1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements a fast scheduler. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SchedulerRegistry.h" 15 #include "InstrEmitter.h" 16 #include "ScheduleDAGSDNodes.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/CodeGen/SelectionDAGISel.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/Target/TargetInstrInfo.h" 27 #include "llvm/Target/TargetRegisterInfo.h" 28 using namespace llvm; 29 30 #define DEBUG_TYPE "pre-RA-sched" 31 32 STATISTIC(NumUnfolds, "Number of nodes unfolded"); 33 STATISTIC(NumDups, "Number of duplicated nodes"); 34 STATISTIC(NumPRCopies, "Number of physical copies"); 35 36 static RegisterScheduler 37 fastDAGScheduler("fast", "Fast suboptimal list scheduling", 38 createFastDAGScheduler); 39 static RegisterScheduler 40 linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling", 41 createDAGLinearizer); 42 43 44 namespace { 45 /// FastPriorityQueue - A degenerate priority queue that considers 46 /// all nodes to have the same priority. 47 /// 48 struct FastPriorityQueue { 49 SmallVector<SUnit *, 16> Queue; 50 51 bool empty() const { return Queue.empty(); } 52 53 void push(SUnit *U) { 54 Queue.push_back(U); 55 } 56 57 SUnit *pop() { 58 if (empty()) return nullptr; 59 SUnit *V = Queue.back(); 60 Queue.pop_back(); 61 return V; 62 } 63 }; 64 65 //===----------------------------------------------------------------------===// 66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation. 67 /// 68 class ScheduleDAGFast : public ScheduleDAGSDNodes { 69 private: 70 /// AvailableQueue - The priority queue to use for the available SUnits. 71 FastPriorityQueue AvailableQueue; 72 73 /// LiveRegDefs - A set of physical registers and their definition 74 /// that are "live". These nodes must be scheduled before any other nodes that 75 /// modifies the registers can be scheduled. 76 unsigned NumLiveRegs; 77 std::vector<SUnit*> LiveRegDefs; 78 std::vector<unsigned> LiveRegCycles; 79 80 public: 81 ScheduleDAGFast(MachineFunction &mf) 82 : ScheduleDAGSDNodes(mf) {} 83 84 void Schedule() override; 85 86 /// AddPred - adds a predecessor edge to SUnit SU. 87 /// This returns true if this is a new predecessor. 88 void AddPred(SUnit *SU, const SDep &D) { 89 SU->addPred(D); 90 } 91 92 /// RemovePred - removes a predecessor edge from SUnit SU. 93 /// This returns true if an edge was removed. 94 void RemovePred(SUnit *SU, const SDep &D) { 95 SU->removePred(D); 96 } 97 98 private: 99 void ReleasePred(SUnit *SU, SDep *PredEdge); 100 void ReleasePredecessors(SUnit *SU, unsigned CurCycle); 101 void ScheduleNodeBottomUp(SUnit*, unsigned); 102 SUnit *CopyAndMoveSuccessors(SUnit*); 103 void InsertCopiesAndMoveSuccs(SUnit*, unsigned, 104 const TargetRegisterClass*, 105 const TargetRegisterClass*, 106 SmallVectorImpl<SUnit*>&); 107 bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&); 108 void ListScheduleBottomUp(); 109 110 /// forceUnitLatencies - The fast scheduler doesn't care about real latencies. 111 bool forceUnitLatencies() const override { return true; } 112 }; 113 } // end anonymous namespace 114 115 116 /// Schedule - Schedule the DAG using list scheduling. 117 void ScheduleDAGFast::Schedule() { 118 DEBUG(dbgs() << "********** List Scheduling **********\n"); 119 120 NumLiveRegs = 0; 121 LiveRegDefs.resize(TRI->getNumRegs(), nullptr); 122 LiveRegCycles.resize(TRI->getNumRegs(), 0); 123 124 // Build the scheduling graph. 125 BuildSchedGraph(nullptr); 126 127 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) 128 SUnits[su].dumpAll(this)); 129 130 // Execute the actual scheduling loop. 131 ListScheduleBottomUp(); 132 } 133 134 //===----------------------------------------------------------------------===// 135 // Bottom-Up Scheduling 136 //===----------------------------------------------------------------------===// 137 138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to 139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound. 140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) { 141 SUnit *PredSU = PredEdge->getSUnit(); 142 143 #ifndef NDEBUG 144 if (PredSU->NumSuccsLeft == 0) { 145 dbgs() << "*** Scheduling failed! ***\n"; 146 PredSU->dump(this); 147 dbgs() << " has been released too many times!\n"; 148 llvm_unreachable(nullptr); 149 } 150 #endif 151 --PredSU->NumSuccsLeft; 152 153 // If all the node's successors are scheduled, this node is ready 154 // to be scheduled. Ignore the special EntrySU node. 155 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) { 156 PredSU->isAvailable = true; 157 AvailableQueue.push(PredSU); 158 } 159 } 160 161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) { 162 // Bottom up: release predecessors 163 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 164 I != E; ++I) { 165 ReleasePred(SU, &*I); 166 if (I->isAssignedRegDep()) { 167 // This is a physical register dependency and it's impossible or 168 // expensive to copy the register. Make sure nothing that can 169 // clobber the register is scheduled between the predecessor and 170 // this node. 171 if (!LiveRegDefs[I->getReg()]) { 172 ++NumLiveRegs; 173 LiveRegDefs[I->getReg()] = I->getSUnit(); 174 LiveRegCycles[I->getReg()] = CurCycle; 175 } 176 } 177 } 178 } 179 180 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending 181 /// count of its predecessors. If a predecessor pending count is zero, add it to 182 /// the Available queue. 183 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) { 184 DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); 185 DEBUG(SU->dump(this)); 186 187 assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!"); 188 SU->setHeightToAtLeast(CurCycle); 189 Sequence.push_back(SU); 190 191 ReleasePredecessors(SU, CurCycle); 192 193 // Release all the implicit physical register defs that are live. 194 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 195 I != E; ++I) { 196 if (I->isAssignedRegDep()) { 197 if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) { 198 assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!"); 199 assert(LiveRegDefs[I->getReg()] == SU && 200 "Physical register dependency violated?"); 201 --NumLiveRegs; 202 LiveRegDefs[I->getReg()] = nullptr; 203 LiveRegCycles[I->getReg()] = 0; 204 } 205 } 206 } 207 208 SU->isScheduled = true; 209 } 210 211 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled 212 /// successors to the newly created node. 213 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) { 214 if (SU->getNode()->getGluedNode()) 215 return nullptr; 216 217 SDNode *N = SU->getNode(); 218 if (!N) 219 return nullptr; 220 221 SUnit *NewSU; 222 bool TryUnfold = false; 223 for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { 224 MVT VT = N->getSimpleValueType(i); 225 if (VT == MVT::Glue) 226 return nullptr; 227 else if (VT == MVT::Other) 228 TryUnfold = true; 229 } 230 for (const SDValue &Op : N->op_values()) { 231 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); 232 if (VT == MVT::Glue) 233 return nullptr; 234 } 235 236 if (TryUnfold) { 237 SmallVector<SDNode*, 2> NewNodes; 238 if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes)) 239 return nullptr; 240 241 DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n"); 242 assert(NewNodes.size() == 2 && "Expected a load folding node!"); 243 244 N = NewNodes[1]; 245 SDNode *LoadNode = NewNodes[0]; 246 unsigned NumVals = N->getNumValues(); 247 unsigned OldNumVals = SU->getNode()->getNumValues(); 248 for (unsigned i = 0; i != NumVals; ++i) 249 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i)); 250 DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1), 251 SDValue(LoadNode, 1)); 252 253 SUnit *NewSU = newSUnit(N); 254 assert(N->getNodeId() == -1 && "Node already inserted!"); 255 N->setNodeId(NewSU->NodeNum); 256 257 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 258 for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { 259 if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { 260 NewSU->isTwoAddress = true; 261 break; 262 } 263 } 264 if (MCID.isCommutable()) 265 NewSU->isCommutable = true; 266 267 // LoadNode may already exist. This can happen when there is another 268 // load from the same location and producing the same type of value 269 // but it has different alignment or volatileness. 270 bool isNewLoad = true; 271 SUnit *LoadSU; 272 if (LoadNode->getNodeId() != -1) { 273 LoadSU = &SUnits[LoadNode->getNodeId()]; 274 isNewLoad = false; 275 } else { 276 LoadSU = newSUnit(LoadNode); 277 LoadNode->setNodeId(LoadSU->NodeNum); 278 } 279 280 SDep ChainPred; 281 SmallVector<SDep, 4> ChainSuccs; 282 SmallVector<SDep, 4> LoadPreds; 283 SmallVector<SDep, 4> NodePreds; 284 SmallVector<SDep, 4> NodeSuccs; 285 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 286 I != E; ++I) { 287 if (I->isCtrl()) 288 ChainPred = *I; 289 else if (I->getSUnit()->getNode() && 290 I->getSUnit()->getNode()->isOperandOf(LoadNode)) 291 LoadPreds.push_back(*I); 292 else 293 NodePreds.push_back(*I); 294 } 295 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 296 I != E; ++I) { 297 if (I->isCtrl()) 298 ChainSuccs.push_back(*I); 299 else 300 NodeSuccs.push_back(*I); 301 } 302 303 if (ChainPred.getSUnit()) { 304 RemovePred(SU, ChainPred); 305 if (isNewLoad) 306 AddPred(LoadSU, ChainPred); 307 } 308 for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) { 309 const SDep &Pred = LoadPreds[i]; 310 RemovePred(SU, Pred); 311 if (isNewLoad) { 312 AddPred(LoadSU, Pred); 313 } 314 } 315 for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) { 316 const SDep &Pred = NodePreds[i]; 317 RemovePred(SU, Pred); 318 AddPred(NewSU, Pred); 319 } 320 for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) { 321 SDep D = NodeSuccs[i]; 322 SUnit *SuccDep = D.getSUnit(); 323 D.setSUnit(SU); 324 RemovePred(SuccDep, D); 325 D.setSUnit(NewSU); 326 AddPred(SuccDep, D); 327 } 328 for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) { 329 SDep D = ChainSuccs[i]; 330 SUnit *SuccDep = D.getSUnit(); 331 D.setSUnit(SU); 332 RemovePred(SuccDep, D); 333 if (isNewLoad) { 334 D.setSUnit(LoadSU); 335 AddPred(SuccDep, D); 336 } 337 } 338 if (isNewLoad) { 339 SDep D(LoadSU, SDep::Barrier); 340 D.setLatency(LoadSU->Latency); 341 AddPred(NewSU, D); 342 } 343 344 ++NumUnfolds; 345 346 if (NewSU->NumSuccsLeft == 0) { 347 NewSU->isAvailable = true; 348 return NewSU; 349 } 350 SU = NewSU; 351 } 352 353 DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n"); 354 NewSU = Clone(SU); 355 356 // New SUnit has the exact same predecessors. 357 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 358 I != E; ++I) 359 if (!I->isArtificial()) 360 AddPred(NewSU, *I); 361 362 // Only copy scheduled successors. Cut them from old node's successor 363 // list and move them over. 364 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; 365 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 366 I != E; ++I) { 367 if (I->isArtificial()) 368 continue; 369 SUnit *SuccSU = I->getSUnit(); 370 if (SuccSU->isScheduled) { 371 SDep D = *I; 372 D.setSUnit(NewSU); 373 AddPred(SuccSU, D); 374 D.setSUnit(SU); 375 DelDeps.push_back(std::make_pair(SuccSU, D)); 376 } 377 } 378 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) 379 RemovePred(DelDeps[i].first, DelDeps[i].second); 380 381 ++NumDups; 382 return NewSU; 383 } 384 385 /// InsertCopiesAndMoveSuccs - Insert register copies and move all 386 /// scheduled successors of the given SUnit to the last copy. 387 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg, 388 const TargetRegisterClass *DestRC, 389 const TargetRegisterClass *SrcRC, 390 SmallVectorImpl<SUnit*> &Copies) { 391 SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr)); 392 CopyFromSU->CopySrcRC = SrcRC; 393 CopyFromSU->CopyDstRC = DestRC; 394 395 SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr)); 396 CopyToSU->CopySrcRC = DestRC; 397 CopyToSU->CopyDstRC = SrcRC; 398 399 // Only copy scheduled successors. Cut them from old node's successor 400 // list and move them over. 401 SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps; 402 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); 403 I != E; ++I) { 404 if (I->isArtificial()) 405 continue; 406 SUnit *SuccSU = I->getSUnit(); 407 if (SuccSU->isScheduled) { 408 SDep D = *I; 409 D.setSUnit(CopyToSU); 410 AddPred(SuccSU, D); 411 DelDeps.push_back(std::make_pair(SuccSU, *I)); 412 } 413 } 414 for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) { 415 RemovePred(DelDeps[i].first, DelDeps[i].second); 416 } 417 SDep FromDep(SU, SDep::Data, Reg); 418 FromDep.setLatency(SU->Latency); 419 AddPred(CopyFromSU, FromDep); 420 SDep ToDep(CopyFromSU, SDep::Data, 0); 421 ToDep.setLatency(CopyFromSU->Latency); 422 AddPred(CopyToSU, ToDep); 423 424 Copies.push_back(CopyFromSU); 425 Copies.push_back(CopyToSU); 426 427 ++NumPRCopies; 428 } 429 430 /// getPhysicalRegisterVT - Returns the ValueType of the physical register 431 /// definition of the specified node. 432 /// FIXME: Move to SelectionDAG? 433 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg, 434 const TargetInstrInfo *TII) { 435 unsigned NumRes; 436 if (N->getOpcode() == ISD::CopyFromReg) { 437 // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type. 438 NumRes = 1; 439 } else { 440 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 441 assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!"); 442 NumRes = MCID.getNumDefs(); 443 for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) { 444 if (Reg == *ImpDef) 445 break; 446 ++NumRes; 447 } 448 } 449 return N->getSimpleValueType(NumRes); 450 } 451 452 /// CheckForLiveRegDef - Return true and update live register vector if the 453 /// specified register def of the specified SUnit clobbers any "live" registers. 454 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg, 455 std::vector<SUnit*> &LiveRegDefs, 456 SmallSet<unsigned, 4> &RegAdded, 457 SmallVectorImpl<unsigned> &LRegs, 458 const TargetRegisterInfo *TRI) { 459 bool Added = false; 460 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) { 461 if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) { 462 if (RegAdded.insert(*AI).second) { 463 LRegs.push_back(*AI); 464 Added = true; 465 } 466 } 467 } 468 return Added; 469 } 470 471 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay 472 /// scheduling of the given node to satisfy live physical register dependencies. 473 /// If the specific node is the last one that's available to schedule, do 474 /// whatever is necessary (i.e. backtracking or cloning) to make it possible. 475 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU, 476 SmallVectorImpl<unsigned> &LRegs){ 477 if (NumLiveRegs == 0) 478 return false; 479 480 SmallSet<unsigned, 4> RegAdded; 481 // If this node would clobber any "live" register, then it's not ready. 482 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); 483 I != E; ++I) { 484 if (I->isAssignedRegDep()) { 485 CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs, 486 RegAdded, LRegs, TRI); 487 } 488 } 489 490 for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) { 491 if (Node->getOpcode() == ISD::INLINEASM) { 492 // Inline asm can clobber physical defs. 493 unsigned NumOps = Node->getNumOperands(); 494 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) 495 --NumOps; // Ignore the glue operand. 496 497 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { 498 unsigned Flags = 499 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); 500 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 501 502 ++i; // Skip the ID value. 503 if (InlineAsm::isRegDefKind(Flags) || 504 InlineAsm::isRegDefEarlyClobberKind(Flags) || 505 InlineAsm::isClobberKind(Flags)) { 506 // Check for def of register or earlyclobber register. 507 for (; NumVals; --NumVals, ++i) { 508 unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); 509 if (TargetRegisterInfo::isPhysicalRegister(Reg)) 510 CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI); 511 } 512 } else 513 i += NumVals; 514 } 515 continue; 516 } 517 if (!Node->isMachineOpcode()) 518 continue; 519 const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode()); 520 if (!MCID.ImplicitDefs) 521 continue; 522 for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) { 523 CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI); 524 } 525 } 526 return !LRegs.empty(); 527 } 528 529 530 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up 531 /// schedulers. 532 void ScheduleDAGFast::ListScheduleBottomUp() { 533 unsigned CurCycle = 0; 534 535 // Release any predecessors of the special Exit node. 536 ReleasePredecessors(&ExitSU, CurCycle); 537 538 // Add root to Available queue. 539 if (!SUnits.empty()) { 540 SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()]; 541 assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!"); 542 RootSU->isAvailable = true; 543 AvailableQueue.push(RootSU); 544 } 545 546 // While Available queue is not empty, grab the node with the highest 547 // priority. If it is not ready put it back. Schedule the node. 548 SmallVector<SUnit*, 4> NotReady; 549 DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap; 550 Sequence.reserve(SUnits.size()); 551 while (!AvailableQueue.empty()) { 552 bool Delayed = false; 553 LRegsMap.clear(); 554 SUnit *CurSU = AvailableQueue.pop(); 555 while (CurSU) { 556 SmallVector<unsigned, 4> LRegs; 557 if (!DelayForLiveRegsBottomUp(CurSU, LRegs)) 558 break; 559 Delayed = true; 560 LRegsMap.insert(std::make_pair(CurSU, LRegs)); 561 562 CurSU->isPending = true; // This SU is not in AvailableQueue right now. 563 NotReady.push_back(CurSU); 564 CurSU = AvailableQueue.pop(); 565 } 566 567 // All candidates are delayed due to live physical reg dependencies. 568 // Try code duplication or inserting cross class copies 569 // to resolve it. 570 if (Delayed && !CurSU) { 571 if (!CurSU) { 572 // Try duplicating the nodes that produces these 573 // "expensive to copy" values to break the dependency. In case even 574 // that doesn't work, insert cross class copies. 575 SUnit *TrySU = NotReady[0]; 576 SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU]; 577 assert(LRegs.size() == 1 && "Can't handle this yet!"); 578 unsigned Reg = LRegs[0]; 579 SUnit *LRDef = LiveRegDefs[Reg]; 580 MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII); 581 const TargetRegisterClass *RC = 582 TRI->getMinimalPhysRegClass(Reg, VT); 583 const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC); 584 585 // If cross copy register class is the same as RC, then it must be 586 // possible copy the value directly. Do not try duplicate the def. 587 // If cross copy register class is not the same as RC, then it's 588 // possible to copy the value but it require cross register class copies 589 // and it is expensive. 590 // If cross copy register class is null, then it's not possible to copy 591 // the value at all. 592 SUnit *NewDef = nullptr; 593 if (DestRC != RC) { 594 NewDef = CopyAndMoveSuccessors(LRDef); 595 if (!DestRC && !NewDef) 596 report_fatal_error("Can't handle live physical " 597 "register dependency!"); 598 } 599 if (!NewDef) { 600 // Issue copies, these can be expensive cross register class copies. 601 SmallVector<SUnit*, 2> Copies; 602 InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies); 603 DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum 604 << " to SU #" << Copies.front()->NodeNum << "\n"); 605 AddPred(TrySU, SDep(Copies.front(), SDep::Artificial)); 606 NewDef = Copies.back(); 607 } 608 609 DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum 610 << " to SU #" << TrySU->NodeNum << "\n"); 611 LiveRegDefs[Reg] = NewDef; 612 AddPred(NewDef, SDep(TrySU, SDep::Artificial)); 613 TrySU->isAvailable = false; 614 CurSU = NewDef; 615 } 616 617 if (!CurSU) { 618 llvm_unreachable("Unable to resolve live physical register dependencies!"); 619 } 620 } 621 622 // Add the nodes that aren't ready back onto the available list. 623 for (unsigned i = 0, e = NotReady.size(); i != e; ++i) { 624 NotReady[i]->isPending = false; 625 // May no longer be available due to backtracking. 626 if (NotReady[i]->isAvailable) 627 AvailableQueue.push(NotReady[i]); 628 } 629 NotReady.clear(); 630 631 if (CurSU) 632 ScheduleNodeBottomUp(CurSU, CurCycle); 633 ++CurCycle; 634 } 635 636 // Reverse the order since it is bottom up. 637 std::reverse(Sequence.begin(), Sequence.end()); 638 639 #ifndef NDEBUG 640 VerifyScheduledSequence(/*isBottomUp=*/true); 641 #endif 642 } 643 644 645 namespace { 646 //===----------------------------------------------------------------------===// 647 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the 648 // DAG in topological order. 649 // IMPORTANT: this may not work for targets with phyreg dependency. 650 // 651 class ScheduleDAGLinearize : public ScheduleDAGSDNodes { 652 public: 653 ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {} 654 655 void Schedule() override; 656 657 MachineBasicBlock * 658 EmitSchedule(MachineBasicBlock::iterator &InsertPos) override; 659 660 private: 661 std::vector<SDNode*> Sequence; 662 DenseMap<SDNode*, SDNode*> GluedMap; // Cache glue to its user 663 664 void ScheduleNode(SDNode *N); 665 }; 666 } // end anonymous namespace 667 668 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) { 669 if (N->getNodeId() != 0) 670 llvm_unreachable(nullptr); 671 672 if (!N->isMachineOpcode() && 673 (N->getOpcode() == ISD::EntryToken || isPassiveNode(N))) 674 // These nodes do not need to be translated into MIs. 675 return; 676 677 DEBUG(dbgs() << "\n*** Scheduling: "); 678 DEBUG(N->dump(DAG)); 679 Sequence.push_back(N); 680 681 unsigned NumOps = N->getNumOperands(); 682 if (unsigned NumLeft = NumOps) { 683 SDNode *GluedOpN = nullptr; 684 do { 685 const SDValue &Op = N->getOperand(NumLeft-1); 686 SDNode *OpN = Op.getNode(); 687 688 if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) { 689 // Schedule glue operand right above N. 690 GluedOpN = OpN; 691 assert(OpN->getNodeId() != 0 && "Glue operand not ready?"); 692 OpN->setNodeId(0); 693 ScheduleNode(OpN); 694 continue; 695 } 696 697 if (OpN == GluedOpN) 698 // Glue operand is already scheduled. 699 continue; 700 701 DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN); 702 if (DI != GluedMap.end() && DI->second != N) 703 // Users of glues are counted against the glued users. 704 OpN = DI->second; 705 706 unsigned Degree = OpN->getNodeId(); 707 assert(Degree > 0 && "Predecessor over-released!"); 708 OpN->setNodeId(--Degree); 709 if (Degree == 0) 710 ScheduleNode(OpN); 711 } while (--NumLeft); 712 } 713 } 714 715 /// findGluedUser - Find the representative use of a glue value by walking 716 /// the use chain. 717 static SDNode *findGluedUser(SDNode *N) { 718 while (SDNode *Glued = N->getGluedUser()) 719 N = Glued; 720 return N; 721 } 722 723 void ScheduleDAGLinearize::Schedule() { 724 DEBUG(dbgs() << "********** DAG Linearization **********\n"); 725 726 SmallVector<SDNode*, 8> Glues; 727 unsigned DAGSize = 0; 728 for (SDNode &Node : DAG->allnodes()) { 729 SDNode *N = &Node; 730 731 // Use node id to record degree. 732 unsigned Degree = N->use_size(); 733 N->setNodeId(Degree); 734 unsigned NumVals = N->getNumValues(); 735 if (NumVals && N->getValueType(NumVals-1) == MVT::Glue && 736 N->hasAnyUseOfValue(NumVals-1)) { 737 SDNode *User = findGluedUser(N); 738 if (User) { 739 Glues.push_back(N); 740 GluedMap.insert(std::make_pair(N, User)); 741 } 742 } 743 744 if (N->isMachineOpcode() || 745 (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N))) 746 ++DAGSize; 747 } 748 749 for (unsigned i = 0, e = Glues.size(); i != e; ++i) { 750 SDNode *Glue = Glues[i]; 751 SDNode *GUser = GluedMap[Glue]; 752 unsigned Degree = Glue->getNodeId(); 753 unsigned UDegree = GUser->getNodeId(); 754 755 // Glue user must be scheduled together with the glue operand. So other 756 // users of the glue operand must be treated as its users. 757 SDNode *ImmGUser = Glue->getGluedUser(); 758 for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end(); 759 ui != ue; ++ui) 760 if (*ui == ImmGUser) 761 --Degree; 762 GUser->setNodeId(UDegree + Degree); 763 Glue->setNodeId(1); 764 } 765 766 Sequence.reserve(DAGSize); 767 ScheduleNode(DAG->getRoot().getNode()); 768 } 769 770 MachineBasicBlock* 771 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) { 772 InstrEmitter Emitter(BB, InsertPos); 773 DenseMap<SDValue, unsigned> VRBaseMap; 774 775 DEBUG({ 776 dbgs() << "\n*** Final schedule ***\n"; 777 }); 778 779 // FIXME: Handle dbg_values. 780 unsigned NumNodes = Sequence.size(); 781 for (unsigned i = 0; i != NumNodes; ++i) { 782 SDNode *N = Sequence[NumNodes-i-1]; 783 DEBUG(N->dump(DAG)); 784 Emitter.EmitNode(N, false, false, VRBaseMap); 785 } 786 787 DEBUG(dbgs() << '\n'); 788 789 InsertPos = Emitter.getInsertPos(); 790 return Emitter.getBlock(); 791 } 792 793 //===----------------------------------------------------------------------===// 794 // Public Constructor Functions 795 //===----------------------------------------------------------------------===// 796 797 llvm::ScheduleDAGSDNodes * 798 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) { 799 return new ScheduleDAGFast(*IS->MF); 800 } 801 802 llvm::ScheduleDAGSDNodes * 803 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) { 804 return new ScheduleDAGLinearize(*IS->MF); 805 } 806