1 //===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. 11 // 12 // Software pipelining (SWP) is an instruction scheduling technique for loops 13 // that overlap loop iterations and explioits ILP via a compiler transformation. 14 // 15 // Swing Modulo Scheduling is an implementation of software pipelining 16 // that generates schedules that are near optimal in terms of initiation 17 // interval, register requirements, and stage count. See the papers: 18 // 19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa, 20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996 21 // Conference on Parallel Architectures and Compilation Techiniques. 22 // 23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J. 24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE 25 // Transactions on Computers, Vol. 50, No. 3, 2001. 26 // 27 // "An Implementation of Swing Modulo Scheduling With Extensions for 28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at 29 // Urbana-Chambpain, 2005. 30 // 31 // 32 // The SMS algorithm consists of three main steps after computing the minimal 33 // initiation interval (MII). 34 // 1) Analyze the dependence graph and compute information about each 35 // instruction in the graph. 36 // 2) Order the nodes (instructions) by priority based upon the heuristics 37 // described in the algorithm. 38 // 3) Attempt to schedule the nodes in the specified order using the MII. 39 // 40 // This SMS implementation is a target-independent back-end pass. When enabled, 41 // the pass runs just prior to the register allocation pass, while the machine 42 // IR is in SSA form. If software pipelining is successful, then the original 43 // loop is replaced by the optimized loop. The optimized loop contains one or 44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If 45 // the instructions cannot be scheduled in a given MII, we increase the MII by 46 // one and try again. 47 // 48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We 49 // represent loop carried dependences in the DAG as order edges to the Phi 50 // nodes. We also perform several passes over the DAG to eliminate unnecessary 51 // edges that inhibit the ability to pipeline. The implementation uses the 52 // DFAPacketizer class to compute the minimum initiation interval and the check 53 // where an instruction may be inserted in the pipelined schedule. 54 // 55 // In order for the SMS pass to work, several target specific hooks need to be 56 // implemented to get information about the loop structure and to rewrite 57 // instructions. 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/ADT/DenseMap.h" 62 #include "llvm/ADT/MapVector.h" 63 #include "llvm/ADT/PriorityQueue.h" 64 #include "llvm/ADT/SetVector.h" 65 #include "llvm/ADT/SmallPtrSet.h" 66 #include "llvm/ADT/SmallSet.h" 67 #include "llvm/ADT/Statistic.h" 68 #include "llvm/Analysis/AliasAnalysis.h" 69 #include "llvm/Analysis/ValueTracking.h" 70 #include "llvm/CodeGen/DFAPacketizer.h" 71 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 72 #include "llvm/CodeGen/MachineBasicBlock.h" 73 #include "llvm/CodeGen/MachineDominators.h" 74 #include "llvm/CodeGen/MachineInstrBuilder.h" 75 #include "llvm/CodeGen/MachineLoopInfo.h" 76 #include "llvm/CodeGen/MachineRegisterInfo.h" 77 #include "llvm/CodeGen/Passes.h" 78 #include "llvm/CodeGen/RegisterClassInfo.h" 79 #include "llvm/CodeGen/RegisterPressure.h" 80 #include "llvm/CodeGen/ScheduleDAGInstrs.h" 81 #include "llvm/MC/MCInstrItineraries.h" 82 #include "llvm/Support/CommandLine.h" 83 #include "llvm/Support/Debug.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetInstrInfo.h" 86 #include "llvm/Target/TargetMachine.h" 87 #include "llvm/Target/TargetRegisterInfo.h" 88 #include "llvm/Target/TargetSubtargetInfo.h" 89 #include <climits> 90 #include <deque> 91 #include <map> 92 93 using namespace llvm; 94 95 #define DEBUG_TYPE "pipeliner" 96 97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); 98 STATISTIC(NumPipelined, "Number of loops software pipelined"); 99 100 /// A command line option to turn software pipelining on or off. 101 cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), 102 cl::ZeroOrMore, cl::desc("Enable Software Pipelining")); 103 104 /// A command line option to enable SWP at -Os. 105 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", 106 cl::desc("Enable SWP at Os."), cl::Hidden, 107 cl::init(false)); 108 109 /// A command line argument to limit minimum initial interval for pipelining. 110 static cl::opt<int> SwpMaxMii("pipeliner-max-mii", 111 cl::desc("Size limit for the the MII."), 112 cl::Hidden, cl::init(27)); 113 114 /// A command line argument to limit the number of stages in the pipeline. 115 static cl::opt<int> 116 SwpMaxStages("pipeliner-max-stages", 117 cl::desc("Maximum stages allowed in the generated scheduled."), 118 cl::Hidden, cl::init(3)); 119 120 /// A command line option to disable the pruning of chain dependences due to 121 /// an unrelated Phi. 122 static cl::opt<bool> 123 SwpPruneDeps("pipeliner-prune-deps", 124 cl::desc("Prune dependences between unrelated Phi nodes."), 125 cl::Hidden, cl::init(true)); 126 127 /// A command line option to disable the pruning of loop carried order 128 /// dependences. 129 static cl::opt<bool> 130 SwpPruneLoopCarried("pipeliner-prune-loop-carried", 131 cl::desc("Prune loop carried order dependences."), 132 cl::Hidden, cl::init(true)); 133 134 #ifndef NDEBUG 135 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); 136 #endif 137 138 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", 139 cl::ReallyHidden, cl::init(false), 140 cl::ZeroOrMore, cl::desc("Ignore RecMII")); 141 142 namespace { 143 144 class NodeSet; 145 class SMSchedule; 146 class SwingSchedulerDAG; 147 148 /// The main class in the implementation of the target independent 149 /// software pipeliner pass. 150 class MachinePipeliner : public MachineFunctionPass { 151 public: 152 MachineFunction *MF = nullptr; 153 const MachineLoopInfo *MLI = nullptr; 154 const MachineDominatorTree *MDT = nullptr; 155 const InstrItineraryData *InstrItins; 156 const TargetInstrInfo *TII = nullptr; 157 RegisterClassInfo RegClassInfo; 158 159 #ifndef NDEBUG 160 static int NumTries; 161 #endif 162 /// Cache the target analysis information about the loop. 163 struct LoopInfo { 164 MachineBasicBlock *TBB = nullptr; 165 MachineBasicBlock *FBB = nullptr; 166 SmallVector<MachineOperand, 4> BrCond; 167 MachineInstr *LoopInductionVar = nullptr; 168 MachineInstr *LoopCompare = nullptr; 169 }; 170 LoopInfo LI; 171 172 static char ID; 173 MachinePipeliner() : MachineFunctionPass(ID) { 174 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry()); 175 } 176 177 virtual bool runOnMachineFunction(MachineFunction &MF); 178 179 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 180 AU.addRequired<AAResultsWrapperPass>(); 181 AU.addPreserved<AAResultsWrapperPass>(); 182 AU.addRequired<MachineLoopInfo>(); 183 AU.addRequired<MachineDominatorTree>(); 184 AU.addRequired<LiveIntervals>(); 185 MachineFunctionPass::getAnalysisUsage(AU); 186 } 187 188 private: 189 bool canPipelineLoop(MachineLoop &L); 190 bool scheduleLoop(MachineLoop &L); 191 bool swingModuloScheduler(MachineLoop &L); 192 }; 193 194 /// This class builds the dependence graph for the instructions in a loop, 195 /// and attempts to schedule the instructions using the SMS algorithm. 196 class SwingSchedulerDAG : public ScheduleDAGInstrs { 197 MachinePipeliner &Pass; 198 /// The minimum initiation interval between iterations for this schedule. 199 unsigned MII; 200 /// Set to true if a valid pipelined schedule is found for the loop. 201 bool Scheduled; 202 MachineLoop &Loop; 203 LiveIntervals &LIS; 204 const RegisterClassInfo &RegClassInfo; 205 206 /// A toplogical ordering of the SUnits, which is needed for changing 207 /// dependences and iterating over the SUnits. 208 ScheduleDAGTopologicalSort Topo; 209 210 struct NodeInfo { 211 int ASAP; 212 int ALAP; 213 NodeInfo() : ASAP(0), ALAP(0) {} 214 }; 215 /// Computed properties for each node in the graph. 216 std::vector<NodeInfo> ScheduleInfo; 217 218 enum OrderKind { BottomUp = 0, TopDown = 1 }; 219 /// Computed node ordering for scheduling. 220 SetVector<SUnit *> NodeOrder; 221 222 typedef SmallVector<NodeSet, 8> NodeSetType; 223 typedef DenseMap<unsigned, unsigned> ValueMapTy; 224 typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy; 225 typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy; 226 227 /// Instructions to change when emitting the final schedule. 228 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges; 229 230 /// We may create a new instruction, so remember it because it 231 /// must be deleted when the pass is finished. 232 SmallPtrSet<MachineInstr *, 4> NewMIs; 233 234 /// Helper class to implement Johnson's circuit finding algorithm. 235 class Circuits { 236 std::vector<SUnit> &SUnits; 237 SetVector<SUnit *> Stack; 238 BitVector Blocked; 239 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B; 240 SmallVector<SmallVector<int, 4>, 16> AdjK; 241 unsigned NumPaths; 242 static unsigned MaxPaths; 243 244 public: 245 Circuits(std::vector<SUnit> &SUs) 246 : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()), 247 AdjK(SUs.size()) {} 248 /// Reset the data structures used in the circuit algorithm. 249 void reset() { 250 Stack.clear(); 251 Blocked.reset(); 252 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>()); 253 NumPaths = 0; 254 } 255 void createAdjacencyStructure(SwingSchedulerDAG *DAG); 256 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false); 257 void unblock(int U); 258 }; 259 260 public: 261 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis, 262 const RegisterClassInfo &rci) 263 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0), 264 Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci), 265 Topo(SUnits, &ExitSU) {} 266 267 void schedule(); 268 void finishBlock(); 269 270 /// Return true if the loop kernel has been scheduled. 271 bool hasNewSchedule() { return Scheduled; } 272 273 /// Return the earliest time an instruction may be scheduled. 274 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; } 275 276 /// Return the latest time an instruction my be scheduled. 277 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; } 278 279 /// The mobility function, which the the number of slots in which 280 /// an instruction may be scheduled. 281 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); } 282 283 /// The depth, in the dependence graph, for a node. 284 int getDepth(SUnit *Node) { return Node->getDepth(); } 285 286 /// The height, in the dependence graph, for a node. 287 int getHeight(SUnit *Node) { return Node->getHeight(); } 288 289 /// Return true if the dependence is a back-edge in the data dependence graph. 290 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph 291 /// using an anti dependence from a Phi to an instruction. 292 bool isBackedge(SUnit *Source, const SDep &Dep) { 293 if (Dep.getKind() != SDep::Anti) 294 return false; 295 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI(); 296 } 297 298 /// Return true if the dependence is an order dependence between non-Phis. 299 static bool isOrder(SUnit *Source, const SDep &Dep) { 300 if (Dep.getKind() != SDep::Order) 301 return false; 302 return (!Source->getInstr()->isPHI() && 303 !Dep.getSUnit()->getInstr()->isPHI()); 304 } 305 306 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true); 307 308 /// The latency of the dependence. 309 unsigned getLatency(SUnit *Source, const SDep &Dep) { 310 // Anti dependences represent recurrences, so use the latency of the 311 // instruction on the back-edge. 312 if (Dep.getKind() == SDep::Anti) { 313 if (Source->getInstr()->isPHI()) 314 return Dep.getSUnit()->Latency; 315 if (Dep.getSUnit()->getInstr()->isPHI()) 316 return Source->Latency; 317 return Dep.getLatency(); 318 } 319 return Dep.getLatency(); 320 } 321 322 /// The distance function, which indicates that operation V of iteration I 323 /// depends on operations U of iteration I-distance. 324 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) { 325 // Instructions that feed a Phi have a distance of 1. Computing larger 326 // values for arrays requires data dependence information. 327 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti) 328 return 1; 329 return 0; 330 } 331 332 /// Set the Minimum Initiation Interval for this schedule attempt. 333 void setMII(unsigned mii) { MII = mii; } 334 335 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule, 336 bool UpdateDAG = false); 337 338 /// Return the new base register that was stored away for the changed 339 /// instruction. 340 unsigned getInstrBaseReg(SUnit *SU) { 341 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 342 InstrChanges.find(SU); 343 if (It != InstrChanges.end()) 344 return It->second.first; 345 return 0; 346 } 347 348 private: 349 void addLoopCarriedDependences(AliasAnalysis *AA); 350 void updatePhiDependences(); 351 void changeDependences(); 352 unsigned calculateResMII(); 353 unsigned calculateRecMII(NodeSetType &RecNodeSets); 354 void findCircuits(NodeSetType &NodeSets); 355 void fuseRecs(NodeSetType &NodeSets); 356 void removeDuplicateNodes(NodeSetType &NodeSets); 357 void computeNodeFunctions(NodeSetType &NodeSets); 358 void registerPressureFilter(NodeSetType &NodeSets); 359 void colocateNodeSets(NodeSetType &NodeSets); 360 void checkNodeSets(NodeSetType &NodeSets); 361 void groupRemainingNodes(NodeSetType &NodeSets); 362 void addConnectedNodes(SUnit *SU, NodeSet &NewSet, 363 SetVector<SUnit *> &NodesAdded); 364 void computeNodeOrder(NodeSetType &NodeSets); 365 bool schedulePipeline(SMSchedule &Schedule); 366 void generatePipelinedLoop(SMSchedule &Schedule); 367 void generateProlog(SMSchedule &Schedule, unsigned LastStage, 368 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 369 MBBVectorTy &PrologBBs); 370 void generateEpilog(SMSchedule &Schedule, unsigned LastStage, 371 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, 372 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs); 373 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 374 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 375 SMSchedule &Schedule, ValueMapTy *VRMap, 376 InstrMapTy &InstrMap, unsigned LastStageNum, 377 unsigned CurStageNum, bool IsLast); 378 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1, 379 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB, 380 SMSchedule &Schedule, ValueMapTy *VRMap, 381 InstrMapTy &InstrMap, unsigned LastStageNum, 382 unsigned CurStageNum, bool IsLast); 383 void removeDeadInstructions(MachineBasicBlock *KernelBB, 384 MBBVectorTy &EpilogBBs); 385 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs, 386 SMSchedule &Schedule); 387 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB, 388 MBBVectorTy &EpilogBBs, SMSchedule &Schedule, 389 ValueMapTy *VRMap); 390 bool computeDelta(MachineInstr &MI, unsigned &Delta); 391 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI, 392 unsigned Num); 393 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum, 394 unsigned InstStageNum); 395 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum, 396 unsigned InstStageNum, 397 SMSchedule &Schedule); 398 void updateInstruction(MachineInstr *NewMI, bool LastDef, 399 unsigned CurStageNum, unsigned InstStageNum, 400 SMSchedule &Schedule, ValueMapTy *VRMap); 401 MachineInstr *findDefInLoop(unsigned Reg); 402 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal, 403 unsigned LoopStage, ValueMapTy *VRMap, 404 MachineBasicBlock *BB); 405 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum, 406 SMSchedule &Schedule, ValueMapTy *VRMap, 407 InstrMapTy &InstrMap); 408 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule, 409 InstrMapTy &InstrMap, unsigned CurStageNum, 410 unsigned PhiNum, MachineInstr *Phi, 411 unsigned OldReg, unsigned NewReg, 412 unsigned PrevReg = 0); 413 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, 414 unsigned &OffsetPos, unsigned &NewBase, 415 int64_t &NewOffset); 416 }; 417 418 /// A NodeSet contains a set of SUnit DAG nodes with additional information 419 /// that assigns a priority to the set. 420 class NodeSet { 421 SetVector<SUnit *> Nodes; 422 bool HasRecurrence; 423 unsigned RecMII = 0; 424 int MaxMOV = 0; 425 int MaxDepth = 0; 426 unsigned Colocate = 0; 427 SUnit *ExceedPressure = nullptr; 428 429 public: 430 typedef SetVector<SUnit *>::const_iterator iterator; 431 432 NodeSet() : Nodes(), HasRecurrence(false) {} 433 434 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {} 435 436 bool insert(SUnit *SU) { return Nodes.insert(SU); } 437 438 void insert(iterator S, iterator E) { Nodes.insert(S, E); } 439 440 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) { 441 return Nodes.remove_if(P); 442 } 443 444 unsigned count(SUnit *SU) const { return Nodes.count(SU); } 445 446 bool hasRecurrence() { return HasRecurrence; }; 447 448 unsigned size() const { return Nodes.size(); } 449 450 bool empty() const { return Nodes.empty(); } 451 452 SUnit *getNode(unsigned i) const { return Nodes[i]; }; 453 454 void setRecMII(unsigned mii) { RecMII = mii; }; 455 456 void setColocate(unsigned c) { Colocate = c; }; 457 458 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; } 459 460 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; } 461 462 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; } 463 464 int getRecMII() { return RecMII; } 465 466 /// Summarize node functions for the entire node set. 467 void computeNodeSetInfo(SwingSchedulerDAG *SSD) { 468 for (SUnit *SU : *this) { 469 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU)); 470 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU)); 471 } 472 } 473 474 void clear() { 475 Nodes.clear(); 476 RecMII = 0; 477 HasRecurrence = false; 478 MaxMOV = 0; 479 MaxDepth = 0; 480 Colocate = 0; 481 ExceedPressure = nullptr; 482 } 483 484 operator SetVector<SUnit *> &() { return Nodes; } 485 486 /// Sort the node sets by importance. First, rank them by recurrence MII, 487 /// then by mobility (least mobile done first), and finally by depth. 488 /// Each node set may contain a colocate value which is used as the first 489 /// tie breaker, if it's set. 490 bool operator>(const NodeSet &RHS) const { 491 if (RecMII == RHS.RecMII) { 492 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate) 493 return Colocate < RHS.Colocate; 494 if (MaxMOV == RHS.MaxMOV) 495 return MaxDepth > RHS.MaxDepth; 496 return MaxMOV < RHS.MaxMOV; 497 } 498 return RecMII > RHS.RecMII; 499 } 500 501 bool operator==(const NodeSet &RHS) const { 502 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV && 503 MaxDepth == RHS.MaxDepth; 504 } 505 506 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); } 507 508 iterator begin() { return Nodes.begin(); } 509 iterator end() { return Nodes.end(); } 510 511 void print(raw_ostream &os) const { 512 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV 513 << " depth " << MaxDepth << " col " << Colocate << "\n"; 514 for (const auto &I : Nodes) 515 os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); 516 os << "\n"; 517 } 518 519 void dump() const { print(dbgs()); } 520 }; 521 522 /// This class repesents the scheduled code. The main data structure is a 523 /// map from scheduled cycle to instructions. During scheduling, the 524 /// data structure explicitly represents all stages/iterations. When 525 /// the algorithm finshes, the schedule is collapsed into a single stage, 526 /// which represents instructions from different loop iterations. 527 /// 528 /// The SMS algorithm allows negative values for cycles, so the first cycle 529 /// in the schedule is the smallest cycle value. 530 class SMSchedule { 531 private: 532 /// Map from execution cycle to instructions. 533 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs; 534 535 /// Map from instruction to execution cycle. 536 std::map<SUnit *, int> InstrToCycle; 537 538 /// Map for each register and the max difference between its uses and def. 539 /// The first element in the pair is the max difference in stages. The 540 /// second is true if the register defines a Phi value and loop value is 541 /// scheduled before the Phi. 542 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff; 543 544 /// Keep track of the first cycle value in the schedule. It starts 545 /// as zero, but the algorithm allows negative values. 546 int FirstCycle; 547 548 /// Keep track of the last cycle value in the schedule. 549 int LastCycle; 550 551 /// The initiation interval (II) for the schedule. 552 int InitiationInterval; 553 554 /// Target machine information. 555 const TargetSubtargetInfo &ST; 556 557 /// Virtual register information. 558 MachineRegisterInfo &MRI; 559 560 DFAPacketizer *Resources; 561 562 public: 563 SMSchedule(MachineFunction *mf) 564 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()), 565 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) { 566 FirstCycle = 0; 567 LastCycle = 0; 568 InitiationInterval = 0; 569 } 570 571 ~SMSchedule() { 572 ScheduledInstrs.clear(); 573 InstrToCycle.clear(); 574 RegToStageDiff.clear(); 575 delete Resources; 576 } 577 578 void reset() { 579 ScheduledInstrs.clear(); 580 InstrToCycle.clear(); 581 RegToStageDiff.clear(); 582 FirstCycle = 0; 583 LastCycle = 0; 584 InitiationInterval = 0; 585 } 586 587 /// Set the initiation interval for this schedule. 588 void setInitiationInterval(int ii) { InitiationInterval = ii; } 589 590 /// Return the first cycle in the completed schedule. This 591 /// can be a negative value. 592 int getFirstCycle() const { return FirstCycle; } 593 594 /// Return the last cycle in the finalized schedule. 595 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; } 596 597 /// Return the cycle of the earliest scheduled instruction in the dependence 598 /// chain. 599 int earliestCycleInChain(const SDep &Dep); 600 601 /// Return the cycle of the latest scheduled instruction in the dependence 602 /// chain. 603 int latestCycleInChain(const SDep &Dep); 604 605 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 606 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG); 607 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II); 608 609 /// Iterators for the cycle to instruction map. 610 typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator; 611 typedef DenseMap<int, std::deque<SUnit *>>::const_iterator 612 const_sched_iterator; 613 614 /// Return true if the instruction is scheduled at the specified stage. 615 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) { 616 return (stageScheduled(SU) == (int)StageNum); 617 } 618 619 /// Return the stage for a scheduled instruction. Return -1 if 620 /// the instruction has not been scheduled. 621 int stageScheduled(SUnit *SU) const { 622 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 623 if (it == InstrToCycle.end()) 624 return -1; 625 return (it->second - FirstCycle) / InitiationInterval; 626 } 627 628 /// Return the cycle for a scheduled instruction. This function normalizes 629 /// the first cycle to be 0. 630 unsigned cycleScheduled(SUnit *SU) const { 631 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU); 632 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled."); 633 return (it->second - FirstCycle) % InitiationInterval; 634 } 635 636 /// Return the maximum stage count needed for this schedule. 637 unsigned getMaxStageCount() { 638 return (LastCycle - FirstCycle) / InitiationInterval; 639 } 640 641 /// Return the max. number of stages/iterations that can occur between a 642 /// register definition and its uses. 643 unsigned getStagesForReg(int Reg, unsigned CurStage) { 644 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 645 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second) 646 return 1; 647 return Stages.first; 648 } 649 650 /// The number of stages for a Phi is a little different than other 651 /// instructions. The minimum value computed in RegToStageDiff is 1 652 /// because we assume the Phi is needed for at least 1 iteration. 653 /// This is not the case if the loop value is scheduled prior to the 654 /// Phi in the same stage. This function returns the number of stages 655 /// or iterations needed between the Phi definition and any uses. 656 unsigned getStagesForPhi(int Reg) { 657 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg]; 658 if (Stages.second) 659 return Stages.first; 660 return Stages.first - 1; 661 } 662 663 /// Return the instructions that are scheduled at the specified cycle. 664 std::deque<SUnit *> &getInstructions(int cycle) { 665 return ScheduledInstrs[cycle]; 666 } 667 668 bool isValidSchedule(SwingSchedulerDAG *SSD); 669 void finalizeSchedule(SwingSchedulerDAG *SSD); 670 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 671 std::deque<SUnit *> &Insts); 672 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi); 673 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst, 674 MachineOperand &MO); 675 void print(raw_ostream &os) const; 676 void dump() const; 677 }; 678 679 } // end anonymous namespace 680 681 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; 682 char MachinePipeliner::ID = 0; 683 #ifndef NDEBUG 684 int MachinePipeliner::NumTries = 0; 685 #endif 686 char &llvm::MachinePipelinerID = MachinePipeliner::ID; 687 INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner", 688 "Modulo Software Pipelining", false, false) 689 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 690 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 691 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 692 INITIALIZE_PASS_DEPENDENCY(LiveIntervals) 693 INITIALIZE_PASS_END(MachinePipeliner, "pipeliner", 694 "Modulo Software Pipelining", false, false) 695 696 /// The "main" function for implementing Swing Modulo Scheduling. 697 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { 698 if (skipFunction(*mf.getFunction())) 699 return false; 700 701 if (!EnableSWP) 702 return false; 703 704 if (mf.getFunction()->getAttributes().hasAttribute( 705 AttributeSet::FunctionIndex, Attribute::OptimizeForSize) && 706 !EnableSWPOptSize.getPosition()) 707 return false; 708 709 MF = &mf; 710 MLI = &getAnalysis<MachineLoopInfo>(); 711 MDT = &getAnalysis<MachineDominatorTree>(); 712 TII = MF->getSubtarget().getInstrInfo(); 713 RegClassInfo.runOnMachineFunction(*MF); 714 715 for (auto &L : *MLI) 716 scheduleLoop(*L); 717 718 return false; 719 } 720 721 /// Attempt to perform the SMS algorithm on the specified loop. This function is 722 /// the main entry point for the algorithm. The function identifies candidate 723 /// loops, calculates the minimum initiation interval, and attempts to schedule 724 /// the loop. 725 bool MachinePipeliner::scheduleLoop(MachineLoop &L) { 726 bool Changed = false; 727 for (auto &InnerLoop : L) 728 Changed |= scheduleLoop(*InnerLoop); 729 730 #ifndef NDEBUG 731 // Stop trying after reaching the limit (if any). 732 int Limit = SwpLoopLimit; 733 if (Limit >= 0) { 734 if (NumTries >= SwpLoopLimit) 735 return Changed; 736 NumTries++; 737 } 738 #endif 739 740 if (!canPipelineLoop(L)) 741 return Changed; 742 743 ++NumTrytoPipeline; 744 745 Changed = swingModuloScheduler(L); 746 747 return Changed; 748 } 749 750 /// Return true if the loop can be software pipelined. The algorithm is 751 /// restricted to loops with a single basic block. Make sure that the 752 /// branch in the loop can be analyzed. 753 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { 754 if (L.getNumBlocks() != 1) 755 return false; 756 757 // Check if the branch can't be understood because we can't do pipelining 758 // if that's the case. 759 LI.TBB = nullptr; 760 LI.FBB = nullptr; 761 LI.BrCond.clear(); 762 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) 763 return false; 764 765 LI.LoopInductionVar = nullptr; 766 LI.LoopCompare = nullptr; 767 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare)) 768 return false; 769 770 if (!L.getLoopPreheader()) 771 return false; 772 773 // If any of the Phis contain subregs, then we can't pipeline 774 // because we don't know how to maintain subreg information in the 775 // VMap structure. 776 MachineBasicBlock *MBB = L.getHeader(); 777 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(), 778 BBE = MBB->getFirstNonPHI(); 779 BBI != BBE; ++BBI) 780 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2) 781 if (BBI->getOperand(i).getSubReg() != 0) 782 return false; 783 784 return true; 785 } 786 787 /// The SMS algorithm consists of the following main steps: 788 /// 1. Computation and analysis of the dependence graph. 789 /// 2. Ordering of the nodes (instructions). 790 /// 3. Attempt to Schedule the loop. 791 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { 792 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); 793 794 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo); 795 796 MachineBasicBlock *MBB = L.getHeader(); 797 // The kernel should not include any terminator instructions. These 798 // will be added back later. 799 SMS.startBlock(MBB); 800 801 // Compute the number of 'real' instructions in the basic block by 802 // ignoring terminators. 803 unsigned size = MBB->size(); 804 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), 805 E = MBB->instr_end(); 806 I != E; ++I, --size) 807 ; 808 809 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); 810 SMS.schedule(); 811 SMS.exitRegion(); 812 813 SMS.finishBlock(); 814 return SMS.hasNewSchedule(); 815 } 816 817 /// We override the schedule function in ScheduleDAGInstrs to implement the 818 /// scheduling part of the Swing Modulo Scheduling algorithm. 819 void SwingSchedulerDAG::schedule() { 820 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); 821 buildSchedGraph(AA); 822 addLoopCarriedDependences(AA); 823 updatePhiDependences(); 824 Topo.InitDAGTopologicalSorting(); 825 changeDependences(); 826 DEBUG({ 827 for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 828 SUnits[su].dumpAll(this); 829 }); 830 831 NodeSetType NodeSets; 832 findCircuits(NodeSets); 833 834 // Calculate the MII. 835 unsigned ResMII = calculateResMII(); 836 unsigned RecMII = calculateRecMII(NodeSets); 837 838 fuseRecs(NodeSets); 839 840 // This flag is used for testing and can cause correctness problems. 841 if (SwpIgnoreRecMII) 842 RecMII = 0; 843 844 MII = std::max(ResMII, RecMII); 845 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII 846 << ")\n"); 847 848 // Can't schedule a loop without a valid MII. 849 if (MII == 0) 850 return; 851 852 // Don't pipeline large loops. 853 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) 854 return; 855 856 computeNodeFunctions(NodeSets); 857 858 registerPressureFilter(NodeSets); 859 860 colocateNodeSets(NodeSets); 861 862 checkNodeSets(NodeSets); 863 864 DEBUG({ 865 for (auto &I : NodeSets) { 866 dbgs() << " Rec NodeSet "; 867 I.dump(); 868 } 869 }); 870 871 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>()); 872 873 groupRemainingNodes(NodeSets); 874 875 removeDuplicateNodes(NodeSets); 876 877 DEBUG({ 878 for (auto &I : NodeSets) { 879 dbgs() << " NodeSet "; 880 I.dump(); 881 } 882 }); 883 884 computeNodeOrder(NodeSets); 885 886 SMSchedule Schedule(Pass.MF); 887 Scheduled = schedulePipeline(Schedule); 888 889 if (!Scheduled) 890 return; 891 892 unsigned numStages = Schedule.getMaxStageCount(); 893 // No need to generate pipeline if there are no overlapped iterations. 894 if (numStages == 0) 895 return; 896 897 // Check that the maximum stage count is less than user-defined limit. 898 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) 899 return; 900 901 generatePipelinedLoop(Schedule); 902 ++NumPipelined; 903 } 904 905 /// Clean up after the software pipeliner runs. 906 void SwingSchedulerDAG::finishBlock() { 907 for (MachineInstr *I : NewMIs) 908 MF.DeleteMachineInstr(I); 909 NewMIs.clear(); 910 911 // Call the superclass. 912 ScheduleDAGInstrs::finishBlock(); 913 } 914 915 /// Return the register values for the operands of a Phi instruction. 916 /// This function assume the instruction is a Phi. 917 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, 918 unsigned &InitVal, unsigned &LoopVal) { 919 assert(Phi.isPHI() && "Expecting a Phi."); 920 921 InitVal = 0; 922 LoopVal = 0; 923 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 924 if (Phi.getOperand(i + 1).getMBB() != Loop) 925 InitVal = Phi.getOperand(i).getReg(); 926 else if (Phi.getOperand(i + 1).getMBB() == Loop) 927 LoopVal = Phi.getOperand(i).getReg(); 928 929 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); 930 } 931 932 /// Return the Phi register value that comes from the incoming block. 933 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 934 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 935 if (Phi.getOperand(i + 1).getMBB() != LoopBB) 936 return Phi.getOperand(i).getReg(); 937 return 0; 938 } 939 940 /// Return the Phi register value that comes the the loop block. 941 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { 942 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) 943 if (Phi.getOperand(i + 1).getMBB() == LoopBB) 944 return Phi.getOperand(i).getReg(); 945 return 0; 946 } 947 948 /// Return true if SUb can be reached from SUa following the chain edges. 949 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { 950 SmallPtrSet<SUnit *, 8> Visited; 951 SmallVector<SUnit *, 8> Worklist; 952 Worklist.push_back(SUa); 953 while (!Worklist.empty()) { 954 const SUnit *SU = Worklist.pop_back_val(); 955 for (auto &SI : SU->Succs) { 956 SUnit *SuccSU = SI.getSUnit(); 957 if (SI.getKind() == SDep::Order) { 958 if (Visited.count(SuccSU)) 959 continue; 960 if (SuccSU == SUb) 961 return true; 962 Worklist.push_back(SuccSU); 963 Visited.insert(SuccSU); 964 } 965 } 966 } 967 return false; 968 } 969 970 /// Return true if the instruction causes a chain between memory 971 /// references before and after it. 972 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { 973 return MI.isCall() || MI.hasUnmodeledSideEffects() || 974 (MI.hasOrderedMemoryRef() && 975 (!MI.mayLoad() || !MI.isInvariantLoad(AA))); 976 } 977 978 /// Return the underlying objects for the memory references of an instruction. 979 /// This function calls the code in ValueTracking, but first checks that the 980 /// instruction has a memory operand. 981 static void getUnderlyingObjects(MachineInstr *MI, 982 SmallVectorImpl<Value *> &Objs, 983 const DataLayout &DL) { 984 if (!MI->hasOneMemOperand()) 985 return; 986 MachineMemOperand *MM = *MI->memoperands_begin(); 987 if (!MM->getValue()) 988 return; 989 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL); 990 } 991 992 /// Add a chain edge between a load and store if the store can be an 993 /// alias of the load on a subsequent iteration, i.e., a loop carried 994 /// dependence. This code is very similar to the code in ScheduleDAGInstrs 995 /// but that code doesn't create loop carried dependences. 996 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { 997 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads; 998 for (auto &SU : SUnits) { 999 MachineInstr &MI = *SU.getInstr(); 1000 if (isDependenceBarrier(MI, AA)) 1001 PendingLoads.clear(); 1002 else if (MI.mayLoad()) { 1003 SmallVector<Value *, 4> Objs; 1004 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1005 for (auto V : Objs) { 1006 SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; 1007 SUs.push_back(&SU); 1008 } 1009 } else if (MI.mayStore()) { 1010 SmallVector<Value *, 4> Objs; 1011 getUnderlyingObjects(&MI, Objs, MF.getDataLayout()); 1012 for (auto V : Objs) { 1013 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I = 1014 PendingLoads.find(V); 1015 if (I == PendingLoads.end()) 1016 continue; 1017 for (auto Load : I->second) { 1018 if (isSuccOrder(Load, &SU)) 1019 continue; 1020 MachineInstr &LdMI = *Load->getInstr(); 1021 // First, perform the cheaper check that compares the base register. 1022 // If they are the same and the load offset is less than the store 1023 // offset, then mark the dependence as loop carried potentially. 1024 unsigned BaseReg1, BaseReg2; 1025 int64_t Offset1, Offset2; 1026 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) || 1027 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) { 1028 SU.addPred(SDep(Load, SDep::Barrier)); 1029 continue; 1030 } 1031 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) { 1032 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && 1033 "What happened to the chain edge?"); 1034 SU.addPred(SDep(Load, SDep::Barrier)); 1035 continue; 1036 } 1037 // Second, the more expensive check that uses alias analysis on the 1038 // base registers. If they alias, and the load offset is less than 1039 // the store offset, the mark the dependence as loop carried. 1040 if (!AA) { 1041 SU.addPred(SDep(Load, SDep::Barrier)); 1042 continue; 1043 } 1044 MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); 1045 MachineMemOperand *MMO2 = *MI.memoperands_begin(); 1046 if (!MMO1->getValue() || !MMO2->getValue()) { 1047 SU.addPred(SDep(Load, SDep::Barrier)); 1048 continue; 1049 } 1050 if (MMO1->getValue() == MMO2->getValue() && 1051 MMO1->getOffset() <= MMO2->getOffset()) { 1052 SU.addPred(SDep(Load, SDep::Barrier)); 1053 continue; 1054 } 1055 AliasResult AAResult = AA->alias( 1056 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize, 1057 MMO1->getAAInfo()), 1058 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize, 1059 MMO2->getAAInfo())); 1060 1061 if (AAResult != NoAlias) 1062 SU.addPred(SDep(Load, SDep::Barrier)); 1063 } 1064 } 1065 } 1066 } 1067 } 1068 1069 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer 1070 /// processes dependences for PHIs. This function adds true dependences 1071 /// from a PHI to a use, and a loop carried dependence from the use to the 1072 /// PHI. The loop carried dependence is represented as an anti dependence 1073 /// edge. This function also removes chain dependences between unrelated 1074 /// PHIs. 1075 void SwingSchedulerDAG::updatePhiDependences() { 1076 SmallVector<SDep, 4> RemoveDeps; 1077 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); 1078 1079 // Iterate over each DAG node. 1080 for (SUnit &I : SUnits) { 1081 RemoveDeps.clear(); 1082 // Set to true if the instruction has an operand defined by a Phi. 1083 unsigned HasPhiUse = 0; 1084 unsigned HasPhiDef = 0; 1085 MachineInstr *MI = I.getInstr(); 1086 // Iterate over each operand, and we process the definitions. 1087 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 1088 MOE = MI->operands_end(); 1089 MOI != MOE; ++MOI) { 1090 if (!MOI->isReg()) 1091 continue; 1092 unsigned Reg = MOI->getReg(); 1093 if (MOI->isDef()) { 1094 // If the register is used by a Phi, then create an anti dependence. 1095 for (MachineRegisterInfo::use_instr_iterator 1096 UI = MRI.use_instr_begin(Reg), 1097 UE = MRI.use_instr_end(); 1098 UI != UE; ++UI) { 1099 MachineInstr *UseMI = &*UI; 1100 SUnit *SU = getSUnit(UseMI); 1101 if (SU != 0 && UseMI->isPHI()) { 1102 if (!MI->isPHI()) { 1103 SDep Dep(SU, SDep::Anti, Reg); 1104 I.addPred(Dep); 1105 } else { 1106 HasPhiDef = Reg; 1107 // Add a chain edge to a dependent Phi that isn't an existing 1108 // predecessor. 1109 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1110 I.addPred(SDep(SU, SDep::Barrier)); 1111 } 1112 } 1113 } 1114 } else if (MOI->isUse()) { 1115 // If the register is defined by a Phi, then create a true dependence. 1116 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); 1117 if (DefMI == 0) 1118 continue; 1119 SUnit *SU = getSUnit(DefMI); 1120 if (SU != 0 && DefMI->isPHI()) { 1121 if (!MI->isPHI()) { 1122 SDep Dep(SU, SDep::Data, Reg); 1123 Dep.setLatency(0); 1124 ST.adjustSchedDependency(SU, &I, Dep); 1125 I.addPred(Dep); 1126 } else { 1127 HasPhiUse = Reg; 1128 // Add a chain edge to a dependent Phi that isn't an existing 1129 // predecessor. 1130 if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) 1131 I.addPred(SDep(SU, SDep::Barrier)); 1132 } 1133 } 1134 } 1135 } 1136 // Remove order dependences from an unrelated Phi. 1137 if (!SwpPruneDeps) 1138 continue; 1139 for (auto &PI : I.Preds) { 1140 MachineInstr *PMI = PI.getSUnit()->getInstr(); 1141 if (PMI->isPHI() && PI.getKind() == SDep::Order) { 1142 if (I.getInstr()->isPHI()) { 1143 if (PMI->getOperand(0).getReg() == HasPhiUse) 1144 continue; 1145 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) 1146 continue; 1147 } 1148 RemoveDeps.push_back(PI); 1149 } 1150 } 1151 for (int i = 0, e = RemoveDeps.size(); i != e; ++i) 1152 I.removePred(RemoveDeps[i]); 1153 } 1154 } 1155 1156 /// Iterate over each DAG node and see if we can change any dependences 1157 /// in order to reduce the recurrence MII. 1158 void SwingSchedulerDAG::changeDependences() { 1159 // See if an instruction can use a value from the previous iteration. 1160 // If so, we update the base and offset of the instruction and change 1161 // the dependences. 1162 for (SUnit &I : SUnits) { 1163 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; 1164 int64_t NewOffset = 0; 1165 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, 1166 NewOffset)) 1167 continue; 1168 1169 // Get the MI and SUnit for the instruction that defines the original base. 1170 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg(); 1171 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); 1172 if (!DefMI) 1173 continue; 1174 SUnit *DefSU = getSUnit(DefMI); 1175 if (!DefSU) 1176 continue; 1177 // Get the MI and SUnit for the instruction that defins the new base. 1178 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); 1179 if (!LastMI) 1180 continue; 1181 SUnit *LastSU = getSUnit(LastMI); 1182 if (!LastSU) 1183 continue; 1184 1185 if (Topo.IsReachable(&I, LastSU)) 1186 continue; 1187 1188 // Remove the dependence. The value now depends on a prior iteration. 1189 SmallVector<SDep, 4> Deps; 1190 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; 1191 ++P) 1192 if (P->getSUnit() == DefSU) 1193 Deps.push_back(*P); 1194 for (int i = 0, e = Deps.size(); i != e; i++) { 1195 Topo.RemovePred(&I, Deps[i].getSUnit()); 1196 I.removePred(Deps[i]); 1197 } 1198 // Remove the chain dependence between the instructions. 1199 Deps.clear(); 1200 for (auto &P : LastSU->Preds) 1201 if (P.getSUnit() == &I && P.getKind() == SDep::Order) 1202 Deps.push_back(P); 1203 for (int i = 0, e = Deps.size(); i != e; i++) { 1204 Topo.RemovePred(LastSU, Deps[i].getSUnit()); 1205 LastSU->removePred(Deps[i]); 1206 } 1207 1208 // Add a dependence between the new instruction and the instruction 1209 // that defines the new base. 1210 SDep Dep(&I, SDep::Anti, NewBase); 1211 LastSU->addPred(Dep); 1212 1213 // Remember the base and offset information so that we can update the 1214 // instruction during code generation. 1215 InstrChanges[&I] = std::make_pair(NewBase, NewOffset); 1216 } 1217 } 1218 1219 namespace { 1220 // FuncUnitSorter - Comparison operator used to sort instructions by 1221 // the number of functional unit choices. 1222 struct FuncUnitSorter { 1223 const InstrItineraryData *InstrItins; 1224 DenseMap<unsigned, unsigned> Resources; 1225 1226 // Compute the number of functional unit alternatives needed 1227 // at each stage, and take the minimum value. We prioritize the 1228 // instructions by the least number of choices first. 1229 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const { 1230 unsigned schedClass = Inst->getDesc().getSchedClass(); 1231 unsigned min = UINT_MAX; 1232 for (const InstrStage *IS = InstrItins->beginStage(schedClass), 1233 *IE = InstrItins->endStage(schedClass); 1234 IS != IE; ++IS) { 1235 unsigned funcUnits = IS->getUnits(); 1236 unsigned numAlternatives = countPopulation(funcUnits); 1237 if (numAlternatives < min) { 1238 min = numAlternatives; 1239 F = funcUnits; 1240 } 1241 } 1242 return min; 1243 } 1244 1245 // Compute the critical resources needed by the instruction. This 1246 // function records the functional units needed by instructions that 1247 // must use only one functional unit. We use this as a tie breaker 1248 // for computing the resource MII. The instrutions that require 1249 // the same, highly used, functional unit have high priority. 1250 void calcCriticalResources(MachineInstr &MI) { 1251 unsigned SchedClass = MI.getDesc().getSchedClass(); 1252 for (const InstrStage *IS = InstrItins->beginStage(SchedClass), 1253 *IE = InstrItins->endStage(SchedClass); 1254 IS != IE; ++IS) { 1255 unsigned FuncUnits = IS->getUnits(); 1256 if (countPopulation(FuncUnits) == 1) 1257 Resources[FuncUnits]++; 1258 } 1259 } 1260 1261 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {} 1262 /// Return true if IS1 has less priority than IS2. 1263 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { 1264 unsigned F1 = 0, F2 = 0; 1265 unsigned MFUs1 = minFuncUnits(IS1, F1); 1266 unsigned MFUs2 = minFuncUnits(IS2, F2); 1267 if (MFUs1 == 1 && MFUs2 == 1) 1268 return Resources.lookup(F1) < Resources.lookup(F2); 1269 return MFUs1 > MFUs2; 1270 } 1271 }; 1272 } 1273 1274 /// Calculate the resource constrained minimum initiation interval for the 1275 /// specified loop. We use the DFA to model the resources needed for 1276 /// each instruction, and we ignore dependences. A different DFA is created 1277 /// for each cycle that is required. When adding a new instruction, we attempt 1278 /// to add it to each existing DFA, until a legal space is found. If the 1279 /// instruction cannot be reserved in an existing DFA, we create a new one. 1280 unsigned SwingSchedulerDAG::calculateResMII() { 1281 SmallVector<DFAPacketizer *, 8> Resources; 1282 MachineBasicBlock *MBB = Loop.getHeader(); 1283 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget())); 1284 1285 // Sort the instructions by the number of available choices for scheduling, 1286 // least to most. Use the number of critical resources as the tie breaker. 1287 FuncUnitSorter FUS = 1288 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData()); 1289 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1290 E = MBB->getFirstTerminator(); 1291 I != E; ++I) 1292 FUS.calcCriticalResources(*I); 1293 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> 1294 FuncUnitOrder(FUS); 1295 1296 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), 1297 E = MBB->getFirstTerminator(); 1298 I != E; ++I) 1299 FuncUnitOrder.push(&*I); 1300 1301 while (!FuncUnitOrder.empty()) { 1302 MachineInstr *MI = FuncUnitOrder.top(); 1303 FuncUnitOrder.pop(); 1304 if (TII->isZeroCost(MI->getOpcode())) 1305 continue; 1306 // Attempt to reserve the instruction in an existing DFA. At least one 1307 // DFA is needed for each cycle. 1308 unsigned NumCycles = getSUnit(MI)->Latency; 1309 unsigned ReservedCycles = 0; 1310 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin(); 1311 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end(); 1312 for (unsigned C = 0; C < NumCycles; ++C) 1313 while (RI != RE) { 1314 if ((*RI++)->canReserveResources(*MI)) { 1315 ++ReservedCycles; 1316 break; 1317 } 1318 } 1319 // Start reserving resources using existing DFAs. 1320 for (unsigned C = 0; C < ReservedCycles; ++C) { 1321 --RI; 1322 (*RI)->reserveResources(*MI); 1323 } 1324 // Add new DFAs, if needed, to reserve resources. 1325 for (unsigned C = ReservedCycles; C < NumCycles; ++C) { 1326 DFAPacketizer *NewResource = 1327 TII->CreateTargetScheduleState(MF.getSubtarget()); 1328 assert(NewResource->canReserveResources(*MI) && "Reserve error."); 1329 NewResource->reserveResources(*MI); 1330 Resources.push_back(NewResource); 1331 } 1332 } 1333 int Resmii = Resources.size(); 1334 // Delete the memory for each of the DFAs that were created earlier. 1335 for (DFAPacketizer *RI : Resources) { 1336 DFAPacketizer *D = RI; 1337 delete D; 1338 } 1339 Resources.clear(); 1340 return Resmii; 1341 } 1342 1343 /// Calculate the recurrence-constrainted minimum initiation interval. 1344 /// Iterate over each circuit. Compute the delay(c) and distance(c) 1345 /// for each circuit. The II needs to satisfy the inequality 1346 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest 1347 /// II that satistifies the inequality, and the RecMII is the maximum 1348 /// of those values. 1349 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { 1350 unsigned RecMII = 0; 1351 1352 for (NodeSet &Nodes : NodeSets) { 1353 if (Nodes.size() == 0) 1354 continue; 1355 1356 unsigned Delay = Nodes.size() - 1; 1357 unsigned Distance = 1; 1358 1359 // ii = ceil(delay / distance) 1360 unsigned CurMII = (Delay + Distance - 1) / Distance; 1361 Nodes.setRecMII(CurMII); 1362 if (CurMII > RecMII) 1363 RecMII = CurMII; 1364 } 1365 1366 return RecMII; 1367 } 1368 1369 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1370 /// but we do this to find the circuits, and then change them back. 1371 static void swapAntiDependences(std::vector<SUnit> &SUnits) { 1372 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; 1373 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { 1374 SUnit *SU = &SUnits[i]; 1375 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); 1376 IP != EP; ++IP) { 1377 if (IP->getKind() != SDep::Anti) 1378 continue; 1379 DepsAdded.push_back(std::make_pair(SU, *IP)); 1380 } 1381 } 1382 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), 1383 E = DepsAdded.end(); 1384 I != E; ++I) { 1385 // Remove this anti dependency and add one in the reverse direction. 1386 SUnit *SU = I->first; 1387 SDep &D = I->second; 1388 SUnit *TargetSU = D.getSUnit(); 1389 unsigned Reg = D.getReg(); 1390 unsigned Lat = D.getLatency(); 1391 SU->removePred(D); 1392 SDep Dep(SU, SDep::Anti, Reg); 1393 Dep.setLatency(Lat); 1394 TargetSU->addPred(Dep); 1395 } 1396 } 1397 1398 /// Create the adjacency structure of the nodes in the graph. 1399 void SwingSchedulerDAG::Circuits::createAdjacencyStructure( 1400 SwingSchedulerDAG *DAG) { 1401 BitVector Added(SUnits.size()); 1402 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1403 Added.reset(); 1404 // Add any successor to the adjacency matrix and exclude duplicates. 1405 for (auto &SI : SUnits[i].Succs) { 1406 // Do not process a boundary node and a back-edge is processed only 1407 // if it goes to a Phi. 1408 if (SI.getSUnit()->isBoundaryNode() || 1409 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) 1410 continue; 1411 int N = SI.getSUnit()->NodeNum; 1412 if (!Added.test(N)) { 1413 AdjK[i].push_back(N); 1414 Added.set(N); 1415 } 1416 } 1417 // A chain edge between a store and a load is treated as a back-edge in the 1418 // adjacency matrix. 1419 for (auto &PI : SUnits[i].Preds) { 1420 if (!SUnits[i].getInstr()->mayStore() || 1421 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false)) 1422 continue; 1423 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { 1424 int N = PI.getSUnit()->NodeNum; 1425 if (!Added.test(N)) { 1426 AdjK[i].push_back(N); 1427 Added.set(N); 1428 } 1429 } 1430 } 1431 } 1432 } 1433 1434 /// Identify an elementary circuit in the dependence graph starting at the 1435 /// specified node. 1436 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, 1437 bool HasBackedge) { 1438 SUnit *SV = &SUnits[V]; 1439 bool F = false; 1440 Stack.insert(SV); 1441 Blocked.set(V); 1442 1443 for (auto W : AdjK[V]) { 1444 if (NumPaths > MaxPaths) 1445 break; 1446 if (W < S) 1447 continue; 1448 if (W == S) { 1449 if (!HasBackedge) 1450 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); 1451 F = true; 1452 ++NumPaths; 1453 break; 1454 } else if (!Blocked.test(W)) { 1455 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge)) 1456 F = true; 1457 } 1458 } 1459 1460 if (F) 1461 unblock(V); 1462 else { 1463 for (auto W : AdjK[V]) { 1464 if (W < S) 1465 continue; 1466 if (B[W].count(SV) == 0) 1467 B[W].insert(SV); 1468 } 1469 } 1470 Stack.pop_back(); 1471 return F; 1472 } 1473 1474 /// Unblock a node in the circuit finding algorithm. 1475 void SwingSchedulerDAG::Circuits::unblock(int U) { 1476 Blocked.reset(U); 1477 SmallPtrSet<SUnit *, 4> &BU = B[U]; 1478 while (!BU.empty()) { 1479 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); 1480 assert(SI != BU.end() && "Invalid B set."); 1481 SUnit *W = *SI; 1482 BU.erase(W); 1483 if (Blocked.test(W->NodeNum)) 1484 unblock(W->NodeNum); 1485 } 1486 } 1487 1488 /// Identify all the elementary circuits in the dependence graph using 1489 /// Johnson's circuit algorithm. 1490 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { 1491 // Swap all the anti dependences in the DAG. That means it is no longer a DAG, 1492 // but we do this to find the circuits, and then change them back. 1493 swapAntiDependences(SUnits); 1494 1495 Circuits Cir(SUnits); 1496 // Create the adjacency structure. 1497 Cir.createAdjacencyStructure(this); 1498 for (int i = 0, e = SUnits.size(); i != e; ++i) { 1499 Cir.reset(); 1500 Cir.circuit(i, i, NodeSets); 1501 } 1502 1503 // Change the dependences back so that we've created a DAG again. 1504 swapAntiDependences(SUnits); 1505 } 1506 1507 /// Return true for DAG nodes that we ignore when computing the cost functions. 1508 /// We ignore the back-edge recurrence in order to avoid unbounded recurison 1509 /// in the calculation of the ASAP, ALAP, etc functions. 1510 static bool ignoreDependence(const SDep &D, bool isPred) { 1511 if (D.isArtificial()) 1512 return true; 1513 return D.getKind() == SDep::Anti && isPred; 1514 } 1515 1516 /// Compute several functions need to order the nodes for scheduling. 1517 /// ASAP - Earliest time to schedule a node. 1518 /// ALAP - Latest time to schedule a node. 1519 /// MOV - Mobility function, difference between ALAP and ASAP. 1520 /// D - Depth of each node. 1521 /// H - Height of each node. 1522 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { 1523 1524 ScheduleInfo.resize(SUnits.size()); 1525 1526 DEBUG({ 1527 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1528 E = Topo.end(); 1529 I != E; ++I) { 1530 SUnit *SU = &SUnits[*I]; 1531 SU->dump(this); 1532 } 1533 }); 1534 1535 int maxASAP = 0; 1536 // Compute ASAP. 1537 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), 1538 E = Topo.end(); 1539 I != E; ++I) { 1540 int asap = 0; 1541 SUnit *SU = &SUnits[*I]; 1542 for (SUnit::const_pred_iterator IP = SU->Preds.begin(), 1543 EP = SU->Preds.end(); 1544 IP != EP; ++IP) { 1545 if (ignoreDependence(*IP, true)) 1546 continue; 1547 SUnit *pred = IP->getSUnit(); 1548 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) - 1549 getDistance(pred, SU, *IP) * MII)); 1550 } 1551 maxASAP = std::max(maxASAP, asap); 1552 ScheduleInfo[*I].ASAP = asap; 1553 } 1554 1555 // Compute ALAP and MOV. 1556 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), 1557 E = Topo.rend(); 1558 I != E; ++I) { 1559 int alap = maxASAP; 1560 SUnit *SU = &SUnits[*I]; 1561 for (SUnit::const_succ_iterator IS = SU->Succs.begin(), 1562 ES = SU->Succs.end(); 1563 IS != ES; ++IS) { 1564 if (ignoreDependence(*IS, true)) 1565 continue; 1566 SUnit *succ = IS->getSUnit(); 1567 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) + 1568 getDistance(SU, succ, *IS) * MII)); 1569 } 1570 1571 ScheduleInfo[*I].ALAP = alap; 1572 } 1573 1574 // After computing the node functions, compute the summary for each node set. 1575 for (NodeSet &I : NodeSets) 1576 I.computeNodeSetInfo(this); 1577 1578 DEBUG({ 1579 for (unsigned i = 0; i < SUnits.size(); i++) { 1580 dbgs() << "\tNode " << i << ":\n"; 1581 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; 1582 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; 1583 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; 1584 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; 1585 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; 1586 } 1587 }); 1588 } 1589 1590 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined 1591 /// as the predecessors of the elements of NodeOrder that are not also in 1592 /// NodeOrder. 1593 static bool pred_L(SetVector<SUnit *> &NodeOrder, 1594 SmallSetVector<SUnit *, 8> &Preds, 1595 const NodeSet *S = nullptr) { 1596 Preds.clear(); 1597 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1598 I != E; ++I) { 1599 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); 1600 PI != PE; ++PI) { 1601 if (S && S->count(PI->getSUnit()) == 0) 1602 continue; 1603 if (ignoreDependence(*PI, true)) 1604 continue; 1605 if (NodeOrder.count(PI->getSUnit()) == 0) 1606 Preds.insert(PI->getSUnit()); 1607 } 1608 // Back-edges are predecessors with an anti-dependence. 1609 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), 1610 ES = (*I)->Succs.end(); 1611 IS != ES; ++IS) { 1612 if (IS->getKind() != SDep::Anti) 1613 continue; 1614 if (S && S->count(IS->getSUnit()) == 0) 1615 continue; 1616 if (NodeOrder.count(IS->getSUnit()) == 0) 1617 Preds.insert(IS->getSUnit()); 1618 } 1619 } 1620 return Preds.size() > 0; 1621 } 1622 1623 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined 1624 /// as the successors of the elements of NodeOrder that are not also in 1625 /// NodeOrder. 1626 static bool succ_L(SetVector<SUnit *> &NodeOrder, 1627 SmallSetVector<SUnit *, 8> &Succs, 1628 const NodeSet *S = nullptr) { 1629 Succs.clear(); 1630 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); 1631 I != E; ++I) { 1632 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); 1633 SI != SE; ++SI) { 1634 if (S && S->count(SI->getSUnit()) == 0) 1635 continue; 1636 if (ignoreDependence(*SI, false)) 1637 continue; 1638 if (NodeOrder.count(SI->getSUnit()) == 0) 1639 Succs.insert(SI->getSUnit()); 1640 } 1641 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), 1642 PE = (*I)->Preds.end(); 1643 PI != PE; ++PI) { 1644 if (PI->getKind() != SDep::Anti) 1645 continue; 1646 if (S && S->count(PI->getSUnit()) == 0) 1647 continue; 1648 if (NodeOrder.count(PI->getSUnit()) == 0) 1649 Succs.insert(PI->getSUnit()); 1650 } 1651 } 1652 return Succs.size() > 0; 1653 } 1654 1655 /// Return true if there is a path from the specified node to any of the nodes 1656 /// in DestNodes. Keep track and return the nodes in any path. 1657 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, 1658 SetVector<SUnit *> &DestNodes, 1659 SetVector<SUnit *> &Exclude, 1660 SmallPtrSet<SUnit *, 8> &Visited) { 1661 if (Cur->isBoundaryNode()) 1662 return false; 1663 if (Exclude.count(Cur) != 0) 1664 return false; 1665 if (DestNodes.count(Cur) != 0) 1666 return true; 1667 if (!Visited.insert(Cur).second) 1668 return Path.count(Cur) != 0; 1669 bool FoundPath = false; 1670 for (auto &SI : Cur->Succs) 1671 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); 1672 for (auto &PI : Cur->Preds) 1673 if (PI.getKind() == SDep::Anti) 1674 FoundPath |= 1675 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); 1676 if (FoundPath) 1677 Path.insert(Cur); 1678 return FoundPath; 1679 } 1680 1681 /// Return true if Set1 is a subset of Set2. 1682 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { 1683 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) 1684 if (Set2.count(*I) == 0) 1685 return false; 1686 return true; 1687 } 1688 1689 /// Compute the live-out registers for the instructions in a node-set. 1690 /// The live-out registers are those that are defined in the node-set, 1691 /// but not used. Except for use operands of Phis. 1692 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, 1693 NodeSet &NS) { 1694 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1695 MachineRegisterInfo &MRI = MF.getRegInfo(); 1696 SmallVector<RegisterMaskPair, 8> LiveOutRegs; 1697 SmallSet<unsigned, 4> Uses; 1698 for (SUnit *SU : NS) { 1699 const MachineInstr *MI = SU->getInstr(); 1700 if (MI->isPHI()) 1701 continue; 1702 for (ConstMIOperands MO(*MI); MO.isValid(); ++MO) 1703 if (MO->isReg() && MO->isUse()) { 1704 unsigned Reg = MO->getReg(); 1705 if (TargetRegisterInfo::isVirtualRegister(Reg)) 1706 Uses.insert(Reg); 1707 else if (MRI.isAllocatable(Reg)) 1708 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1709 Uses.insert(*Units); 1710 } 1711 } 1712 for (SUnit *SU : NS) 1713 for (ConstMIOperands MO(*SU->getInstr()); MO.isValid(); ++MO) 1714 if (MO->isReg() && MO->isDef() && !MO->isDead()) { 1715 unsigned Reg = MO->getReg(); 1716 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 1717 if (!Uses.count(Reg)) 1718 LiveOutRegs.push_back(RegisterMaskPair(Reg, 0)); 1719 } else if (MRI.isAllocatable(Reg)) { 1720 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) 1721 if (!Uses.count(*Units)) 1722 LiveOutRegs.push_back(RegisterMaskPair(*Units, 0)); 1723 } 1724 } 1725 RPTracker.addLiveRegs(LiveOutRegs); 1726 } 1727 1728 /// A heuristic to filter nodes in recurrent node-sets if the register 1729 /// pressure of a set is too high. 1730 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { 1731 for (auto &NS : NodeSets) { 1732 // Skip small node-sets since they won't cause register pressure problems. 1733 if (NS.size() <= 2) 1734 continue; 1735 IntervalPressure RecRegPressure; 1736 RegPressureTracker RecRPTracker(RecRegPressure); 1737 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); 1738 computeLiveOuts(MF, RecRPTracker, NS); 1739 RecRPTracker.closeBottom(); 1740 1741 std::vector<SUnit *> SUnits(NS.begin(), NS.end()); 1742 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) { 1743 return A->NodeNum > B->NodeNum; 1744 }); 1745 1746 for (auto &SU : SUnits) { 1747 // Since we're computing the register pressure for a subset of the 1748 // instructions in a block, we need to set the tracker for each 1749 // instruction in the node-set. The tracker is set to the instruction 1750 // just after the one we're interested in. 1751 MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); 1752 RecRPTracker.setPos(std::next(CurInstI)); 1753 1754 RegPressureDelta RPDelta; 1755 ArrayRef<PressureChange> CriticalPSets; 1756 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, 1757 CriticalPSets, 1758 RecRegPressure.MaxSetPressure); 1759 if (RPDelta.Excess.isValid()) { 1760 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " 1761 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) 1762 << ":" << RPDelta.Excess.getUnitInc()); 1763 NS.setExceedPressure(SU); 1764 break; 1765 } 1766 RecRPTracker.recede(); 1767 } 1768 } 1769 } 1770 1771 /// A heuristic to colocate node sets that have the same set of 1772 /// successors. 1773 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { 1774 unsigned Colocate = 0; 1775 for (int i = 0, e = NodeSets.size(); i < e; ++i) { 1776 NodeSet &N1 = NodeSets[i]; 1777 SmallSetVector<SUnit *, 8> S1; 1778 if (N1.empty() || !succ_L(N1, S1)) 1779 continue; 1780 for (int j = i + 1; j < e; ++j) { 1781 NodeSet &N2 = NodeSets[j]; 1782 if (N1.compareRecMII(N2) != 0) 1783 continue; 1784 SmallSetVector<SUnit *, 8> S2; 1785 if (N2.empty() || !succ_L(N2, S2)) 1786 continue; 1787 if (isSubset(S1, S2) && S1.size() == S2.size()) { 1788 N1.setColocate(++Colocate); 1789 N2.setColocate(Colocate); 1790 break; 1791 } 1792 } 1793 } 1794 } 1795 1796 /// Check if the existing node-sets are profitable. If not, then ignore the 1797 /// recurrent node-sets, and attempt to schedule all nodes together. This is 1798 /// a heuristic. If the MII is large and there is a non-recurrent node with 1799 /// a large depth compared to the MII, then it's best to try and schedule 1800 /// all instruction together instead of starting with the recurrent node-sets. 1801 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { 1802 // Look for loops with a large MII. 1803 if (MII <= 20) 1804 return; 1805 // Check if the node-set contains only a simple add recurrence. 1806 for (auto &NS : NodeSets) 1807 if (NS.size() > 2) 1808 return; 1809 // If the depth of any instruction is significantly larger than the MII, then 1810 // ignore the recurrent node-sets and treat all instructions equally. 1811 for (auto &SU : SUnits) 1812 if (SU.getDepth() > MII * 1.5) { 1813 NodeSets.clear(); 1814 DEBUG(dbgs() << "Clear recurrence node-sets\n"); 1815 return; 1816 } 1817 } 1818 1819 /// Add the nodes that do not belong to a recurrence set into groups 1820 /// based upon connected componenets. 1821 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { 1822 SetVector<SUnit *> NodesAdded; 1823 SmallPtrSet<SUnit *, 8> Visited; 1824 // Add the nodes that are on a path between the previous node sets and 1825 // the current node set. 1826 for (NodeSet &I : NodeSets) { 1827 SmallSetVector<SUnit *, 8> N; 1828 // Add the nodes from the current node set to the previous node set. 1829 if (succ_L(I, N)) { 1830 SetVector<SUnit *> Path; 1831 for (SUnit *NI : N) { 1832 Visited.clear(); 1833 computePath(NI, Path, NodesAdded, I, Visited); 1834 } 1835 if (Path.size() > 0) 1836 I.insert(Path.begin(), Path.end()); 1837 } 1838 // Add the nodes from the previous node set to the current node set. 1839 N.clear(); 1840 if (succ_L(NodesAdded, N)) { 1841 SetVector<SUnit *> Path; 1842 for (SUnit *NI : N) { 1843 Visited.clear(); 1844 computePath(NI, Path, I, NodesAdded, Visited); 1845 } 1846 if (Path.size() > 0) 1847 I.insert(Path.begin(), Path.end()); 1848 } 1849 NodesAdded.insert(I.begin(), I.end()); 1850 } 1851 1852 // Create a new node set with the connected nodes of any successor of a node 1853 // in a recurrent set. 1854 NodeSet NewSet; 1855 SmallSetVector<SUnit *, 8> N; 1856 if (succ_L(NodesAdded, N)) 1857 for (SUnit *I : N) 1858 addConnectedNodes(I, NewSet, NodesAdded); 1859 if (NewSet.size() > 0) 1860 NodeSets.push_back(NewSet); 1861 1862 // Create a new node set with the connected nodes of any predecessor of a node 1863 // in a recurrent set. 1864 NewSet.clear(); 1865 if (pred_L(NodesAdded, N)) 1866 for (SUnit *I : N) 1867 addConnectedNodes(I, NewSet, NodesAdded); 1868 if (NewSet.size() > 0) 1869 NodeSets.push_back(NewSet); 1870 1871 // Create new nodes sets with the connected nodes any any remaining node that 1872 // has no predecessor. 1873 for (unsigned i = 0; i < SUnits.size(); ++i) { 1874 SUnit *SU = &SUnits[i]; 1875 if (NodesAdded.count(SU) == 0) { 1876 NewSet.clear(); 1877 addConnectedNodes(SU, NewSet, NodesAdded); 1878 if (NewSet.size() > 0) 1879 NodeSets.push_back(NewSet); 1880 } 1881 } 1882 } 1883 1884 /// Add the node to the set, and add all is its connected nodes to the set. 1885 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, 1886 SetVector<SUnit *> &NodesAdded) { 1887 NewSet.insert(SU); 1888 NodesAdded.insert(SU); 1889 for (auto &SI : SU->Succs) { 1890 SUnit *Successor = SI.getSUnit(); 1891 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) 1892 addConnectedNodes(Successor, NewSet, NodesAdded); 1893 } 1894 for (auto &PI : SU->Preds) { 1895 SUnit *Predecessor = PI.getSUnit(); 1896 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) 1897 addConnectedNodes(Predecessor, NewSet, NodesAdded); 1898 } 1899 } 1900 1901 /// Return true if Set1 contains elements in Set2. The elements in common 1902 /// are returned in a different container. 1903 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, 1904 SmallSetVector<SUnit *, 8> &Result) { 1905 Result.clear(); 1906 for (unsigned i = 0, e = Set1.size(); i != e; ++i) { 1907 SUnit *SU = Set1[i]; 1908 if (Set2.count(SU) != 0) 1909 Result.insert(SU); 1910 } 1911 return !Result.empty(); 1912 } 1913 1914 /// Merge the recurrence node sets that have the same initial node. 1915 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { 1916 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1917 ++I) { 1918 NodeSet &NI = *I; 1919 for (NodeSetType::iterator J = I + 1; J != E;) { 1920 NodeSet &NJ = *J; 1921 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { 1922 if (NJ.compareRecMII(NI) > 0) 1923 NI.setRecMII(NJ.getRecMII()); 1924 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; 1925 ++NII) 1926 I->insert(*NII); 1927 NodeSets.erase(J); 1928 E = NodeSets.end(); 1929 } else { 1930 ++J; 1931 } 1932 } 1933 } 1934 } 1935 1936 /// Remove nodes that have been scheduled in previous NodeSets. 1937 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { 1938 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; 1939 ++I) 1940 for (NodeSetType::iterator J = I + 1; J != E;) { 1941 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); 1942 1943 if (J->size() == 0) { 1944 NodeSets.erase(J); 1945 E = NodeSets.end(); 1946 } else { 1947 ++J; 1948 } 1949 } 1950 } 1951 1952 /// Return true if Inst1 defines a value that is used in Inst2. 1953 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) { 1954 for (auto &SI : Inst1->Succs) 1955 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data) 1956 return true; 1957 return false; 1958 } 1959 1960 /// Compute an ordered list of the dependence graph nodes, which 1961 /// indicates the order that the nodes will be scheduled. This is a 1962 /// two-level algorithm. First, a partial order is created, which 1963 /// consists of a list of sets ordered from highest to lowest priority. 1964 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { 1965 SmallSetVector<SUnit *, 8> R; 1966 NodeOrder.clear(); 1967 1968 for (auto &Nodes : NodeSets) { 1969 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); 1970 OrderKind Order; 1971 SmallSetVector<SUnit *, 8> N; 1972 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { 1973 R.insert(N.begin(), N.end()); 1974 Order = BottomUp; 1975 DEBUG(dbgs() << " Bottom up (preds) "); 1976 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { 1977 R.insert(N.begin(), N.end()); 1978 Order = TopDown; 1979 DEBUG(dbgs() << " Top down (succs) "); 1980 } else if (isIntersect(N, Nodes, R)) { 1981 // If some of the successors are in the existing node-set, then use the 1982 // top-down ordering. 1983 Order = TopDown; 1984 DEBUG(dbgs() << " Top down (intersect) "); 1985 } else if (NodeSets.size() == 1) { 1986 for (auto &N : Nodes) 1987 if (N->Succs.size() == 0) 1988 R.insert(N); 1989 Order = BottomUp; 1990 DEBUG(dbgs() << " Bottom up (all) "); 1991 } else { 1992 // Find the node with the highest ASAP. 1993 SUnit *maxASAP = nullptr; 1994 for (SUnit *SU : Nodes) { 1995 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP)) 1996 maxASAP = SU; 1997 } 1998 R.insert(maxASAP); 1999 Order = BottomUp; 2000 DEBUG(dbgs() << " Bottom up (default) "); 2001 } 2002 2003 while (!R.empty()) { 2004 if (Order == TopDown) { 2005 // Choose the node with the maximum height. If more than one, choose 2006 // the node with the lowest MOV. If still more than one, check if there 2007 // is a dependence between the instructions. 2008 while (!R.empty()) { 2009 SUnit *maxHeight = nullptr; 2010 for (SUnit *I : R) { 2011 if (maxHeight == 0 || getHeight(I) > getHeight(maxHeight)) 2012 maxHeight = I; 2013 else if (getHeight(I) == getHeight(maxHeight) && 2014 getMOV(I) < getMOV(maxHeight) && 2015 !hasDataDependence(maxHeight, I)) 2016 maxHeight = I; 2017 else if (hasDataDependence(I, maxHeight)) 2018 maxHeight = I; 2019 } 2020 NodeOrder.insert(maxHeight); 2021 DEBUG(dbgs() << maxHeight->NodeNum << " "); 2022 R.remove(maxHeight); 2023 for (const auto &I : maxHeight->Succs) { 2024 if (Nodes.count(I.getSUnit()) == 0) 2025 continue; 2026 if (NodeOrder.count(I.getSUnit()) != 0) 2027 continue; 2028 if (ignoreDependence(I, false)) 2029 continue; 2030 R.insert(I.getSUnit()); 2031 } 2032 // Back-edges are predecessors with an anti-dependence. 2033 for (const auto &I : maxHeight->Preds) { 2034 if (I.getKind() != SDep::Anti) 2035 continue; 2036 if (Nodes.count(I.getSUnit()) == 0) 2037 continue; 2038 if (NodeOrder.count(I.getSUnit()) != 0) 2039 continue; 2040 R.insert(I.getSUnit()); 2041 } 2042 } 2043 Order = BottomUp; 2044 DEBUG(dbgs() << "\n Switching order to bottom up "); 2045 SmallSetVector<SUnit *, 8> N; 2046 if (pred_L(NodeOrder, N, &Nodes)) 2047 R.insert(N.begin(), N.end()); 2048 } else { 2049 // Choose the node with the maximum depth. If more than one, choose 2050 // the node with the lowest MOV. If there is still more than one, check 2051 // for a dependence between the instructions. 2052 while (!R.empty()) { 2053 SUnit *maxDepth = nullptr; 2054 for (SUnit *I : R) { 2055 if (maxDepth == 0 || getDepth(I) > getDepth(maxDepth)) 2056 maxDepth = I; 2057 else if (getDepth(I) == getDepth(maxDepth) && 2058 getMOV(I) < getMOV(maxDepth) && 2059 !hasDataDependence(I, maxDepth)) 2060 maxDepth = I; 2061 else if (hasDataDependence(maxDepth, I)) 2062 maxDepth = I; 2063 } 2064 NodeOrder.insert(maxDepth); 2065 DEBUG(dbgs() << maxDepth->NodeNum << " "); 2066 R.remove(maxDepth); 2067 if (Nodes.isExceedSU(maxDepth)) { 2068 Order = TopDown; 2069 R.clear(); 2070 R.insert(Nodes.getNode(0)); 2071 break; 2072 } 2073 for (const auto &I : maxDepth->Preds) { 2074 if (Nodes.count(I.getSUnit()) == 0) 2075 continue; 2076 if (NodeOrder.count(I.getSUnit()) != 0) 2077 continue; 2078 if (I.getKind() == SDep::Anti) 2079 continue; 2080 R.insert(I.getSUnit()); 2081 } 2082 // Back-edges are predecessors with an anti-dependence. 2083 for (const auto &I : maxDepth->Succs) { 2084 if (I.getKind() != SDep::Anti) 2085 continue; 2086 if (Nodes.count(I.getSUnit()) == 0) 2087 continue; 2088 if (NodeOrder.count(I.getSUnit()) != 0) 2089 continue; 2090 R.insert(I.getSUnit()); 2091 } 2092 } 2093 Order = TopDown; 2094 DEBUG(dbgs() << "\n Switching order to top down "); 2095 SmallSetVector<SUnit *, 8> N; 2096 if (succ_L(NodeOrder, N, &Nodes)) 2097 R.insert(N.begin(), N.end()); 2098 } 2099 } 2100 DEBUG(dbgs() << "\nDone with Nodeset\n"); 2101 } 2102 2103 DEBUG({ 2104 dbgs() << "Node order: "; 2105 for (SUnit *I : NodeOrder) 2106 dbgs() << " " << I->NodeNum << " "; 2107 dbgs() << "\n"; 2108 }); 2109 } 2110 2111 /// Process the nodes in the computed order and create the pipelined schedule 2112 /// of the instructions, if possible. Return true if a schedule is found. 2113 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { 2114 2115 if (NodeOrder.size() == 0) 2116 return false; 2117 2118 bool scheduleFound = false; 2119 // Keep increasing II until a valid schedule is found. 2120 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) { 2121 Schedule.reset(); 2122 Schedule.setInitiationInterval(II); 2123 DEBUG(dbgs() << "Try to schedule with " << II << "\n"); 2124 2125 SetVector<SUnit *>::iterator NI = NodeOrder.begin(); 2126 SetVector<SUnit *>::iterator NE = NodeOrder.end(); 2127 do { 2128 SUnit *SU = *NI; 2129 2130 // Compute the schedule time for the instruction, which is based 2131 // upon the scheduled time for any predecessors/successors. 2132 int EarlyStart = INT_MIN; 2133 int LateStart = INT_MAX; 2134 // These values are set when the size of the schedule window is limited 2135 // due to chain dependences. 2136 int SchedEnd = INT_MAX; 2137 int SchedStart = INT_MIN; 2138 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, 2139 II, this); 2140 DEBUG({ 2141 dbgs() << "Inst (" << SU->NodeNum << ") "; 2142 SU->getInstr()->dump(); 2143 dbgs() << "\n"; 2144 }); 2145 DEBUG({ 2146 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart 2147 << " me: " << SchedEnd << " ms: " << SchedStart << "\n"; 2148 }); 2149 2150 if (EarlyStart > LateStart || SchedEnd < EarlyStart || 2151 SchedStart > LateStart) 2152 scheduleFound = false; 2153 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { 2154 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); 2155 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2156 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { 2157 SchedStart = std::max(SchedStart, LateStart - (int)II + 1); 2158 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); 2159 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { 2160 SchedEnd = 2161 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); 2162 // When scheduling a Phi it is better to start at the late cycle and go 2163 // backwards. The default order may insert the Phi too far away from 2164 // its first dependence. 2165 if (SU->getInstr()->isPHI()) 2166 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); 2167 else 2168 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); 2169 } else { 2170 int FirstCycle = Schedule.getFirstCycle(); 2171 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), 2172 FirstCycle + getASAP(SU) + II - 1, II); 2173 } 2174 // Even if we find a schedule, make sure the schedule doesn't exceed the 2175 // allowable number of stages. We keep trying if this happens. 2176 if (scheduleFound) 2177 if (SwpMaxStages > -1 && 2178 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) 2179 scheduleFound = false; 2180 2181 DEBUG({ 2182 if (!scheduleFound) 2183 dbgs() << "\tCan't schedule\n"; 2184 }); 2185 } while (++NI != NE && scheduleFound); 2186 2187 // If a schedule is found, check if it is a valid schedule too. 2188 if (scheduleFound) 2189 scheduleFound = Schedule.isValidSchedule(this); 2190 } 2191 2192 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n"); 2193 2194 if (scheduleFound) 2195 Schedule.finalizeSchedule(this); 2196 else 2197 Schedule.reset(); 2198 2199 return scheduleFound && Schedule.getMaxStageCount() > 0; 2200 } 2201 2202 /// Given a schedule for the loop, generate a new version of the loop, 2203 /// and replace the old version. This function generates a prolog 2204 /// that contains the initial iterations in the pipeline, and kernel 2205 /// loop, and the epilogue that contains the code for the final 2206 /// iterations. 2207 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) { 2208 // Create a new basic block for the kernel and add it to the CFG. 2209 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2210 2211 unsigned MaxStageCount = Schedule.getMaxStageCount(); 2212 2213 // Remember the registers that are used in different stages. The index is 2214 // the iteration, or stage, that the instruction is scheduled in. This is 2215 // a map between register names in the orignal block and the names created 2216 // in each stage of the pipelined loop. 2217 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2]; 2218 InstrMapTy InstrMap; 2219 2220 SmallVector<MachineBasicBlock *, 4> PrologBBs; 2221 // Generate the prolog instructions that set up the pipeline. 2222 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs); 2223 MF.insert(BB->getIterator(), KernelBB); 2224 2225 // Rearrange the instructions to generate the new, pipelined loop, 2226 // and update register names as needed. 2227 for (int Cycle = Schedule.getFirstCycle(), 2228 LastCycle = Schedule.getFinalCycle(); 2229 Cycle <= LastCycle; ++Cycle) { 2230 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle); 2231 // This inner loop schedules each instruction in the cycle. 2232 for (SUnit *CI : CycleInstrs) { 2233 if (CI->getInstr()->isPHI()) 2234 continue; 2235 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr())); 2236 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum); 2237 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap); 2238 KernelBB->push_back(NewMI); 2239 InstrMap[NewMI] = CI->getInstr(); 2240 } 2241 } 2242 2243 // Copy any terminator instructions to the new kernel, and update 2244 // names as needed. 2245 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(), 2246 E = BB->instr_end(); 2247 I != E; ++I) { 2248 MachineInstr *NewMI = MF.CloneMachineInstr(&*I); 2249 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap); 2250 KernelBB->push_back(NewMI); 2251 InstrMap[NewMI] = &*I; 2252 } 2253 2254 KernelBB->transferSuccessors(BB); 2255 KernelBB->replaceSuccessor(BB, KernelBB); 2256 2257 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, 2258 VRMap, InstrMap, MaxStageCount, MaxStageCount, false); 2259 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap, 2260 InstrMap, MaxStageCount, MaxStageCount, false); 2261 2262 DEBUG(dbgs() << "New block\n"; KernelBB->dump();); 2263 2264 SmallVector<MachineBasicBlock *, 4> EpilogBBs; 2265 // Generate the epilog instructions to complete the pipeline. 2266 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs, 2267 PrologBBs); 2268 2269 // We need this step because the register allocation doesn't handle some 2270 // situations well, so we insert copies to help out. 2271 splitLifetimes(KernelBB, EpilogBBs, Schedule); 2272 2273 // Remove dead instructions due to loop induction variables. 2274 removeDeadInstructions(KernelBB, EpilogBBs); 2275 2276 // Add branches between prolog and epilog blocks. 2277 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap); 2278 2279 // Remove the original loop since it's no longer referenced. 2280 BB->clear(); 2281 BB->eraseFromParent(); 2282 2283 delete[] VRMap; 2284 } 2285 2286 /// Generate the pipeline prolog code. 2287 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage, 2288 MachineBasicBlock *KernelBB, 2289 ValueMapTy *VRMap, 2290 MBBVectorTy &PrologBBs) { 2291 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader(); 2292 assert(PreheaderBB != NULL && 2293 "Need to add code to handle loops w/o preheader"); 2294 MachineBasicBlock *PredBB = PreheaderBB; 2295 InstrMapTy InstrMap; 2296 2297 // Generate a basic block for each stage, not including the last stage, 2298 // which will be generated in the kernel. Each basic block may contain 2299 // instructions from multiple stages/iterations. 2300 for (unsigned i = 0; i < LastStage; ++i) { 2301 // Create and insert the prolog basic block prior to the original loop 2302 // basic block. The original loop is removed later. 2303 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock()); 2304 PrologBBs.push_back(NewBB); 2305 MF.insert(BB->getIterator(), NewBB); 2306 NewBB->transferSuccessors(PredBB); 2307 PredBB->addSuccessor(NewBB); 2308 PredBB = NewBB; 2309 2310 // Generate instructions for each appropriate stage. Process instructions 2311 // in original program order. 2312 for (int StageNum = i; StageNum >= 0; --StageNum) { 2313 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2314 BBE = BB->getFirstTerminator(); 2315 BBI != BBE; ++BBI) { 2316 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) { 2317 if (BBI->isPHI()) 2318 continue; 2319 MachineInstr *NewMI = 2320 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule); 2321 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule, 2322 VRMap); 2323 NewBB->push_back(NewMI); 2324 InstrMap[NewMI] = &*BBI; 2325 } 2326 } 2327 } 2328 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap); 2329 DEBUG({ 2330 dbgs() << "prolog:\n"; 2331 NewBB->dump(); 2332 }); 2333 } 2334 2335 PredBB->replaceSuccessor(BB, KernelBB); 2336 2337 // Check if we need to remove the branch from the preheader to the original 2338 // loop, and replace it with a branch to the new loop. 2339 unsigned numBranches = TII->RemoveBranch(*PreheaderBB); 2340 if (numBranches) { 2341 SmallVector<MachineOperand, 0> Cond; 2342 TII->InsertBranch(*PreheaderBB, PrologBBs[0], 0, Cond, DebugLoc()); 2343 } 2344 } 2345 2346 /// Generate the pipeline epilog code. The epilog code finishes the iterations 2347 /// that were started in either the prolog or the kernel. We create a basic 2348 /// block for each stage that needs to complete. 2349 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage, 2350 MachineBasicBlock *KernelBB, 2351 ValueMapTy *VRMap, 2352 MBBVectorTy &EpilogBBs, 2353 MBBVectorTy &PrologBBs) { 2354 // We need to change the branch from the kernel to the first epilog block, so 2355 // this call to analyze branch uses the kernel rather than the original BB. 2356 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 2357 SmallVector<MachineOperand, 4> Cond; 2358 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond); 2359 assert(!checkBranch && "generateEpilog must be able to analyze the branch"); 2360 if (checkBranch) 2361 return; 2362 2363 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin(); 2364 if (*LoopExitI == KernelBB) 2365 ++LoopExitI; 2366 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor"); 2367 MachineBasicBlock *LoopExitBB = *LoopExitI; 2368 2369 MachineBasicBlock *PredBB = KernelBB; 2370 MachineBasicBlock *EpilogStart = LoopExitBB; 2371 InstrMapTy InstrMap; 2372 2373 // Generate a basic block for each stage, not including the last stage, 2374 // which was generated for the kernel. Each basic block may contain 2375 // instructions from multiple stages/iterations. 2376 int EpilogStage = LastStage + 1; 2377 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) { 2378 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(); 2379 EpilogBBs.push_back(NewBB); 2380 MF.insert(BB->getIterator(), NewBB); 2381 2382 PredBB->replaceSuccessor(LoopExitBB, NewBB); 2383 NewBB->addSuccessor(LoopExitBB); 2384 2385 if (EpilogStart == LoopExitBB) 2386 EpilogStart = NewBB; 2387 2388 // Add instructions to the epilog depending on the current block. 2389 // Process instructions in original program order. 2390 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) { 2391 for (auto &BBI : *BB) { 2392 if (BBI.isPHI()) 2393 continue; 2394 MachineInstr *In = &BBI; 2395 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) { 2396 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0); 2397 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap); 2398 NewBB->push_back(NewMI); 2399 InstrMap[NewMI] = In; 2400 } 2401 } 2402 } 2403 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, 2404 VRMap, InstrMap, LastStage, EpilogStage, i == 1); 2405 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap, 2406 InstrMap, LastStage, EpilogStage, i == 1); 2407 PredBB = NewBB; 2408 2409 DEBUG({ 2410 dbgs() << "epilog:\n"; 2411 NewBB->dump(); 2412 }); 2413 } 2414 2415 // Fix any Phi nodes in the loop exit block. 2416 for (MachineInstr &MI : *LoopExitBB) { 2417 if (!MI.isPHI()) 2418 break; 2419 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { 2420 MachineOperand &MO = MI.getOperand(i); 2421 if (MO.getMBB() == BB) 2422 MO.setMBB(PredBB); 2423 } 2424 } 2425 2426 // Create a branch to the new epilog from the kernel. 2427 // Remove the original branch and add a new branch to the epilog. 2428 TII->RemoveBranch(*KernelBB); 2429 TII->InsertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc()); 2430 // Add a branch to the loop exit. 2431 if (EpilogBBs.size() > 0) { 2432 MachineBasicBlock *LastEpilogBB = EpilogBBs.back(); 2433 SmallVector<MachineOperand, 4> Cond1; 2434 TII->InsertBranch(*LastEpilogBB, LoopExitBB, 0, Cond1, DebugLoc()); 2435 } 2436 } 2437 2438 /// Replace all uses of FromReg that appear outside the specified 2439 /// basic block with ToReg. 2440 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg, 2441 MachineBasicBlock *MBB, 2442 MachineRegisterInfo &MRI, 2443 LiveIntervals &LIS) { 2444 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg), 2445 E = MRI.use_end(); 2446 I != E;) { 2447 MachineOperand &O = *I; 2448 ++I; 2449 if (O.getParent()->getParent() != MBB) 2450 O.setReg(ToReg); 2451 } 2452 if (!LIS.hasInterval(ToReg)) 2453 LIS.createEmptyInterval(ToReg); 2454 } 2455 2456 /// Return true if the register has a use that occurs outside the 2457 /// specified loop. 2458 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB, 2459 MachineRegisterInfo &MRI) { 2460 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg), 2461 E = MRI.use_end(); 2462 I != E; ++I) 2463 if (I->getParent()->getParent() != BB) 2464 return true; 2465 return false; 2466 } 2467 2468 /// Generate Phis for the specific block in the generated pipelined code. 2469 /// This function looks at the Phis from the original code to guide the 2470 /// creation of new Phis. 2471 void SwingSchedulerDAG::generateExistingPhis( 2472 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2473 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2474 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2475 bool IsLast) { 2476 // Compute the stage number for the inital value of the Phi, which 2477 // comes from the prolog. The prolog to use depends on to which kernel/ 2478 // epilog that we're adding the Phi. 2479 unsigned PrologStage = 0; 2480 unsigned PrevStage = 0; 2481 bool InKernel = (LastStageNum == CurStageNum); 2482 if (InKernel) { 2483 PrologStage = LastStageNum - 1; 2484 PrevStage = CurStageNum; 2485 } else { 2486 PrologStage = LastStageNum - (CurStageNum - LastStageNum); 2487 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1; 2488 } 2489 2490 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 2491 BBE = BB->getFirstNonPHI(); 2492 BBI != BBE; ++BBI) { 2493 unsigned Def = BBI->getOperand(0).getReg(); 2494 2495 unsigned InitVal = 0; 2496 unsigned LoopVal = 0; 2497 getPhiRegs(*BBI, BB, InitVal, LoopVal); 2498 2499 unsigned PhiOp1 = 0; 2500 // The Phi value from the loop body typically is defined in the loop, but 2501 // not always. So, we need to check if the value is defined in the loop. 2502 unsigned PhiOp2 = LoopVal; 2503 if (VRMap[LastStageNum].count(LoopVal)) 2504 PhiOp2 = VRMap[LastStageNum][LoopVal]; 2505 2506 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2507 int LoopValStage = 2508 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 2509 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum); 2510 if (NumStages == 0) { 2511 // We don't need to generate a Phi anymore, but we need to rename any uses 2512 // of the Phi value. 2513 unsigned NewReg = VRMap[PrevStage][LoopVal]; 2514 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI, 2515 Def, NewReg); 2516 if (VRMap[CurStageNum].count(LoopVal)) 2517 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal]; 2518 } 2519 // Adjust the number of Phis needed depending on the number of prologs left, 2520 // and the distance from where the Phi is first scheduled. 2521 unsigned NumPhis = NumStages; 2522 if (!InKernel && (int)PrologStage < LoopValStage) 2523 // The NumPhis is the maximum number of new Phis needed during the steady 2524 // state. If the Phi has not been scheduled in current prolog, then we 2525 // need to generate less Phis. 2526 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1); 2527 // The number of Phis cannot exceed the number of prolog stages. Each 2528 // stage can potentially define two values. 2529 NumPhis = std::min(NumPhis, PrologStage + 2); 2530 2531 unsigned NewReg = 0; 2532 2533 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled; 2534 // In the epilog, we may need to look back one stage to get the correct 2535 // Phi name because the epilog and prolog blocks execute the same stage. 2536 // The correct name is from the previous block only when the Phi has 2537 // been completely scheduled prior to the epilog, and Phi value is not 2538 // needed in multiple stages. 2539 int StageDiff = 0; 2540 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 && 2541 NumPhis == 1) 2542 StageDiff = 1; 2543 // Adjust the computations below when the phi and the loop definition 2544 // are scheduled in different stages. 2545 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage) 2546 StageDiff = StageScheduled - LoopValStage; 2547 for (unsigned np = 0; np < NumPhis; ++np) { 2548 // If the Phi hasn't been scheduled, then use the initial Phi operand 2549 // value. Otherwise, use the scheduled version of the instruction. This 2550 // is a little complicated when a Phi references another Phi. 2551 if (np > PrologStage || StageScheduled >= (int)LastStageNum) 2552 PhiOp1 = InitVal; 2553 // Check if the Phi has already been scheduled in a prolog stage. 2554 else if (PrologStage >= AccessStage + StageDiff + np && 2555 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0) 2556 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal]; 2557 // Check if the Phi has already been scheduled, but the loop intruction 2558 // is either another Phi, or doesn't occur in the loop. 2559 else if (PrologStage >= AccessStage + StageDiff + np) { 2560 // If the Phi references another Phi, we need to examine the other 2561 // Phi to get the correct value. 2562 PhiOp1 = LoopVal; 2563 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1); 2564 int Indirects = 1; 2565 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) { 2566 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2567 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects) 2568 PhiOp1 = getInitPhiReg(*InstOp1, BB); 2569 else 2570 PhiOp1 = getLoopPhiReg(*InstOp1, BB); 2571 InstOp1 = MRI.getVRegDef(PhiOp1); 2572 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1)); 2573 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0); 2574 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np && 2575 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) { 2576 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1]; 2577 break; 2578 } 2579 ++Indirects; 2580 } 2581 } else 2582 PhiOp1 = InitVal; 2583 // If this references a generated Phi in the kernel, get the Phi operand 2584 // from the incoming block. 2585 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) 2586 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2587 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2588 2589 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal); 2590 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI(); 2591 // In the epilog, a map lookup is needed to get the value from the kernel, 2592 // or previous epilog block. How is does this depends on if the 2593 // instruction is scheduled in the previous block. 2594 if (!InKernel) { 2595 int StageDiffAdj = 0; 2596 if (LoopValStage != -1 && StageScheduled > LoopValStage) 2597 StageDiffAdj = StageScheduled - LoopValStage; 2598 // Use the loop value defined in the kernel, unless the kernel 2599 // contains the last definition of the Phi. 2600 if (np == 0 && PrevStage == LastStageNum && 2601 (StageScheduled != 0 || LoopValStage != 0) && 2602 VRMap[PrevStage - StageDiffAdj].count(LoopVal)) 2603 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal]; 2604 // Use the value defined by the Phi. We add one because we switch 2605 // from looking at the loop value to the Phi definition. 2606 else if (np > 0 && PrevStage == LastStageNum && 2607 VRMap[PrevStage - np + 1].count(Def)) 2608 PhiOp2 = VRMap[PrevStage - np + 1][Def]; 2609 // Use the loop value defined in the kernel. 2610 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 && 2611 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal)) 2612 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal]; 2613 // Use the value defined by the Phi, unless we're generating the first 2614 // epilog and the Phi refers to a Phi in a different stage. 2615 else if (VRMap[PrevStage - np].count(Def) && 2616 (!LoopDefIsPhi || PrevStage != LastStageNum)) 2617 PhiOp2 = VRMap[PrevStage - np][Def]; 2618 } 2619 2620 // Check if we can reuse an existing Phi. This occurs when a Phi 2621 // references another Phi, and the other Phi is scheduled in an 2622 // earlier stage. We can try to reuse an existing Phi up until the last 2623 // stage of the current Phi. 2624 if (LoopDefIsPhi && VRMap[CurStageNum].count(LoopVal) && 2625 LoopValStage >= (int)(CurStageNum - LastStageNum)) { 2626 int LVNumStages = Schedule.getStagesForPhi(LoopVal); 2627 int StageDiff = (StageScheduled - LoopValStage); 2628 LVNumStages -= StageDiff; 2629 if (LVNumStages > (int)np) { 2630 NewReg = PhiOp2; 2631 unsigned ReuseStage = CurStageNum; 2632 if (Schedule.isLoopCarried(this, *PhiInst)) 2633 ReuseStage -= LVNumStages; 2634 // Check if the Phi to reuse has been generated yet. If not, then 2635 // there is nothing to reuse. 2636 if (VRMap[ReuseStage].count(LoopVal)) { 2637 NewReg = VRMap[ReuseStage][LoopVal]; 2638 2639 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2640 &*BBI, Def, NewReg); 2641 // Update the map with the new Phi name. 2642 VRMap[CurStageNum - np][Def] = NewReg; 2643 PhiOp2 = NewReg; 2644 if (VRMap[LastStageNum - np - 1].count(LoopVal)) 2645 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal]; 2646 2647 if (IsLast && np == NumPhis - 1) 2648 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2649 continue; 2650 } 2651 } else if (StageDiff > 0 && 2652 VRMap[CurStageNum - StageDiff - np].count(LoopVal)) 2653 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal]; 2654 } 2655 2656 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2657 NewReg = MRI.createVirtualRegister(RC); 2658 2659 MachineInstrBuilder NewPhi = 2660 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2661 TII->get(TargetOpcode::PHI), NewReg); 2662 NewPhi.addReg(PhiOp1).addMBB(BB1); 2663 NewPhi.addReg(PhiOp2).addMBB(BB2); 2664 if (np == 0) 2665 InstrMap[NewPhi] = &*BBI; 2666 2667 // We define the Phis after creating the new pipelined code, so 2668 // we need to rename the Phi values in scheduled instructions. 2669 2670 unsigned PrevReg = 0; 2671 if (InKernel && VRMap[PrevStage - np].count(LoopVal)) 2672 PrevReg = VRMap[PrevStage - np][LoopVal]; 2673 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2674 Def, NewReg, PrevReg); 2675 // If the Phi has been scheduled, use the new name for rewriting. 2676 if (VRMap[CurStageNum - np].count(Def)) { 2677 unsigned R = VRMap[CurStageNum - np][Def]; 2678 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI, 2679 R, NewReg); 2680 } 2681 2682 // Check if we need to rename any uses that occurs after the loop. The 2683 // register to replace depends on whether the Phi is scheduled in the 2684 // epilog. 2685 if (IsLast && np == NumPhis - 1) 2686 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2687 2688 // In the kernel, a dependent Phi uses the value from this Phi. 2689 if (InKernel) 2690 PhiOp2 = NewReg; 2691 2692 // Update the map with the new Phi name. 2693 VRMap[CurStageNum - np][Def] = NewReg; 2694 } 2695 2696 while (NumPhis++ < NumStages) { 2697 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis, 2698 &*BBI, Def, NewReg, 0); 2699 } 2700 2701 // Check if we need to rename a Phi that has been eliminated due to 2702 // scheduling. 2703 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal)) 2704 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS); 2705 } 2706 } 2707 2708 /// Generate Phis for the specified block in the generated pipelined code. 2709 /// These are new Phis needed because the definition is scheduled after the 2710 /// use in the pipelened sequence. 2711 void SwingSchedulerDAG::generatePhis( 2712 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2, 2713 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap, 2714 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum, 2715 bool IsLast) { 2716 // Compute the stage number that contains the initial Phi value, and 2717 // the Phi from the previous stage. 2718 unsigned PrologStage = 0; 2719 unsigned PrevStage = 0; 2720 unsigned StageDiff = CurStageNum - LastStageNum; 2721 bool InKernel = (StageDiff == 0); 2722 if (InKernel) { 2723 PrologStage = LastStageNum - 1; 2724 PrevStage = CurStageNum; 2725 } else { 2726 PrologStage = LastStageNum - StageDiff; 2727 PrevStage = LastStageNum + StageDiff - 1; 2728 } 2729 2730 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(), 2731 BBE = BB->instr_end(); 2732 BBI != BBE; ++BBI) { 2733 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) { 2734 MachineOperand &MO = BBI->getOperand(i); 2735 if (!MO.isReg() || !MO.isDef() || 2736 !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 2737 continue; 2738 2739 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI)); 2740 assert(StageScheduled != -1 && "Expecting scheduled instruction."); 2741 unsigned Def = MO.getReg(); 2742 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum); 2743 // An instruction scheduled in stage 0 and is used after the loop 2744 // requires a phi in the epilog for the last definition from either 2745 // the kernel or prolog. 2746 if (!InKernel && NumPhis == 0 && StageScheduled == 0 && 2747 hasUseAfterLoop(Def, BB, MRI)) 2748 NumPhis = 1; 2749 if (!InKernel && (unsigned)StageScheduled > PrologStage) 2750 continue; 2751 2752 unsigned PhiOp2 = VRMap[PrevStage][Def]; 2753 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2)) 2754 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB) 2755 PhiOp2 = getLoopPhiReg(*InstOp2, BB2); 2756 // The number of Phis can't exceed the number of prolog stages. The 2757 // prolog stage number is zero based. 2758 if (NumPhis > PrologStage + 1 - StageScheduled) 2759 NumPhis = PrologStage + 1 - StageScheduled; 2760 for (unsigned np = 0; np < NumPhis; ++np) { 2761 unsigned PhiOp1 = VRMap[PrologStage][Def]; 2762 if (np <= PrologStage) 2763 PhiOp1 = VRMap[PrologStage - np][Def]; 2764 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) { 2765 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB) 2766 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB); 2767 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB) 2768 PhiOp1 = getInitPhiReg(*InstOp1, NewBB); 2769 } 2770 if (!InKernel) 2771 PhiOp2 = VRMap[PrevStage - np][Def]; 2772 2773 const TargetRegisterClass *RC = MRI.getRegClass(Def); 2774 unsigned NewReg = MRI.createVirtualRegister(RC); 2775 2776 MachineInstrBuilder NewPhi = 2777 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(), 2778 TII->get(TargetOpcode::PHI), NewReg); 2779 NewPhi.addReg(PhiOp1).addMBB(BB1); 2780 NewPhi.addReg(PhiOp2).addMBB(BB2); 2781 if (np == 0) 2782 InstrMap[NewPhi] = &*BBI; 2783 2784 // Rewrite uses and update the map. The actions depend upon whether 2785 // we generating code for the kernel or epilog blocks. 2786 if (InKernel) { 2787 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2788 &*BBI, PhiOp1, NewReg); 2789 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2790 &*BBI, PhiOp2, NewReg); 2791 2792 PhiOp2 = NewReg; 2793 VRMap[PrevStage - np - 1][Def] = NewReg; 2794 } else { 2795 VRMap[CurStageNum - np][Def] = NewReg; 2796 if (np == NumPhis - 1) 2797 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, 2798 &*BBI, Def, NewReg); 2799 } 2800 if (IsLast && np == NumPhis - 1) 2801 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS); 2802 } 2803 } 2804 } 2805 } 2806 2807 /// Remove instructions that generate values with no uses. 2808 /// Typically, these are induction variable operations that generate values 2809 /// used in the loop itself. A dead instruction has a definition with 2810 /// no uses, or uses that occur in the original loop only. 2811 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB, 2812 MBBVectorTy &EpilogBBs) { 2813 // For each epilog block, check that the value defined by each instruction 2814 // is used. If not, delete it. 2815 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(), 2816 MBE = EpilogBBs.rend(); 2817 MBB != MBE; ++MBB) 2818 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(), 2819 ME = (*MBB)->instr_rend(); 2820 MI != ME;) { 2821 // From DeadMachineInstructionElem. Don't delete inline assembly. 2822 if (MI->isInlineAsm()) { 2823 ++MI; 2824 continue; 2825 } 2826 bool SawStore = false; 2827 // Check if it's safe to remove the instruction due to side effects. 2828 // We can, and want to, remove Phis here. 2829 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) { 2830 ++MI; 2831 continue; 2832 } 2833 bool used = true; 2834 for (MachineInstr::mop_iterator MOI = MI->operands_begin(), 2835 MOE = MI->operands_end(); 2836 MOI != MOE; ++MOI) { 2837 if (!MOI->isReg() || !MOI->isDef()) 2838 continue; 2839 unsigned reg = MOI->getReg(); 2840 unsigned realUses = 0; 2841 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg), 2842 EI = MRI.use_end(); 2843 UI != EI; ++UI) { 2844 // Check if there are any uses that occur only in the original 2845 // loop. If so, that's not a real use. 2846 if (UI->getParent()->getParent() != BB) { 2847 realUses++; 2848 used = true; 2849 break; 2850 } 2851 } 2852 if (realUses > 0) 2853 break; 2854 used = false; 2855 } 2856 if (!used) { 2857 MI->eraseFromParent(); 2858 ME = (*MBB)->instr_rend(); 2859 continue; 2860 } 2861 ++MI; 2862 } 2863 // In the kernel block, check if we can remove a Phi that generates a value 2864 // used in an instruction removed in the epilog block. 2865 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2866 BBE = KernelBB->getFirstNonPHI(); 2867 BBI != BBE;) { 2868 MachineInstr *MI = &*BBI; 2869 ++BBI; 2870 unsigned reg = MI->getOperand(0).getReg(); 2871 if (MRI.use_begin(reg) == MRI.use_end()) { 2872 MI->eraseFromParent(); 2873 } 2874 } 2875 } 2876 2877 /// For loop carried definitions, we split the lifetime of a virtual register 2878 /// that has uses past the definition in the next iteration. A copy with a new 2879 /// virtual register is inserted before the definition, which helps with 2880 /// generating a better register assignment. 2881 /// 2882 /// v1 = phi(a, v2) v1 = phi(a, v2) 2883 /// v2 = phi(b, v3) v2 = phi(b, v3) 2884 /// v3 = .. v4 = copy v1 2885 /// .. = V1 v3 = .. 2886 /// .. = v4 2887 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB, 2888 MBBVectorTy &EpilogBBs, 2889 SMSchedule &Schedule) { 2890 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2891 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(), 2892 BBF = KernelBB->getFirstNonPHI(); 2893 BBI != BBF; ++BBI) { 2894 unsigned Def = BBI->getOperand(0).getReg(); 2895 // Check for any Phi definition that used as an operand of another Phi 2896 // in the same block. 2897 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def), 2898 E = MRI.use_instr_end(); 2899 I != E; ++I) { 2900 if (I->isPHI() && I->getParent() == KernelBB) { 2901 // Get the loop carried definition. 2902 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB); 2903 if (!LCDef) 2904 continue; 2905 MachineInstr *MI = MRI.getVRegDef(LCDef); 2906 if (!MI || MI->getParent() != KernelBB || MI->isPHI()) 2907 continue; 2908 // Search through the rest of the block looking for uses of the Phi 2909 // definition. If one occurs, then split the lifetime. 2910 unsigned SplitReg = 0; 2911 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI), 2912 KernelBB->instr_end())) 2913 if (BBJ.readsRegister(Def)) { 2914 // We split the lifetime when we find the first use. 2915 if (SplitReg == 0) { 2916 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def)); 2917 BuildMI(*KernelBB, MI, MI->getDebugLoc(), 2918 TII->get(TargetOpcode::COPY), SplitReg) 2919 .addReg(Def); 2920 } 2921 BBJ.substituteRegister(Def, SplitReg, 0, *TRI); 2922 } 2923 if (!SplitReg) 2924 continue; 2925 // Search through each of the epilog blocks for any uses to be renamed. 2926 for (auto &Epilog : EpilogBBs) 2927 for (auto &I : *Epilog) 2928 if (I.readsRegister(Def)) 2929 I.substituteRegister(Def, SplitReg, 0, *TRI); 2930 break; 2931 } 2932 } 2933 } 2934 } 2935 2936 /// Remove the incoming block from the Phis in a basic block. 2937 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) { 2938 for (MachineInstr &MI : *BB) { 2939 if (!MI.isPHI()) 2940 break; 2941 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) 2942 if (MI.getOperand(i + 1).getMBB() == Incoming) { 2943 MI.RemoveOperand(i + 1); 2944 MI.RemoveOperand(i); 2945 break; 2946 } 2947 } 2948 } 2949 2950 /// Create branches from each prolog basic block to the appropriate epilog 2951 /// block. These edges are needed if the loop ends before reaching the 2952 /// kernel. 2953 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs, 2954 MachineBasicBlock *KernelBB, 2955 MBBVectorTy &EpilogBBs, 2956 SMSchedule &Schedule, ValueMapTy *VRMap) { 2957 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch"); 2958 MachineInstr *IndVar = Pass.LI.LoopInductionVar; 2959 MachineInstr *Cmp = Pass.LI.LoopCompare; 2960 MachineBasicBlock *LastPro = KernelBB; 2961 MachineBasicBlock *LastEpi = KernelBB; 2962 2963 // Start from the blocks connected to the kernel and work "out" 2964 // to the first prolog and the last epilog blocks. 2965 SmallVector<MachineInstr *, 4> PrevInsts; 2966 unsigned MaxIter = PrologBBs.size() - 1; 2967 unsigned LC = UINT_MAX; 2968 unsigned LCMin = UINT_MAX; 2969 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) { 2970 // Add branches to the prolog that go to the corresponding 2971 // epilog, and the fall-thru prolog/kernel block. 2972 MachineBasicBlock *Prolog = PrologBBs[j]; 2973 MachineBasicBlock *Epilog = EpilogBBs[i]; 2974 // We've executed one iteration, so decrement the loop count and check for 2975 // the loop end. 2976 SmallVector<MachineOperand, 4> Cond; 2977 // Check if the LOOP0 has already been removed. If so, then there is no need 2978 // to reduce the trip count. 2979 if (LC != 0) 2980 LC = TII->reduceLoopCount(*Prolog, IndVar, Cmp, Cond, PrevInsts, j, 2981 MaxIter); 2982 2983 // Record the value of the first trip count, which is used to determine if 2984 // branches and blocks can be removed for constant trip counts. 2985 if (LCMin == UINT_MAX) 2986 LCMin = LC; 2987 2988 unsigned numAdded = 0; 2989 if (TargetRegisterInfo::isVirtualRegister(LC)) { 2990 Prolog->addSuccessor(Epilog); 2991 numAdded = TII->InsertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc()); 2992 } else if (j >= LCMin) { 2993 Prolog->addSuccessor(Epilog); 2994 Prolog->removeSuccessor(LastPro); 2995 LastEpi->removeSuccessor(Epilog); 2996 numAdded = TII->InsertBranch(*Prolog, Epilog, 0, Cond, DebugLoc()); 2997 removePhis(Epilog, LastEpi); 2998 // Remove the blocks that are no longer referenced. 2999 if (LastPro != LastEpi) { 3000 LastEpi->clear(); 3001 LastEpi->eraseFromParent(); 3002 } 3003 LastPro->clear(); 3004 LastPro->eraseFromParent(); 3005 } else { 3006 numAdded = TII->InsertBranch(*Prolog, LastPro, 0, Cond, DebugLoc()); 3007 removePhis(Epilog, Prolog); 3008 } 3009 LastPro = Prolog; 3010 LastEpi = Epilog; 3011 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(), 3012 E = Prolog->instr_rend(); 3013 I != E && numAdded > 0; ++I, --numAdded) 3014 updateInstruction(&*I, false, j, 0, Schedule, VRMap); 3015 } 3016 } 3017 3018 /// Return true if we can compute the amount the instruction changes 3019 /// during each iteration. Set Delta to the amount of the change. 3020 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { 3021 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3022 unsigned BaseReg; 3023 int64_t Offset; 3024 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) 3025 return false; 3026 3027 MachineRegisterInfo &MRI = MF.getRegInfo(); 3028 // Check if there is a Phi. If so, get the definition in the loop. 3029 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); 3030 if (BaseDef && BaseDef->isPHI()) { 3031 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); 3032 BaseDef = MRI.getVRegDef(BaseReg); 3033 } 3034 if (!BaseDef) 3035 return false; 3036 3037 int D = 0; 3038 if (!TII->getIncrementValue(BaseDef, D) && D >= 0) 3039 return false; 3040 3041 Delta = D; 3042 return true; 3043 } 3044 3045 /// Update the memory operand with a new offset when the pipeliner 3046 /// generate a new copy of the instruction that refers to a 3047 /// different memory location. 3048 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI, 3049 MachineInstr &OldMI, unsigned Num) { 3050 if (Num == 0) 3051 return; 3052 // If the instruction has memory operands, then adjust the offset 3053 // when the instruction appears in different stages. 3054 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin(); 3055 if (NumRefs == 0) 3056 return; 3057 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs); 3058 unsigned Refs = 0; 3059 for (MachineInstr::mmo_iterator I = NewMI.memoperands_begin(), 3060 E = NewMI.memoperands_end(); 3061 I != E; ++I) { 3062 if ((*I)->isVolatile() || (*I)->isInvariant() || (!(*I)->getValue())) { 3063 NewMemRefs[Refs++] = *I; 3064 continue; 3065 } 3066 unsigned Delta; 3067 if (computeDelta(OldMI, Delta)) { 3068 int64_t AdjOffset = Delta * Num; 3069 NewMemRefs[Refs++] = 3070 MF.getMachineMemOperand(*I, AdjOffset, (*I)->getSize()); 3071 } else 3072 NewMemRefs[Refs++] = MF.getMachineMemOperand(*I, 0, UINT64_MAX); 3073 } 3074 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs); 3075 } 3076 3077 /// Clone the instruction for the new pipelined loop and update the 3078 /// memory operands, if needed. 3079 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI, 3080 unsigned CurStageNum, 3081 unsigned InstStageNum) { 3082 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3083 // Check for tied operands in inline asm instructions. This should be handled 3084 // elsewhere, but I'm not sure of the best solution. 3085 if (OldMI->isInlineAsm()) 3086 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { 3087 const auto &MO = OldMI->getOperand(i); 3088 if (MO.isReg() && MO.isUse()) 3089 break; 3090 unsigned UseIdx; 3091 if (OldMI->isRegTiedToUseOperand(i, &UseIdx)) 3092 NewMI->tieOperands(i, UseIdx); 3093 } 3094 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3095 return NewMI; 3096 } 3097 3098 /// Clone the instruction for the new pipelined loop. If needed, this 3099 /// function updates the instruction using the values saved in the 3100 /// InstrChanges structure. 3101 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI, 3102 unsigned CurStageNum, 3103 unsigned InstStageNum, 3104 SMSchedule &Schedule) { 3105 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI); 3106 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3107 InstrChanges.find(getSUnit(OldMI)); 3108 if (It != InstrChanges.end()) { 3109 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3110 unsigned BasePos, OffsetPos; 3111 if (!TII->getBaseAndOffsetPosition(OldMI, BasePos, OffsetPos)) 3112 return nullptr; 3113 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm(); 3114 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first); 3115 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum) 3116 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum); 3117 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3118 } 3119 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum); 3120 return NewMI; 3121 } 3122 3123 /// Update the machine instruction with new virtual registers. This 3124 /// function may change the defintions and/or uses. 3125 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef, 3126 unsigned CurStageNum, 3127 unsigned InstrStageNum, 3128 SMSchedule &Schedule, 3129 ValueMapTy *VRMap) { 3130 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) { 3131 MachineOperand &MO = NewMI->getOperand(i); 3132 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3133 continue; 3134 unsigned reg = MO.getReg(); 3135 if (MO.isDef()) { 3136 // Create a new virtual register for the definition. 3137 const TargetRegisterClass *RC = MRI.getRegClass(reg); 3138 unsigned NewReg = MRI.createVirtualRegister(RC); 3139 MO.setReg(NewReg); 3140 VRMap[CurStageNum][reg] = NewReg; 3141 if (LastDef) 3142 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS); 3143 } else if (MO.isUse()) { 3144 MachineInstr *Def = MRI.getVRegDef(reg); 3145 // Compute the stage that contains the last definition for instruction. 3146 int DefStageNum = Schedule.stageScheduled(getSUnit(Def)); 3147 unsigned StageNum = CurStageNum; 3148 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) { 3149 // Compute the difference in stages between the defintion and the use. 3150 unsigned StageDiff = (InstrStageNum - DefStageNum); 3151 // Make an adjustment to get the last definition. 3152 StageNum -= StageDiff; 3153 } 3154 if (VRMap[StageNum].count(reg)) 3155 MO.setReg(VRMap[StageNum][reg]); 3156 } 3157 } 3158 } 3159 3160 /// Return the instruction in the loop that defines the register. 3161 /// If the definition is a Phi, then follow the Phi operand to 3162 /// the instruction in the loop. 3163 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) { 3164 SmallPtrSet<MachineInstr *, 8> Visited; 3165 MachineInstr *Def = MRI.getVRegDef(Reg); 3166 while (Def->isPHI()) { 3167 if (!Visited.insert(Def).second) 3168 break; 3169 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) 3170 if (Def->getOperand(i + 1).getMBB() == BB) { 3171 Def = MRI.getVRegDef(Def->getOperand(i).getReg()); 3172 break; 3173 } 3174 } 3175 return Def; 3176 } 3177 3178 /// Return the new name for the value from the previous stage. 3179 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage, 3180 unsigned LoopVal, unsigned LoopStage, 3181 ValueMapTy *VRMap, 3182 MachineBasicBlock *BB) { 3183 unsigned PrevVal = 0; 3184 if (StageNum > PhiStage) { 3185 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal); 3186 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal)) 3187 // The name is defined in the previous stage. 3188 PrevVal = VRMap[StageNum - 1][LoopVal]; 3189 else if (VRMap[StageNum].count(LoopVal)) 3190 // The previous name is defined in the current stage when the instruction 3191 // order is swapped. 3192 PrevVal = VRMap[StageNum][LoopVal]; 3193 else if (!LoopInst->isPHI()) 3194 // The loop value hasn't yet been scheduled. 3195 PrevVal = LoopVal; 3196 else if (StageNum == PhiStage + 1) 3197 // The loop value is another phi, which has not been scheduled. 3198 PrevVal = getInitPhiReg(*LoopInst, BB); 3199 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB) 3200 // The loop value is another phi, which has been scheduled. 3201 PrevVal = 3202 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB), 3203 LoopStage, VRMap, BB); 3204 } 3205 return PrevVal; 3206 } 3207 3208 /// Rewrite the Phi values in the specified block to use the mappings 3209 /// from the initial operand. Once the Phi is scheduled, we switch 3210 /// to using the loop value instead of the Phi value, so those names 3211 /// do not need to be rewritten. 3212 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB, 3213 unsigned StageNum, 3214 SMSchedule &Schedule, 3215 ValueMapTy *VRMap, 3216 InstrMapTy &InstrMap) { 3217 for (MachineBasicBlock::iterator BBI = BB->instr_begin(), 3218 BBE = BB->getFirstNonPHI(); 3219 BBI != BBE; ++BBI) { 3220 unsigned InitVal = 0; 3221 unsigned LoopVal = 0; 3222 getPhiRegs(*BBI, BB, InitVal, LoopVal); 3223 unsigned PhiDef = BBI->getOperand(0).getReg(); 3224 3225 unsigned PhiStage = 3226 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef))); 3227 unsigned LoopStage = 3228 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal))); 3229 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef); 3230 if (NumPhis > StageNum) 3231 NumPhis = StageNum; 3232 for (unsigned np = 0; np <= NumPhis; ++np) { 3233 unsigned NewVal = 3234 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB); 3235 if (!NewVal) 3236 NewVal = InitVal; 3237 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI, 3238 PhiDef, NewVal); 3239 } 3240 } 3241 } 3242 3243 /// Rewrite a previously scheduled instruction to use the register value 3244 /// from the new instruction. Make sure the instruction occurs in the 3245 /// basic block, and we don't change the uses in the new instruction. 3246 void SwingSchedulerDAG::rewriteScheduledInstr( 3247 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap, 3248 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, 3249 unsigned NewReg, unsigned PrevReg) { 3250 bool InProlog = (CurStageNum < Schedule.getMaxStageCount()); 3251 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum; 3252 // Rewrite uses that have been scheduled already to use the new 3253 // Phi register. 3254 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg), 3255 EI = MRI.use_end(); 3256 UI != EI;) { 3257 MachineOperand &UseOp = *UI; 3258 MachineInstr *UseMI = UseOp.getParent(); 3259 ++UI; 3260 if (UseMI->getParent() != BB) 3261 continue; 3262 if (UseMI->isPHI()) { 3263 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg) 3264 continue; 3265 if (getLoopPhiReg(*UseMI, BB) != OldReg) 3266 continue; 3267 } 3268 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI); 3269 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled."); 3270 SUnit *OrigMISU = getSUnit(OrigInstr->second); 3271 int StageSched = Schedule.stageScheduled(OrigMISU); 3272 int CycleSched = Schedule.cycleScheduled(OrigMISU); 3273 unsigned ReplaceReg = 0; 3274 // This is the stage for the scheduled instruction. 3275 if (StagePhi == StageSched && Phi->isPHI()) { 3276 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi)); 3277 if (PrevReg && InProlog) 3278 ReplaceReg = PrevReg; 3279 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) && 3280 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI())) 3281 ReplaceReg = PrevReg; 3282 else 3283 ReplaceReg = NewReg; 3284 } 3285 // The scheduled instruction occurs before the scheduled Phi, and the 3286 // Phi is not loop carried. 3287 if (!InProlog && StagePhi + 1 == StageSched && 3288 !Schedule.isLoopCarried(this, *Phi)) 3289 ReplaceReg = NewReg; 3290 if (StagePhi > StageSched && Phi->isPHI()) 3291 ReplaceReg = NewReg; 3292 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched) 3293 ReplaceReg = NewReg; 3294 if (ReplaceReg) { 3295 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg)); 3296 UseOp.setReg(ReplaceReg); 3297 } 3298 } 3299 } 3300 3301 /// Check if we can change the instruction to use an offset value from the 3302 /// previous iteration. If so, return true and set the base and offset values 3303 /// so that we can rewrite the load, if necessary. 3304 /// v1 = Phi(v0, v3) 3305 /// v2 = load v1, 0 3306 /// v3 = post_store v1, 4, x 3307 /// This function enables the load to be rewritten as v2 = load v3, 4. 3308 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, 3309 unsigned &BasePos, 3310 unsigned &OffsetPos, 3311 unsigned &NewBase, 3312 int64_t &Offset) { 3313 // Get the load instruction. 3314 if (TII->isPostIncrement(MI)) 3315 return false; 3316 unsigned BasePosLd, OffsetPosLd; 3317 if (!TII->getBaseAndOffsetPosition(MI, BasePosLd, OffsetPosLd)) 3318 return false; 3319 unsigned BaseReg = MI->getOperand(BasePosLd).getReg(); 3320 3321 // Look for the Phi instruction. 3322 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); 3323 MachineInstr *Phi = MRI.getVRegDef(BaseReg); 3324 if (!Phi || !Phi->isPHI()) 3325 return false; 3326 // Get the register defined in the loop block. 3327 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); 3328 if (!PrevReg) 3329 return false; 3330 3331 // Check for the post-increment load/store instruction. 3332 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); 3333 if (!PrevDef || PrevDef == MI) 3334 return false; 3335 3336 if (!TII->isPostIncrement(PrevDef)) 3337 return false; 3338 3339 unsigned BasePos1 = 0, OffsetPos1 = 0; 3340 if (!TII->getBaseAndOffsetPosition(PrevDef, BasePos1, OffsetPos1)) 3341 return false; 3342 3343 // Make sure offset values are both positive or both negative. 3344 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); 3345 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); 3346 if ((LoadOffset >= 0) != (StoreOffset >= 0)) 3347 return false; 3348 3349 // Set the return value once we determine that we return true. 3350 BasePos = BasePosLd; 3351 OffsetPos = OffsetPosLd; 3352 NewBase = PrevReg; 3353 Offset = StoreOffset; 3354 return true; 3355 } 3356 3357 /// Apply changes to the instruction if needed. The changes are need 3358 /// to improve the scheduling and depend up on the final schedule. 3359 MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, 3360 SMSchedule &Schedule, 3361 bool UpdateDAG) { 3362 SUnit *SU = getSUnit(MI); 3363 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = 3364 InstrChanges.find(SU); 3365 if (It != InstrChanges.end()) { 3366 std::pair<unsigned, int64_t> RegAndOffset = It->second; 3367 unsigned BasePos, OffsetPos; 3368 if (!TII->getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) 3369 return nullptr; 3370 unsigned BaseReg = MI->getOperand(BasePos).getReg(); 3371 MachineInstr *LoopDef = findDefInLoop(BaseReg); 3372 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); 3373 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); 3374 int BaseStageNum = Schedule.stageScheduled(SU); 3375 int BaseCycleNum = Schedule.cycleScheduled(SU); 3376 if (BaseStageNum < DefStageNum) { 3377 MachineInstr *NewMI = MF.CloneMachineInstr(MI); 3378 int OffsetDiff = DefStageNum - BaseStageNum; 3379 if (DefCycleNum < BaseCycleNum) { 3380 NewMI->getOperand(BasePos).setReg(RegAndOffset.first); 3381 if (OffsetDiff > 0) 3382 --OffsetDiff; 3383 } 3384 int64_t NewOffset = 3385 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; 3386 NewMI->getOperand(OffsetPos).setImm(NewOffset); 3387 if (UpdateDAG) { 3388 SU->setInstr(NewMI); 3389 MISUnitMap[NewMI] = SU; 3390 } 3391 NewMIs.insert(NewMI); 3392 return NewMI; 3393 } 3394 } 3395 return nullptr; 3396 } 3397 3398 /// Return true for an order dependence that is loop carried potentially. 3399 /// An order dependence is loop carried if the destination defines a value 3400 /// that may be used by the source in a subsequent iteration. 3401 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep, 3402 bool isSucc) { 3403 if (!isOrder(Source, Dep) || Dep.isArtificial()) 3404 return false; 3405 3406 if (!SwpPruneLoopCarried) 3407 return true; 3408 3409 MachineInstr *SI = Source->getInstr(); 3410 MachineInstr *DI = Dep.getSUnit()->getInstr(); 3411 if (!isSucc) 3412 std::swap(SI, DI); 3413 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); 3414 3415 // Assume ordered loads and stores may have a loop carried dependence. 3416 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || 3417 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) 3418 return true; 3419 3420 // Only chain dependences between a load and store can be loop carried. 3421 if (!DI->mayStore() || !SI->mayLoad()) 3422 return false; 3423 3424 unsigned DeltaS, DeltaD; 3425 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) 3426 return true; 3427 3428 unsigned BaseRegS, BaseRegD; 3429 int64_t OffsetS, OffsetD; 3430 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 3431 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) || 3432 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI)) 3433 return true; 3434 3435 if (BaseRegS != BaseRegD) 3436 return true; 3437 3438 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); 3439 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); 3440 3441 // This is the main test, which checks the offset values and the loop 3442 // increment value to determine if the accesses may be loop carried. 3443 if (OffsetS >= OffsetD) 3444 return OffsetS + AccessSizeS > DeltaS; 3445 else if (OffsetS < OffsetD) 3446 return OffsetD + AccessSizeD > DeltaD; 3447 3448 return true; 3449 } 3450 3451 /// Try to schedule the node at the specified StartCycle and continue 3452 /// until the node is schedule or the EndCycle is reached. This function 3453 /// returns true if the node is scheduled. This routine may search either 3454 /// forward or backward for a place to insert the instruction based upon 3455 /// the relative values of StartCycle and EndCycle. 3456 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { 3457 bool forward = true; 3458 if (StartCycle > EndCycle) 3459 forward = false; 3460 3461 // The terminating condition depends on the direction. 3462 int termCycle = forward ? EndCycle + 1 : EndCycle - 1; 3463 for (int curCycle = StartCycle; curCycle != termCycle; 3464 forward ? ++curCycle : --curCycle) { 3465 3466 // Add the already scheduled instructions at the specified cycle to the DFA. 3467 Resources->clearResources(); 3468 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); 3469 checkCycle <= LastCycle; checkCycle += II) { 3470 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; 3471 3472 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), 3473 E = cycleInstrs.end(); 3474 I != E; ++I) { 3475 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) 3476 continue; 3477 assert(Resources->canReserveResources(*(*I)->getInstr()) && 3478 "These instructions have already been scheduled."); 3479 Resources->reserveResources(*(*I)->getInstr()); 3480 } 3481 } 3482 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || 3483 Resources->canReserveResources(*SU->getInstr())) { 3484 DEBUG({ 3485 dbgs() << "\tinsert at cycle " << curCycle << " "; 3486 SU->getInstr()->dump(); 3487 }); 3488 3489 ScheduledInstrs[curCycle].push_back(SU); 3490 InstrToCycle.insert(std::make_pair(SU, curCycle)); 3491 if (curCycle > LastCycle) 3492 LastCycle = curCycle; 3493 if (curCycle < FirstCycle) 3494 FirstCycle = curCycle; 3495 return true; 3496 } 3497 DEBUG({ 3498 dbgs() << "\tfailed to insert at cycle " << curCycle << " "; 3499 SU->getInstr()->dump(); 3500 }); 3501 } 3502 return false; 3503 } 3504 3505 // Return the cycle of the earliest scheduled instruction in the chain. 3506 int SMSchedule::earliestCycleInChain(const SDep &Dep) { 3507 SmallPtrSet<SUnit *, 8> Visited; 3508 SmallVector<SDep, 8> Worklist; 3509 Worklist.push_back(Dep); 3510 int EarlyCycle = INT_MAX; 3511 while (!Worklist.empty()) { 3512 const SDep &Cur = Worklist.pop_back_val(); 3513 SUnit *PrevSU = Cur.getSUnit(); 3514 if (Visited.count(PrevSU)) 3515 continue; 3516 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); 3517 if (it == InstrToCycle.end()) 3518 continue; 3519 EarlyCycle = std::min(EarlyCycle, it->second); 3520 for (const auto &PI : PrevSU->Preds) 3521 if (SwingSchedulerDAG::isOrder(PrevSU, PI)) 3522 Worklist.push_back(PI); 3523 Visited.insert(PrevSU); 3524 } 3525 return EarlyCycle; 3526 } 3527 3528 // Return the cycle of the latest scheduled instruction in the chain. 3529 int SMSchedule::latestCycleInChain(const SDep &Dep) { 3530 SmallPtrSet<SUnit *, 8> Visited; 3531 SmallVector<SDep, 8> Worklist; 3532 Worklist.push_back(Dep); 3533 int LateCycle = INT_MIN; 3534 while (!Worklist.empty()) { 3535 const SDep &Cur = Worklist.pop_back_val(); 3536 SUnit *SuccSU = Cur.getSUnit(); 3537 if (Visited.count(SuccSU)) 3538 continue; 3539 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); 3540 if (it == InstrToCycle.end()) 3541 continue; 3542 LateCycle = std::max(LateCycle, it->second); 3543 for (const auto &SI : SuccSU->Succs) 3544 if (SwingSchedulerDAG::isOrder(SuccSU, SI)) 3545 Worklist.push_back(SI); 3546 Visited.insert(SuccSU); 3547 } 3548 return LateCycle; 3549 } 3550 3551 /// If an instruction has a use that spans multiple iterations, then 3552 /// return true. These instructions are characterized by having a back-ege 3553 /// to a Phi, which contains a reference to another Phi. 3554 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { 3555 for (auto &P : SU->Preds) 3556 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) 3557 for (auto &S : P.getSUnit()->Succs) 3558 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI()) 3559 return P.getSUnit(); 3560 return nullptr; 3561 } 3562 3563 /// Compute the scheduling start slot for the instruction. The start slot 3564 /// depends on any predecessor or successor nodes scheduled already. 3565 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, 3566 int *MinEnd, int *MaxStart, int II, 3567 SwingSchedulerDAG *DAG) { 3568 // Iterate over each instruction that has been scheduled already. The start 3569 // slot computuation depends on whether the previously scheduled instruction 3570 // is a predecessor or successor of the specified instruction. 3571 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { 3572 3573 // Iterate over each instruction in the current cycle. 3574 for (SUnit *I : getInstructions(cycle)) { 3575 // Because we're processing a DAG for the dependences, we recognize 3576 // the back-edge in recurrences by anti dependences. 3577 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { 3578 const SDep &Dep = SU->Preds[i]; 3579 if (Dep.getSUnit() == I) { 3580 if (!DAG->isBackedge(SU, Dep)) { 3581 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3582 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3583 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3584 if (DAG->isLoopCarriedOrder(SU, Dep, false)) { 3585 int End = earliestCycleInChain(Dep) + (II - 1); 3586 *MinEnd = std::min(*MinEnd, End); 3587 } 3588 } else { 3589 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3590 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3591 *MinLateStart = std::min(*MinLateStart, LateStart); 3592 } 3593 } 3594 // For instruction that requires multiple iterations, make sure that 3595 // the dependent instruction is not scheduled past the definition. 3596 SUnit *BE = multipleIterations(I, DAG); 3597 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && 3598 !SU->isPred(I)) 3599 *MinLateStart = std::min(*MinLateStart, cycle); 3600 } 3601 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) 3602 if (SU->Succs[i].getSUnit() == I) { 3603 const SDep &Dep = SU->Succs[i]; 3604 if (!DAG->isBackedge(SU, Dep)) { 3605 int LateStart = cycle - DAG->getLatency(SU, Dep) + 3606 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; 3607 *MinLateStart = std::min(*MinLateStart, LateStart); 3608 if (DAG->isLoopCarriedOrder(SU, Dep)) { 3609 int Start = latestCycleInChain(Dep) + 1 - II; 3610 *MaxStart = std::max(*MaxStart, Start); 3611 } 3612 } else { 3613 int EarlyStart = cycle + DAG->getLatency(SU, Dep) - 3614 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; 3615 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); 3616 } 3617 } 3618 } 3619 } 3620 } 3621 3622 /// Order the instructions within a cycle so that the definitions occur 3623 /// before the uses. Returns true if the instruction is added to the start 3624 /// of the list, or false if added to the end. 3625 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, 3626 std::deque<SUnit *> &Insts) { 3627 MachineInstr *MI = SU->getInstr(); 3628 bool OrderBeforeUse = false; 3629 bool OrderAfterDef = false; 3630 bool OrderBeforeDef = false; 3631 unsigned MoveDef = 0; 3632 unsigned MoveUse = 0; 3633 int StageInst1 = stageScheduled(SU); 3634 3635 unsigned Pos = 0; 3636 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; 3637 ++I, ++Pos) { 3638 // Relative order of Phis does not matter. 3639 if (MI->isPHI() && (*I)->getInstr()->isPHI()) 3640 continue; 3641 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3642 MachineOperand &MO = MI->getOperand(i); 3643 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg())) 3644 continue; 3645 unsigned Reg = MO.getReg(); 3646 unsigned BasePos, OffsetPos; 3647 if (ST.getInstrInfo()->getBaseAndOffsetPosition(MI, BasePos, OffsetPos)) 3648 if (MI->getOperand(BasePos).getReg() == Reg) 3649 if (unsigned NewReg = SSD->getInstrBaseReg(SU)) 3650 Reg = NewReg; 3651 bool Reads, Writes; 3652 std::tie(Reads, Writes) = 3653 (*I)->getInstr()->readsWritesVirtualRegister(Reg); 3654 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { 3655 OrderBeforeUse = true; 3656 MoveUse = Pos; 3657 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { 3658 // Add the instruction after the scheduled instruction. 3659 OrderAfterDef = true; 3660 MoveDef = Pos; 3661 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { 3662 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { 3663 OrderBeforeUse = true; 3664 MoveUse = Pos; 3665 } else { 3666 OrderAfterDef = true; 3667 MoveDef = Pos; 3668 } 3669 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { 3670 OrderBeforeUse = true; 3671 MoveUse = Pos; 3672 if (MoveUse != 0) { 3673 OrderAfterDef = true; 3674 MoveDef = Pos - 1; 3675 } 3676 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { 3677 // Add the instruction before the scheduled instruction. 3678 OrderBeforeUse = true; 3679 MoveUse = Pos; 3680 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && 3681 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { 3682 OrderBeforeDef = true; 3683 MoveUse = Pos; 3684 } 3685 } 3686 // Check for order dependences between instructions. Make sure the source 3687 // is ordered before the destination. 3688 for (auto &S : SU->Succs) 3689 if (S.getKind() == SDep::Order) { 3690 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3691 OrderBeforeUse = true; 3692 MoveUse = Pos; 3693 } 3694 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) { 3695 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) { 3696 if (S.isAssignedRegDep()) { 3697 OrderAfterDef = true; 3698 MoveDef = Pos; 3699 } 3700 } else { 3701 OrderBeforeUse = true; 3702 MoveUse = Pos; 3703 } 3704 } 3705 for (auto &P : SU->Preds) 3706 if (P.getKind() == SDep::Order) { 3707 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) { 3708 OrderAfterDef = true; 3709 MoveDef = Pos; 3710 } 3711 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) { 3712 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) { 3713 if (P.isAssignedRegDep()) { 3714 OrderBeforeUse = true; 3715 MoveUse = Pos; 3716 } 3717 } else { 3718 OrderAfterDef = true; 3719 MoveDef = Pos; 3720 } 3721 } 3722 } 3723 3724 // A circular dependence. 3725 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) 3726 OrderBeforeUse = false; 3727 3728 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due 3729 // to a loop-carried dependence. 3730 if (OrderBeforeDef) 3731 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); 3732 3733 // The uncommon case when the instruction order needs to be updated because 3734 // there is both a use and def. 3735 if (OrderBeforeUse && OrderAfterDef) { 3736 SUnit *UseSU = Insts.at(MoveUse); 3737 SUnit *DefSU = Insts.at(MoveDef); 3738 if (MoveUse > MoveDef) { 3739 Insts.erase(Insts.begin() + MoveUse); 3740 Insts.erase(Insts.begin() + MoveDef); 3741 } else { 3742 Insts.erase(Insts.begin() + MoveDef); 3743 Insts.erase(Insts.begin() + MoveUse); 3744 } 3745 if (orderDependence(SSD, UseSU, Insts)) { 3746 Insts.push_front(SU); 3747 orderDependence(SSD, DefSU, Insts); 3748 return true; 3749 } 3750 Insts.pop_back(); 3751 Insts.push_back(SU); 3752 Insts.push_back(UseSU); 3753 orderDependence(SSD, DefSU, Insts); 3754 return false; 3755 } 3756 // Put the new instruction first if there is a use in the list. Otherwise, 3757 // put it at the end of the list. 3758 if (OrderBeforeUse) 3759 Insts.push_front(SU); 3760 else 3761 Insts.push_back(SU); 3762 return OrderBeforeUse; 3763 } 3764 3765 /// Return true if the scheduled Phi has a loop carried operand. 3766 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { 3767 if (!Phi.isPHI()) 3768 return false; 3769 assert(Phi.isPHI() && "Expecing a Phi."); 3770 SUnit *DefSU = SSD->getSUnit(&Phi); 3771 unsigned DefCycle = cycleScheduled(DefSU); 3772 int DefStage = stageScheduled(DefSU); 3773 3774 unsigned InitVal = 0; 3775 unsigned LoopVal = 0; 3776 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); 3777 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); 3778 if (!UseSU) 3779 return true; 3780 if (UseSU->getInstr()->isPHI()) 3781 return true; 3782 unsigned LoopCycle = cycleScheduled(UseSU); 3783 int LoopStage = stageScheduled(UseSU); 3784 return LoopCycle > DefCycle || 3785 (LoopCycle <= DefCycle && LoopStage <= DefStage); 3786 } 3787 3788 /// Return true if the instruction is a definition that is loop carried 3789 /// and defines the use on the next iteration. 3790 /// v1 = phi(v2, v3) 3791 /// (Def) v3 = op v1 3792 /// (MO) = v1 3793 /// If MO appears before Def, then then v1 and v3 may get assigned to the same 3794 /// register. 3795 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, 3796 MachineInstr *Def, MachineOperand &MO) { 3797 if (!MO.isReg()) 3798 return false; 3799 if (Def->isPHI()) 3800 return false; 3801 MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); 3802 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) 3803 return false; 3804 if (!isLoopCarried(SSD, *Phi)) 3805 return false; 3806 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); 3807 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { 3808 MachineOperand &DMO = Def->getOperand(i); 3809 if (!DMO.isReg() || !DMO.isDef()) 3810 continue; 3811 if (DMO.getReg() == LoopReg) 3812 return true; 3813 } 3814 return false; 3815 } 3816 3817 // Check if the generated schedule is valid. This function checks if 3818 // an instruction that uses a physical register is scheduled in a 3819 // different stage than the definition. The pipeliner does not handle 3820 // physical register values that may cross a basic block boundary. 3821 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { 3822 const TargetRegisterInfo *TRI = ST.getRegisterInfo(); 3823 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { 3824 SUnit &SU = SSD->SUnits[i]; 3825 if (!SU.hasPhysRegDefs) 3826 continue; 3827 int StageDef = stageScheduled(&SU); 3828 assert(StageDef != -1 && "Instruction should have been scheduled."); 3829 for (auto &SI : SU.Succs) 3830 if (SI.isAssignedRegDep()) 3831 if (TRI->isPhysicalRegister(SI.getReg())) 3832 if (stageScheduled(SI.getSUnit()) != StageDef) 3833 return false; 3834 } 3835 return true; 3836 } 3837 3838 /// After the schedule has been formed, call this function to combine 3839 /// the instructions from the different stages/cycles. That is, this 3840 /// function creates a schedule that represents a single iteration. 3841 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { 3842 // Move all instructions to the first stage from later stages. 3843 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3844 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; 3845 ++stage) { 3846 std::deque<SUnit *> &cycleInstrs = 3847 ScheduledInstrs[cycle + (stage * InitiationInterval)]; 3848 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), 3849 E = cycleInstrs.rend(); 3850 I != E; ++I) 3851 ScheduledInstrs[cycle].push_front(*I); 3852 } 3853 } 3854 // Iterate over the definitions in each instruction, and compute the 3855 // stage difference for each use. Keep the maximum value. 3856 for (auto &I : InstrToCycle) { 3857 int DefStage = stageScheduled(I.first); 3858 MachineInstr *MI = I.first->getInstr(); 3859 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { 3860 MachineOperand &Op = MI->getOperand(i); 3861 if (!Op.isReg() || !Op.isDef()) 3862 continue; 3863 3864 unsigned Reg = Op.getReg(); 3865 unsigned MaxDiff = 0; 3866 bool PhiIsSwapped = false; 3867 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg), 3868 EI = MRI.use_end(); 3869 UI != EI; ++UI) { 3870 MachineOperand &UseOp = *UI; 3871 MachineInstr *UseMI = UseOp.getParent(); 3872 SUnit *SUnitUse = SSD->getSUnit(UseMI); 3873 int UseStage = stageScheduled(SUnitUse); 3874 unsigned Diff = 0; 3875 if (UseStage != -1 && UseStage >= DefStage) 3876 Diff = UseStage - DefStage; 3877 if (MI->isPHI()) { 3878 if (isLoopCarried(SSD, *MI)) 3879 ++Diff; 3880 else 3881 PhiIsSwapped = true; 3882 } 3883 MaxDiff = std::max(Diff, MaxDiff); 3884 } 3885 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped); 3886 } 3887 } 3888 3889 // Erase all the elements in the later stages. Only one iteration should 3890 // remain in the scheduled list, and it contains all the instructions. 3891 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) 3892 ScheduledInstrs.erase(cycle); 3893 3894 // Change the registers in instruction as specified in the InstrChanges 3895 // map. We need to use the new registers to create the correct order. 3896 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { 3897 SUnit *SU = &SSD->SUnits[i]; 3898 SSD->applyInstrChange(SU->getInstr(), *this, true); 3899 } 3900 3901 // Reorder the instructions in each cycle to fix and improve the 3902 // generated code. 3903 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { 3904 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; 3905 std::deque<SUnit *> newOrderZC; 3906 // Put the zero-cost, pseudo instructions at the start of the cycle. 3907 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3908 SUnit *SU = cycleInstrs[i]; 3909 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3910 orderDependence(SSD, SU, newOrderZC); 3911 } 3912 std::deque<SUnit *> newOrderI; 3913 // Then, add the regular instructions back. 3914 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { 3915 SUnit *SU = cycleInstrs[i]; 3916 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) 3917 orderDependence(SSD, SU, newOrderI); 3918 } 3919 // Replace the old order with the new order. 3920 cycleInstrs.swap(newOrderZC); 3921 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end()); 3922 } 3923 3924 DEBUG(dump();); 3925 } 3926 3927 /// Print the schedule information to the given output. 3928 void SMSchedule::print(raw_ostream &os) const { 3929 // Iterate over each cycle. 3930 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { 3931 // Iterate over each instruction in the cycle. 3932 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); 3933 for (SUnit *CI : cycleInstrs->second) { 3934 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; 3935 os << "(" << CI->NodeNum << ") "; 3936 CI->getInstr()->print(os); 3937 os << "\n"; 3938 } 3939 } 3940 } 3941 3942 /// Utility function used for debugging to print the schedule. 3943 void SMSchedule::dump() const { print(dbgs()); } 3944