just drop them. Indeed, if we do not change
    280   // the number of registers holding that value, the uses will get fixed
    281   // when we get to them.
    282   // Uses in PHIs may have already been proceeded though.
    283   // If the constraints come for #1, then, those are weak constraints and
    284   // no actual uses may rely on them. However, the problem remains mainly
    285   // the same as for #2. If the value stays in one register, we could
    286   // just switch the register bank of the definition, but we would need to
    287   // account for a repairing cost for each phi we silently change.
    288   //
    289   // In any case, if the value needs to be broken down into several
    290   // registers, the repairing is not local anymore as we need to patch
    291   // every uses to rebuild the value in just one register.
    292   //
    293   // To summarize:
    294   // - If the value is in a physical register, we can do the split and
    295   //   fix locally.
    296   // Otherwise if the value is in a virtual register:
    297   // - If the value remains in one register, we do not have to split
    298   //   just switching the register bank would do, but we need to account
    299   //   in the repairing cost all the phi we changed.
    300   // - If the value spans several registers, then we cannot do a local
    301   //   repairing.
    302 
    303   // Check if this is a physical or virtual register.
    304   unsigned Reg = MO.getReg();
    305   if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    306     // We are going to split every outgoing edges.
    307     // Check that this is possible.
    308     // FIXME: The machine representation is currently broken
    309     // since it also several terminators in one basic block.
    310     // Because of that we would technically need a way to get
    311     // the targets of just one terminator to know which edges
    312     // we have to split.
    313     // Assert that we do not hit the ill-formed representation.
    314 
    315     // If there are other terminators before that one, some of
    316     // the outgoing edges may not be dominated by this definition.
    317     assert(&MI == &(*MI.getParent()->getFirstTerminator()) &&
    318            "Do not know which outgoing edges are relevant");
    319     const MachineInstr *Next = MI.getNextNode();
    320     assert((!Next || Next->isUnconditionalBranch()) &&
    321            "Do not know where each terminator ends up");
    322     if (Next)
    323       // If the next terminator uses Reg, this means we have
    324       // to split right after MI and thus we need a way to ask
    325       // which outgoing edges are affected.
    326       assert(!Next->readsRegister(Reg) && "Need to split between terminators");
    327     // We will split all the edges and repair there.
    328   } else {
    329     // This is a virtual register defined by a terminator.
    330     if (ValMapping.BreakDown.size() == 1) {
    331       // There is nothing to repair, but we may actually lie on
    332       // the repairing cost because of the PHIs already proceeded
    333       // as already stated.
    334       // Though the code will be correct.
    335       assert(0 && "Repairing cost may not be accurate");
    336     } else {
    337       // We need to do non-local repairing. Basically, patch all
    338       // the uses (i.e., phis) that we already proceeded.
    339       // For now, just say this mapping is not possible.
    340       RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible);
    341     }
    342   }
    343 }
    344 
    345 RegBankSelect::MappingCost RegBankSelect::computeMapping(
    346     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
    347     SmallVectorImpl<RepairingPlacement> &RepairPts,
    348     const RegBankSelect::MappingCost *BestCost) {
    349   assert((MBFI || !BestCost) && "Costs comparison require MBFI");
    350 
    351   // If mapped with InstrMapping, MI will have the recorded cost.
    352   MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) : 1);
    353   bool Saturated = Cost.addLocalCost(InstrMapping.getCost());
    354   assert(!Saturated && "Possible mapping saturated the cost");
    355   DEBUG(dbgs() << "Evaluating mapping cost for: " << MI);
    356   DEBUG(dbgs() << "With: " << InstrMapping << '\n');
    357   RepairPts.clear();
    358   if (BestCost && Cost > *BestCost)
    359     return Cost;
    360 
    361   // Moreover, to realize this mapping, the register bank of each operand must
    362   // match this mapping. In other words, we may need to locally reassign the
    363   // register banks. Account for that repairing cost as well.
    364   // In this context, local means in the surrounding of MI.
    365   for (unsigned OpIdx = 0, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
    366        ++OpIdx) {
    367     const MachineOperand &MO = MI.getOperand(OpIdx);
    368     if (!MO.isReg())
    369       continue;
    370     unsigned Reg = MO.getReg();
    371     if (!Reg)
    372       continue;
    373     DEBUG(dbgs() << "Opd" << OpIdx);
    374     const RegisterBankInfo::ValueMapping &ValMapping =
    375         InstrMapping.getOperandMapping(OpIdx);
    376     // If Reg is already properly mapped, this is free.
    377     bool Assign;
    378     if (assignmentMatch(Reg, ValMapping, Assign)) {
    379       DEBUG(dbgs() << " is free (match).\n");
    380       continue;
    381     }
    382     if (Assign) {
    383       DEBUG(dbgs() << " is free (simple assignment).\n");
    384       RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this,
    385                                                 RepairingPlacement::Reassign));
    386       continue;
    387     }
    388 
    389     // Find the insertion point for the repairing code.
    390     RepairPts.emplace_back(
    391         RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert));
    392     RepairingPlacement &RepairPt = RepairPts.back();
    393 
    394     // If we need to split a basic block to materialize this insertion point,
    395     // we may give a higher cost to this mapping.
    396     // Nevertheless, we may get away with the split, so try that first.
    397     if (RepairPt.hasSplit())
    398       tryAvoidingSplit(RepairPt, MO, ValMapping);
    399 
    400     // Check that the materialization of the repairing is possible.
    401     if (!RepairPt.canMaterialize())
    402       return MappingCost::ImpossibleCost();
    403 
    404     // Account for the split cost and repair cost.
    405     // Unless the cost is already saturated or we do not care about the cost.
    406     if (!BestCost || Saturated)
    407       continue;
    408 
    409     // To get accurate information we need MBFI and MBPI.
    410     // Thus, if we end up here this information should be here.
    411     assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI");
    412 
    413     // FIXME: We will have to rework the repairing cost model.
    414     // The repairing cost depends on the register bank that MO has.
    415     // However, when we break down the value into different values,
    416     // MO may not have a register bank while still needing repairing.
    417     // For the fast mode, we don't compute the cost so that is fine,
    418     // but still for the repairing code, we will have to make a choice.
    419     // For the greedy mode, we should choose greedily what is the best
    420     // choice based on the next use of MO.
    421 
    422     // Sums up the repairing cost of MO at each insertion point.
    423     uint64_t RepairCost = getRepairCost(MO, ValMapping);
    424     // Bias used for splitting: 5%.
    425     const uint64_t PercentageForBias = 5;
    426     uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100;
    427     // We should not need more than a couple of instructions to repair
    428     // an assignment. In other words, the computation should not
    429     // overflow because the repairing cost is free of basic block
    430     // frequency.
    431     assert(((RepairCost < RepairCost * PercentageForBias) &&
    432             (RepairCost * PercentageForBias <
    433              RepairCost * PercentageForBias + 99)) &&
    434            "Repairing involves more than a billion of instructions?!");
    435     for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) {
    436       assert(InsertPt->canMaterialize() && "We should not have made it here");
    437       // We will applied some basic block frequency and those uses uint64_t.
    438       if (!InsertPt->isSplit())
    439         Saturated = Cost.addLocalCost(RepairCost);
    440       else {
    441         uint64_t CostForInsertPt = RepairCost;
    442         // Again we shouldn't overflow here givent that
    443         // CostForInsertPt is frequency free at this point.
    444         assert(CostForInsertPt + Bias > CostForInsertPt &&
    445                "Repairing + split bias overflows");
    446         CostForInsertPt += Bias;
    447         uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt;
    448         // Check if we just overflowed.
    449         if ((Saturated = PtCost < CostForInsertPt))
    450           Cost.saturate();
    451         else
    452           Saturated = Cost.addNonLocalCost(PtCost);
    453       }
    454 
    455       // Stop looking into what it takes to repair, this is already
    456       // too expensive.
    457       if (BestCost && Cost > *BestCost)
    458         return Cost;
    459 
    460       // No need to accumulate more cost information.
    461       // We need to still gather the repairing information though.
    462       if (Saturated)
    463         break;
    464     }
    465   }
    466   return Cost;
    467 }
    468 
    469 void RegBankSelect::applyMapping(
    470     MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping,
    471     SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) {
    472   // OpdMapper will hold all the information needed for the rewritting.
    473   RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI);
    474 
    475   // First, place the repairing code.
    476   for (RepairingPlacement &RepairPt : RepairPts) {
    477     assert(RepairPt.canMaterialize() &&
    478            RepairPt.getKind() != RepairingPlacement::Impossible &&
    479            "This mapping is impossible");
    480     assert(RepairPt.getKind() != RepairingPlacement::None &&
    481            "This should not make its way in the list");
    482     unsigned OpIdx = RepairPt.getOpIdx();
    483     MachineOperand &MO = MI.getOperand(OpIdx);
    484     const RegisterBankInfo::ValueMapping &ValMapping =
    485         InstrMapping.getOperandMapping(OpIdx);
    486     unsigned BreakDownSize = ValMapping.BreakDown.size();
    487     (void)BreakDownSize;
    488     unsigned Reg = MO.getReg();
    489 
    490     switch (RepairPt.getKind()) {
    491     case RepairingPlacement::Reassign:
    492       assert(BreakDownSize == 1 &&
    493              "Reassignment should only be for simple mapping");
    494       MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank);
    495       break;
    496     case RepairingPlacement::Insert:
    497       OpdMapper.createVRegs(OpIdx);
    498       repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx));
    499       break;
    500     default:
    501       llvm_unreachable("Other kind should not happen");
    502     }
    503   }
    504   // Second, rewrite the instruction.
    505   DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n');
    506   RBI->applyMapping(OpdMapper);
    507 }
    508 
    509 void RegBankSelect::assignInstr(MachineInstr &MI) {
    510   DEBUG(dbgs() << "Assign: " << MI);
    511   // Remember the repairing placement for all the operands.
    512   SmallVector<RepairingPlacement, 4> RepairPts;
    513 
    514   RegisterBankInfo::InstructionMapping BestMapping;
    515   if (OptMode == RegBankSelect::Mode::Fast) {
    516     BestMapping = RBI->getInstrMapping(MI);
    517     MappingCost DefaultCost = computeMapping(MI, BestMapping, RepairPts);
    518     (void)DefaultCost;
    519     assert(DefaultCost != MappingCost::ImpossibleCost() &&
    520            "Default mapping is not suited");
    521   } else {
    522     RegisterBankInfo::InstructionMappings PossibleMappings =
    523         RBI->getInstrPossibleMappings(MI);
    524     assert(!PossibleMappings.empty() &&
    525            "Do not know how to map this instruction");
    526     BestMapping = std::move(findBestMapping(MI, PossibleMappings, RepairPts));
    527   }
    528   // Make sure the mapping is valid for MI.
    529   assert(BestMapping.verify(MI) && "Invalid instruction mapping");
    530 
    531   DEBUG(dbgs() << "Mapping: " << BestMapping << '\n');
    532 
    533   // After this call, MI may not be valid anymore.
    534   // Do not use it.
    535   applyMapping(MI, BestMapping, RepairPts);
    536 }
    537 
    538 bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) {
    539   DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n');
    540   const Function *F = MF.getFunction();
    541   Mode SaveOptMode = OptMode;
    542   if (F->hasFnAttribute(Attribute::OptimizeNone))
    543     OptMode = Mode::Fast;
    544   init(MF);
    545   // Walk the function and assign register banks to all operands.
    546   // Use a RPOT to make sure all registers are assigned before we choose
    547   // the best mapping of the current instruction.
    548   ReversePostOrderTraversal<MachineFunction*> RPOT(&MF);
    549   for (MachineBasicBlock *MBB : RPOT) {
    550     // Set a sensible insertion point so that subsequent calls to
    551     // MIRBuilder.
    552     MIRBuilder.setMBB(*MBB);
    553     for (MachineBasicBlock::iterator MII = MBB->begin(), End = MBB->end();
    554          MII != End;) {
    555       // MI might be invalidated by the assignment, so move the
    556       // iterator before hand.
    557       assignInstr(*MII++);
    558     }
    559   }
    560   OptMode = SaveOptMode;
    561   return false;
    562 }
    563 
    564 //------------------------------------------------------------------------------
    565 //                  Helper Classes Implementation
    566 //------------------------------------------------------------------------------
    567 RegBankSelect::RepairingPlacement::RepairingPlacement(
    568     MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P,
    569     RepairingPlacement::RepairingKind Kind)
    570     // Default is, we are going to insert code to repair OpIdx.
    571     : Kind(Kind),
    572       OpIdx(OpIdx),
    573       CanMaterialize(Kind != RepairingKind::Impossible),
    574       HasSplit(false),
    575       P(P) {
    576   const MachineOperand &MO = MI.getOperand(OpIdx);
    577   assert(MO.isReg() && "Trying to repair a non-reg operand");
    578 
    579   if (Kind != RepairingKind::Insert)
    580     return;
    581 
    582   // Repairings for definitions happen after MI, uses happen before.
    583   bool Before = !MO.isDef();
    584 
    585   // Check if we are done with MI.
    586   if (!MI.isPHI() && !MI.isTerminator()) {
    587     addInsertPoint(MI, Before);
    588     // We are done with the initialization.
    589     return;
    590   }
    591 
    592   // Now, look for the special cases.
    593   if (MI.isPHI()) {
    594     // - PHI must be the first instructions:
    595     //   * Before, we have to split the related incoming edge.
    596     //   * After, move the insertion point past the last phi.
    597     if (!Before) {
    598       MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI();
    599       if (It != MI.getParent()->end())
    600         addInsertPoint(*It, /*Before*/ true);
    601       else
    602         addInsertPoint(*(--It), /*Before*/ false);
    603       return;
    604     }
    605     // We repair a use of a phi, we may need to split the related edge.
    606     MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB();
    607     // Check if we can move the insertion point prior to the
    608     // terminators of the predecessor.
    609     unsigned Reg = MO.getReg();
    610     MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr();
    611     for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It)
    612       if (It->modifiesRegister(Reg, &TRI)) {
    613         // We cannot hoist the repairing code in the predecessor.
    614         // Split the edge.
    615         addInsertPoint(Pred, *MI.getParent());
    616         return;
    617       }
    618     // At this point, we can insert in Pred.
    619 
    620     // - If It is invalid, Pred is empty and we can insert in Pred
    621     //   wherever we want.
    622     // - If It is valid, It is the first non-terminator, insert after It.
    623     if (It == Pred.end())
    624       addInsertPoint(Pred, /*Beginning*/ false);
    625     else
    626       addInsertPoint(*It, /*Before*/ false);
    627   } else {
    628     // - Terminators must be the last instructions:
    629     //   * Before, move the insert point before the first terminator.
    630     //   * After, we have to split the outcoming edges.
    631     unsigned Reg = MO.getReg();
    632     if (Before) {
    633       // Check whether Reg is defined by any terminator.
    634       MachineBasicBlock::iterator It = MI;
    635       for (auto Begin = MI.getParent()->begin();
    636            --It != Begin && It->isTerminator();)
    637         if (It->modifiesRegister(Reg, &TRI)) {
    638           // Insert the repairing code right after the definition.
    639           addInsertPoint(*It, /*Before*/ false);
    640           return;
    641         }
    642       addInsertPoint(*It, /*Before*/ true);
    643       return;
    644     }
    645     // Make sure Reg is not redefined by other terminators, otherwise
    646     // we do not know how to split.
    647     for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end();
    648          ++It != End;)
    649       // The machine verifier should reject this kind of code.
    650       assert(It->modifiesRegister(Reg, &TRI) && "Do not know where to split");
    651     // Split each outcoming edges.
    652     MachineBasicBlock &Src = *MI.getParent();
    653     for (auto &Succ : Src.successors())
    654       addInsertPoint(Src, Succ);
    655   }
    656 }
    657 
    658 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI,
    659                                                        bool Before) {
    660   addInsertPoint(*new InstrInsertPoint(MI, Before));
    661 }
    662 
    663 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB,
    664                                                        bool Beginning) {
    665   addInsertPoint(*new MBBInsertPoint(MBB, Beginning));
    666 }
    667 
    668 void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src,
    669                                                        MachineBasicBlock &Dst) {
    670   addInsertPoint(*new EdgeInsertPoint(Src, Dst, P));
    671 }
    672 
    673 void RegBankSelect::RepairingPlacement::addInsertPoint(
    674     RegBankSelect::InsertPoint &Point) {
    675   CanMaterialize &= Point.canMaterialize();
    676   HasSplit |= Point.isSplit();
    677   InsertPoints.emplace_back(&Point);
    678 }
    679 
    680 RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr,
    681                                                   bool Before)
    682     : InsertPoint(), Instr(Instr), Before(Before) {
    683   // Since we do not support splitting, we do not need to update
    684   // liveness and such, so do not do anything with P.
    685   assert((!Before || !Instr.isPHI()) &&
    686          "Splitting before phis requires more points");
    687   assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) &&
    688          "Splitting between phis does not make sense");
    689 }
    690 
    691 void RegBankSelect::InstrInsertPoint::materialize() {
    692   if (isSplit()) {
    693     // Slice and return the beginning of the new block.
    694     // If we need to split between the terminators, we theoritically
    695     // need to know where the first and second set of terminators end
    696     // to update the successors properly.
    697     // Now, in pratice, we should have a maximum of 2 branch
    698     // instructions; one conditional and one unconditional. Therefore
    699     // we know how to update the successor by looking at the target of
    700     // the unconditional branch.
    701     // If we end up splitting at some point, then, we should update
    702     // the liveness information and such. I.e., we would need to
    703     // access P here.
    704     // The machine verifier should actually make sure such cases
    705     // cannot happen.
    706     llvm_unreachable("Not yet implemented");
    707   }
    708   // Otherwise the insertion point is just the current or next
    709   // instruction depending on Before. I.e., there is nothing to do
    710   // here.
    711 }
    712 
    713 bool RegBankSelect::InstrInsertPoint::isSplit() const {
    714   // If the insertion point is after a terminator, we need to split.
    715   if (!Before)
    716     return Instr.isTerminator();
    717   // If we insert before an instruction that is after a terminator,
    718   // we are still after a terminator.
    719   return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator();
    720 }
    721 
    722 uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const {
    723   // Even if we need to split, because we insert between terminators,
    724   // this split has actually the same frequency as the instruction.
    725   const MachineBlockFrequencyInfo *MBFI =
    726       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
    727   if (!MBFI)
    728     return 1;
    729   return MBFI->getBlockFreq(Instr.getParent()).getFrequency();
    730 }
    731 
    732 uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const {
    733   const MachineBlockFrequencyInfo *MBFI =
    734       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
    735   if (!MBFI)
    736     return 1;
    737   return MBFI->getBlockFreq(&MBB).getFrequency();
    738 }
    739 
    740 void RegBankSelect::EdgeInsertPoint::materialize() {
    741   // If we end up repairing twice at the same place before materializing the
    742   // insertion point, we may think we have to split an edge twice.
    743   // We should have a factory for the insert point such that identical points
    744   // are the same instance.
    745   assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) &&
    746          "This point has already been split");
    747   MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P);
    748   assert(NewBB && "Invalid call to materialize");
    749   // We reuse the destination block to hold the information of the new block.
    750   DstOrSplit = NewBB;
    751 }
    752 
    753 uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const {
    754   const MachineBlockFrequencyInfo *MBFI =
    755       P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>();
    756   if (!MBFI)
    757     return 1;
    758   if (WasMaterialized)
    759     return MBFI->getBlockFreq(DstOrSplit).getFrequency();
    760 
    761   const MachineBranchProbabilityInfo *MBPI =
    762       P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>();
    763   if (!MBPI)
    764     return 1;
    765   // The basic block will be on the edge.
    766   return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit))
    767       .getFrequency();
    768 }
    769 
    770 bool RegBankSelect::EdgeInsertPoint::canMaterialize() const {
    771   // If this is not a critical edge, we should not have used this insert
    772   // point. Indeed, either the successor or the predecessor should
    773   // have do.
    774   assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 &&
    775          "Edge is not critical");
    776   return Src.canSplitCriticalEdge(DstOrSplit);
    777 }
    778 
    779 RegBankSelect::MappingCost::MappingCost(const BlockFrequency &LocalFreq)
    780     : LocalCost(0), NonLocalCost(0), LocalFreq(LocalFreq.getFrequency()) {}
    781 
    782 bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) {
    783   // Check if this overflows.
    784   if (LocalCost + Cost < LocalCost) {
    785     saturate();
    786     return true;
    787   }
    788   LocalCost += Cost;
    789   return isSaturated();
    790 }
    791 
    792 bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) {
    793   // Check if this overflows.
    794   if (NonLocalCost + Cost < NonLocalCost) {
    795     saturate();
    796     return true;
    797   }
    798   NonLocalCost += Cost;
    799   return isSaturated();
    800 }
    801 
    802 bool RegBankSelect::MappingCost::isSaturated() const {
    803   return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX &&
    804          LocalFreq == UINT64_MAX;
    805 }
    806 
    807 void RegBankSelect::MappingCost::saturate() {
    808   *this = ImpossibleCost();
    809   --LocalCost;
    810 }
    811 
    812 RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() {
    813   return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX);
    814 }
    815 
    816 bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const {
    817   // Sort out the easy cases.
    818   if (*this == Cost)
    819     return false;
    820   // If one is impossible to realize the other is cheaper unless it is
    821   // impossible as well.
    822   if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost()))
    823     return (*this == ImpossibleCost()) < (Cost == ImpossibleCost());
    824   // If one is saturated the other is cheaper, unless it is saturated
    825   // as well.
    826   if (isSaturated() || Cost.isSaturated())
    827     return isSaturated() < Cost.isSaturated();
    828   // At this point we know both costs hold sensible values.
    829 
    830   // If both values have a different base frequency, there is no much
    831   // we can do but to scale everything.
    832   // However, if they have the same base frequency we can avoid making
    833   // complicated computation.
    834   uint64_t ThisLocalAdjust;
    835   uint64_t OtherLocalAdjust;
    836   if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) {
    837 
    838     // At this point, we know the local costs are comparable.
    839     // Do the case that do not involve potential overflow first.
    840     if (NonLocalCost == Cost.NonLocalCost)
    841       // Since the non-local costs do not discriminate on the result,
    842       // just compare the local costs.
    843       return LocalCost < Cost.LocalCost;
    844 
    845     // The base costs are comparable so we may only keep the relative
    846     // value to increase our chances of avoiding overflows.
    847     ThisLocalAdjust = 0;
    848     OtherLocalAdjust = 0;
    849     if (LocalCost < Cost.LocalCost)
    850       OtherLocalAdjust = Cost.LocalCost - LocalCost;
    851     else
    852       ThisLocalAdjust = LocalCost - Cost.LocalCost;
    853 
    854   } else {
    855     ThisLocalAdjust = LocalCost;
    856     OtherLocalAdjust = Cost.LocalCost;
    857   }
    858 
    859   // The non-local costs are comparable, just keep the relative value.
    860   uint64_t ThisNonLocalAdjust = 0;
    861   uint64_t OtherNonLocalAdjust = 0;
    862   if (NonLocalCost < Cost.NonLocalCost)
    863     OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost;
    864   else
    865     ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost;
    866   // Scale everything to make them comparable.
    867   uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq;
    868   // Check for overflow on that operation.
    869   bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust ||
    870                                            ThisScaledCost < LocalFreq);
    871   uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq;
    872   // Check for overflow on the last operation.
    873   bool OtherOverflows =
    874       OtherLocalAdjust &&
    875       (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq);
    876   // Add the non-local costs.
    877   ThisOverflows |= ThisNonLocalAdjust &&
    878                    ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust;
    879   ThisScaledCost += ThisNonLocalAdjust;
    880   OtherOverflows |= OtherNonLocalAdjust &&
    881                     OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust;
    882   OtherScaledCost += OtherNonLocalAdjust;
    883   // If both overflows, we cannot compare without additional
    884   // precision, e.g., APInt. Just give up on that case.
    885   if (ThisOverflows && OtherOverflows)
    886     return false;
    887   // If one overflows but not the other, we can still compare.
    888   if (ThisOverflows || OtherOverflows)
    889     return ThisOverflows < OtherOverflows;
    890   // Otherwise, just compare the values.
    891   return ThisScaledCost < OtherScaledCost;
    892 }
    893 
    894 bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const {
    895   return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost &&
    896          LocalFreq == Cost.LocalFreq;
    897 }
    898