Home | History | Annotate | Download | only in AArch64
      1 //=- AArch64InstrInfo.td - Describe the AArch64 Instructions -*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // AArch64 Instruction definitions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 //===----------------------------------------------------------------------===//
     15 // ARM Instruction Predicate Definitions.
     16 //
     17 def HasV8_1a         : Predicate<"Subtarget->hasV8_1aOps()">,
     18                                  AssemblerPredicate<"HasV8_1aOps", "armv8.1a">;
     19 def HasV8_2a         : Predicate<"Subtarget->hasV8_2aOps()">,
     20                                  AssemblerPredicate<"HasV8_2aOps", "armv8.2a">;
     21 def HasFPARMv8       : Predicate<"Subtarget->hasFPARMv8()">,
     22                                AssemblerPredicate<"FeatureFPARMv8", "fp-armv8">;
     23 def HasNEON          : Predicate<"Subtarget->hasNEON()">,
     24                                  AssemblerPredicate<"FeatureNEON", "neon">;
     25 def HasCrypto        : Predicate<"Subtarget->hasCrypto()">,
     26                                  AssemblerPredicate<"FeatureCrypto", "crypto">;
     27 def HasCRC           : Predicate<"Subtarget->hasCRC()">,
     28                                  AssemblerPredicate<"FeatureCRC", "crc">;
     29 def HasRAS           : Predicate<"Subtarget->hasRAS()">,
     30                                  AssemblerPredicate<"FeatureRAS", "ras">;
     31 def HasPerfMon       : Predicate<"Subtarget->hasPerfMon()">;
     32 def HasFullFP16      : Predicate<"Subtarget->hasFullFP16()">,
     33                                  AssemblerPredicate<"FeatureFullFP16", "fullfp16">;
     34 def HasSPE           : Predicate<"Subtarget->hasSPE()">,
     35                                  AssemblerPredicate<"FeatureSPE", "spe">;
     36 
     37 def IsLE             : Predicate<"Subtarget->isLittleEndian()">;
     38 def IsBE             : Predicate<"!Subtarget->isLittleEndian()">;
     39 def UseAlternateSExtLoadCVTF32
     40     : Predicate<"Subtarget->useAlternateSExtLoadCVTF32Pattern()">;
     41 
     42 //===----------------------------------------------------------------------===//
     43 // AArch64-specific DAG Nodes.
     44 //
     45 
     46 // SDTBinaryArithWithFlagsOut - RES1, FLAGS = op LHS, RHS
     47 def SDTBinaryArithWithFlagsOut : SDTypeProfile<2, 2,
     48                                               [SDTCisSameAs<0, 2>,
     49                                                SDTCisSameAs<0, 3>,
     50                                                SDTCisInt<0>, SDTCisVT<1, i32>]>;
     51 
     52 // SDTBinaryArithWithFlagsIn - RES1, FLAGS = op LHS, RHS, FLAGS
     53 def SDTBinaryArithWithFlagsIn : SDTypeProfile<1, 3,
     54                                             [SDTCisSameAs<0, 1>,
     55                                              SDTCisSameAs<0, 2>,
     56                                              SDTCisInt<0>,
     57                                              SDTCisVT<3, i32>]>;
     58 
     59 // SDTBinaryArithWithFlagsInOut - RES1, FLAGS = op LHS, RHS, FLAGS
     60 def SDTBinaryArithWithFlagsInOut : SDTypeProfile<2, 3,
     61                                             [SDTCisSameAs<0, 2>,
     62                                              SDTCisSameAs<0, 3>,
     63                                              SDTCisInt<0>,
     64                                              SDTCisVT<1, i32>,
     65                                              SDTCisVT<4, i32>]>;
     66 
     67 def SDT_AArch64Brcond  : SDTypeProfile<0, 3,
     68                                      [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>,
     69                                       SDTCisVT<2, i32>]>;
     70 def SDT_AArch64cbz : SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisVT<1, OtherVT>]>;
     71 def SDT_AArch64tbz : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>,
     72                                         SDTCisVT<2, OtherVT>]>;
     73 
     74 
     75 def SDT_AArch64CSel  : SDTypeProfile<1, 4,
     76                                    [SDTCisSameAs<0, 1>,
     77                                     SDTCisSameAs<0, 2>,
     78                                     SDTCisInt<3>,
     79                                     SDTCisVT<4, i32>]>;
     80 def SDT_AArch64CCMP : SDTypeProfile<1, 5,
     81                                     [SDTCisVT<0, i32>,
     82                                      SDTCisInt<1>,
     83                                      SDTCisSameAs<1, 2>,
     84                                      SDTCisInt<3>,
     85                                      SDTCisInt<4>,
     86                                      SDTCisVT<5, i32>]>;
     87 def SDT_AArch64FCCMP : SDTypeProfile<1, 5,
     88                                      [SDTCisVT<0, i32>,
     89                                       SDTCisFP<1>,
     90                                       SDTCisSameAs<1, 2>,
     91                                       SDTCisInt<3>,
     92                                       SDTCisInt<4>,
     93                                       SDTCisVT<5, i32>]>;
     94 def SDT_AArch64FCmp   : SDTypeProfile<0, 2,
     95                                    [SDTCisFP<0>,
     96                                     SDTCisSameAs<0, 1>]>;
     97 def SDT_AArch64Dup   : SDTypeProfile<1, 1, [SDTCisVec<0>]>;
     98 def SDT_AArch64DupLane   : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisInt<2>]>;
     99 def SDT_AArch64Zip   : SDTypeProfile<1, 2, [SDTCisVec<0>,
    100                                           SDTCisSameAs<0, 1>,
    101                                           SDTCisSameAs<0, 2>]>;
    102 def SDT_AArch64MOVIedit : SDTypeProfile<1, 1, [SDTCisInt<1>]>;
    103 def SDT_AArch64MOVIshift : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
    104 def SDT_AArch64vecimm : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
    105                                            SDTCisInt<2>, SDTCisInt<3>]>;
    106 def SDT_AArch64UnaryVec: SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
    107 def SDT_AArch64ExtVec: SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
    108                                           SDTCisSameAs<0,2>, SDTCisInt<3>]>;
    109 def SDT_AArch64vshift : SDTypeProfile<1, 2, [SDTCisSameAs<0,1>, SDTCisInt<2>]>;
    110 
    111 def SDT_AArch64unvec : SDTypeProfile<1, 1, [SDTCisVec<0>, SDTCisSameAs<0,1>]>;
    112 def SDT_AArch64fcmpz : SDTypeProfile<1, 1, []>;
    113 def SDT_AArch64fcmp  : SDTypeProfile<1, 2, [SDTCisSameAs<1,2>]>;
    114 def SDT_AArch64binvec : SDTypeProfile<1, 2, [SDTCisVec<0>, SDTCisSameAs<0,1>,
    115                                            SDTCisSameAs<0,2>]>;
    116 def SDT_AArch64trivec : SDTypeProfile<1, 3, [SDTCisVec<0>, SDTCisSameAs<0,1>,
    117                                            SDTCisSameAs<0,2>,
    118                                            SDTCisSameAs<0,3>]>;
    119 def SDT_AArch64TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>]>;
    120 def SDT_AArch64PREFETCH : SDTypeProfile<0, 2, [SDTCisVT<0, i32>, SDTCisPtrTy<1>]>;
    121 
    122 def SDT_AArch64ITOF  : SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisSameAs<0,1>]>;
    123 
    124 def SDT_AArch64TLSDescCall : SDTypeProfile<0, -2, [SDTCisPtrTy<0>,
    125                                                  SDTCisPtrTy<1>]>;
    126 
    127 // Generates the general dynamic sequences, i.e.
    128 //  adrp  x0, :tlsdesc:var
    129 //  ldr   x1, [x0, #:tlsdesc_lo12:var]
    130 //  add   x0, x0, #:tlsdesc_lo12:var
    131 //  .tlsdesccall var
    132 //  blr   x1
    133 
    134 // (the TPIDR_EL0 offset is put directly in X0, hence no "result" here)
    135 // number of operands (the variable)
    136 def SDT_AArch64TLSDescCallSeq : SDTypeProfile<0,1,
    137                                           [SDTCisPtrTy<0>]>;
    138 
    139 def SDT_AArch64WrapperLarge : SDTypeProfile<1, 4,
    140                                         [SDTCisVT<0, i64>, SDTCisVT<1, i32>,
    141                                          SDTCisSameAs<1, 2>, SDTCisSameAs<1, 3>,
    142                                          SDTCisSameAs<1, 4>]>;
    143 
    144 
    145 // Node definitions.
    146 def AArch64adrp          : SDNode<"AArch64ISD::ADRP", SDTIntUnaryOp, []>;
    147 def AArch64addlow        : SDNode<"AArch64ISD::ADDlow", SDTIntBinOp, []>;
    148 def AArch64LOADgot       : SDNode<"AArch64ISD::LOADgot", SDTIntUnaryOp>;
    149 def AArch64callseq_start : SDNode<"ISD::CALLSEQ_START",
    150                                 SDCallSeqStart<[ SDTCisVT<0, i32> ]>,
    151                                 [SDNPHasChain, SDNPOutGlue]>;
    152 def AArch64callseq_end   : SDNode<"ISD::CALLSEQ_END",
    153                                 SDCallSeqEnd<[ SDTCisVT<0, i32>,
    154                                                SDTCisVT<1, i32> ]>,
    155                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
    156 def AArch64call          : SDNode<"AArch64ISD::CALL",
    157                                 SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
    158                                 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
    159                                  SDNPVariadic]>;
    160 def AArch64brcond        : SDNode<"AArch64ISD::BRCOND", SDT_AArch64Brcond,
    161                                 [SDNPHasChain]>;
    162 def AArch64cbz           : SDNode<"AArch64ISD::CBZ", SDT_AArch64cbz,
    163                                 [SDNPHasChain]>;
    164 def AArch64cbnz           : SDNode<"AArch64ISD::CBNZ", SDT_AArch64cbz,
    165                                 [SDNPHasChain]>;
    166 def AArch64tbz           : SDNode<"AArch64ISD::TBZ", SDT_AArch64tbz,
    167                                 [SDNPHasChain]>;
    168 def AArch64tbnz           : SDNode<"AArch64ISD::TBNZ", SDT_AArch64tbz,
    169                                 [SDNPHasChain]>;
    170 
    171 
    172 def AArch64csel          : SDNode<"AArch64ISD::CSEL", SDT_AArch64CSel>;
    173 def AArch64csinv         : SDNode<"AArch64ISD::CSINV", SDT_AArch64CSel>;
    174 def AArch64csneg         : SDNode<"AArch64ISD::CSNEG", SDT_AArch64CSel>;
    175 def AArch64csinc         : SDNode<"AArch64ISD::CSINC", SDT_AArch64CSel>;
    176 def AArch64retflag       : SDNode<"AArch64ISD::RET_FLAG", SDTNone,
    177                                 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
    178 def AArch64adc       : SDNode<"AArch64ISD::ADC",  SDTBinaryArithWithFlagsIn >;
    179 def AArch64sbc       : SDNode<"AArch64ISD::SBC",  SDTBinaryArithWithFlagsIn>;
    180 def AArch64add_flag  : SDNode<"AArch64ISD::ADDS",  SDTBinaryArithWithFlagsOut,
    181                             [SDNPCommutative]>;
    182 def AArch64sub_flag  : SDNode<"AArch64ISD::SUBS",  SDTBinaryArithWithFlagsOut>;
    183 def AArch64and_flag  : SDNode<"AArch64ISD::ANDS",  SDTBinaryArithWithFlagsOut,
    184                             [SDNPCommutative]>;
    185 def AArch64adc_flag  : SDNode<"AArch64ISD::ADCS",  SDTBinaryArithWithFlagsInOut>;
    186 def AArch64sbc_flag  : SDNode<"AArch64ISD::SBCS",  SDTBinaryArithWithFlagsInOut>;
    187 
    188 def AArch64ccmp      : SDNode<"AArch64ISD::CCMP",  SDT_AArch64CCMP>;
    189 def AArch64ccmn      : SDNode<"AArch64ISD::CCMN",  SDT_AArch64CCMP>;
    190 def AArch64fccmp     : SDNode<"AArch64ISD::FCCMP", SDT_AArch64FCCMP>;
    191 
    192 def AArch64threadpointer : SDNode<"AArch64ISD::THREAD_POINTER", SDTPtrLeaf>;
    193 
    194 def AArch64fcmp      : SDNode<"AArch64ISD::FCMP", SDT_AArch64FCmp>;
    195 
    196 def AArch64dup       : SDNode<"AArch64ISD::DUP", SDT_AArch64Dup>;
    197 def AArch64duplane8  : SDNode<"AArch64ISD::DUPLANE8", SDT_AArch64DupLane>;
    198 def AArch64duplane16 : SDNode<"AArch64ISD::DUPLANE16", SDT_AArch64DupLane>;
    199 def AArch64duplane32 : SDNode<"AArch64ISD::DUPLANE32", SDT_AArch64DupLane>;
    200 def AArch64duplane64 : SDNode<"AArch64ISD::DUPLANE64", SDT_AArch64DupLane>;
    201 
    202 def AArch64zip1      : SDNode<"AArch64ISD::ZIP1", SDT_AArch64Zip>;
    203 def AArch64zip2      : SDNode<"AArch64ISD::ZIP2", SDT_AArch64Zip>;
    204 def AArch64uzp1      : SDNode<"AArch64ISD::UZP1", SDT_AArch64Zip>;
    205 def AArch64uzp2      : SDNode<"AArch64ISD::UZP2", SDT_AArch64Zip>;
    206 def AArch64trn1      : SDNode<"AArch64ISD::TRN1", SDT_AArch64Zip>;
    207 def AArch64trn2      : SDNode<"AArch64ISD::TRN2", SDT_AArch64Zip>;
    208 
    209 def AArch64movi_edit : SDNode<"AArch64ISD::MOVIedit", SDT_AArch64MOVIedit>;
    210 def AArch64movi_shift : SDNode<"AArch64ISD::MOVIshift", SDT_AArch64MOVIshift>;
    211 def AArch64movi_msl : SDNode<"AArch64ISD::MOVImsl", SDT_AArch64MOVIshift>;
    212 def AArch64mvni_shift : SDNode<"AArch64ISD::MVNIshift", SDT_AArch64MOVIshift>;
    213 def AArch64mvni_msl : SDNode<"AArch64ISD::MVNImsl", SDT_AArch64MOVIshift>;
    214 def AArch64movi : SDNode<"AArch64ISD::MOVI", SDT_AArch64MOVIedit>;
    215 def AArch64fmov : SDNode<"AArch64ISD::FMOV", SDT_AArch64MOVIedit>;
    216 
    217 def AArch64rev16 : SDNode<"AArch64ISD::REV16", SDT_AArch64UnaryVec>;
    218 def AArch64rev32 : SDNode<"AArch64ISD::REV32", SDT_AArch64UnaryVec>;
    219 def AArch64rev64 : SDNode<"AArch64ISD::REV64", SDT_AArch64UnaryVec>;
    220 def AArch64ext : SDNode<"AArch64ISD::EXT", SDT_AArch64ExtVec>;
    221 
    222 def AArch64vashr : SDNode<"AArch64ISD::VASHR", SDT_AArch64vshift>;
    223 def AArch64vlshr : SDNode<"AArch64ISD::VLSHR", SDT_AArch64vshift>;
    224 def AArch64vshl : SDNode<"AArch64ISD::VSHL", SDT_AArch64vshift>;
    225 def AArch64sqshli : SDNode<"AArch64ISD::SQSHL_I", SDT_AArch64vshift>;
    226 def AArch64uqshli : SDNode<"AArch64ISD::UQSHL_I", SDT_AArch64vshift>;
    227 def AArch64sqshlui : SDNode<"AArch64ISD::SQSHLU_I", SDT_AArch64vshift>;
    228 def AArch64srshri : SDNode<"AArch64ISD::SRSHR_I", SDT_AArch64vshift>;
    229 def AArch64urshri : SDNode<"AArch64ISD::URSHR_I", SDT_AArch64vshift>;
    230 
    231 def AArch64not: SDNode<"AArch64ISD::NOT", SDT_AArch64unvec>;
    232 def AArch64bit: SDNode<"AArch64ISD::BIT", SDT_AArch64trivec>;
    233 def AArch64bsl: SDNode<"AArch64ISD::BSL", SDT_AArch64trivec>;
    234 
    235 def AArch64cmeq: SDNode<"AArch64ISD::CMEQ", SDT_AArch64binvec>;
    236 def AArch64cmge: SDNode<"AArch64ISD::CMGE", SDT_AArch64binvec>;
    237 def AArch64cmgt: SDNode<"AArch64ISD::CMGT", SDT_AArch64binvec>;
    238 def AArch64cmhi: SDNode<"AArch64ISD::CMHI", SDT_AArch64binvec>;
    239 def AArch64cmhs: SDNode<"AArch64ISD::CMHS", SDT_AArch64binvec>;
    240 
    241 def AArch64fcmeq: SDNode<"AArch64ISD::FCMEQ", SDT_AArch64fcmp>;
    242 def AArch64fcmge: SDNode<"AArch64ISD::FCMGE", SDT_AArch64fcmp>;
    243 def AArch64fcmgt: SDNode<"AArch64ISD::FCMGT", SDT_AArch64fcmp>;
    244 
    245 def AArch64cmeqz: SDNode<"AArch64ISD::CMEQz", SDT_AArch64unvec>;
    246 def AArch64cmgez: SDNode<"AArch64ISD::CMGEz", SDT_AArch64unvec>;
    247 def AArch64cmgtz: SDNode<"AArch64ISD::CMGTz", SDT_AArch64unvec>;
    248 def AArch64cmlez: SDNode<"AArch64ISD::CMLEz", SDT_AArch64unvec>;
    249 def AArch64cmltz: SDNode<"AArch64ISD::CMLTz", SDT_AArch64unvec>;
    250 def AArch64cmtst : PatFrag<(ops node:$LHS, node:$RHS),
    251                         (AArch64not (AArch64cmeqz (and node:$LHS, node:$RHS)))>;
    252 
    253 def AArch64fcmeqz: SDNode<"AArch64ISD::FCMEQz", SDT_AArch64fcmpz>;
    254 def AArch64fcmgez: SDNode<"AArch64ISD::FCMGEz", SDT_AArch64fcmpz>;
    255 def AArch64fcmgtz: SDNode<"AArch64ISD::FCMGTz", SDT_AArch64fcmpz>;
    256 def AArch64fcmlez: SDNode<"AArch64ISD::FCMLEz", SDT_AArch64fcmpz>;
    257 def AArch64fcmltz: SDNode<"AArch64ISD::FCMLTz", SDT_AArch64fcmpz>;
    258 
    259 def AArch64bici: SDNode<"AArch64ISD::BICi", SDT_AArch64vecimm>;
    260 def AArch64orri: SDNode<"AArch64ISD::ORRi", SDT_AArch64vecimm>;
    261 
    262 def AArch64neg : SDNode<"AArch64ISD::NEG", SDT_AArch64unvec>;
    263 
    264 def AArch64tcret: SDNode<"AArch64ISD::TC_RETURN", SDT_AArch64TCRET,
    265                   [SDNPHasChain,  SDNPOptInGlue, SDNPVariadic]>;
    266 
    267 def AArch64Prefetch        : SDNode<"AArch64ISD::PREFETCH", SDT_AArch64PREFETCH,
    268                                [SDNPHasChain, SDNPSideEffect]>;
    269 
    270 def AArch64sitof: SDNode<"AArch64ISD::SITOF", SDT_AArch64ITOF>;
    271 def AArch64uitof: SDNode<"AArch64ISD::UITOF", SDT_AArch64ITOF>;
    272 
    273 def AArch64tlsdesc_callseq : SDNode<"AArch64ISD::TLSDESC_CALLSEQ",
    274                                     SDT_AArch64TLSDescCallSeq,
    275                                     [SDNPInGlue, SDNPOutGlue, SDNPHasChain,
    276                                      SDNPVariadic]>;
    277 
    278 
    279 def AArch64WrapperLarge : SDNode<"AArch64ISD::WrapperLarge",
    280                                  SDT_AArch64WrapperLarge>;
    281 
    282 def AArch64NvCast : SDNode<"AArch64ISD::NVCAST", SDTUnaryOp>;
    283 
    284 def SDT_AArch64mull : SDTypeProfile<1, 2, [SDTCisInt<0>, SDTCisInt<1>,
    285                                     SDTCisSameAs<1, 2>]>;
    286 def AArch64smull    : SDNode<"AArch64ISD::SMULL", SDT_AArch64mull>;
    287 def AArch64umull    : SDNode<"AArch64ISD::UMULL", SDT_AArch64mull>;
    288 
    289 def AArch64frecpe   : SDNode<"AArch64ISD::FRECPE", SDTFPUnaryOp>;
    290 def AArch64frsqrte  : SDNode<"AArch64ISD::FRSQRTE", SDTFPUnaryOp>;
    291 
    292 def AArch64saddv    : SDNode<"AArch64ISD::SADDV", SDT_AArch64UnaryVec>;
    293 def AArch64uaddv    : SDNode<"AArch64ISD::UADDV", SDT_AArch64UnaryVec>;
    294 def AArch64sminv    : SDNode<"AArch64ISD::SMINV", SDT_AArch64UnaryVec>;
    295 def AArch64uminv    : SDNode<"AArch64ISD::UMINV", SDT_AArch64UnaryVec>;
    296 def AArch64smaxv    : SDNode<"AArch64ISD::SMAXV", SDT_AArch64UnaryVec>;
    297 def AArch64umaxv    : SDNode<"AArch64ISD::UMAXV", SDT_AArch64UnaryVec>;
    298 
    299 //===----------------------------------------------------------------------===//
    300 
    301 //===----------------------------------------------------------------------===//
    302 
    303 // AArch64 Instruction Predicate Definitions.
    304 def IsDarwin  : Predicate<"Subtarget->isTargetDarwin()">;
    305 def IsNotDarwin: Predicate<"!Subtarget->isTargetDarwin()">;
    306 def ForCodeSize   : Predicate<"ForCodeSize">;
    307 def NotForCodeSize   : Predicate<"!ForCodeSize">;
    308 
    309 include "AArch64InstrFormats.td"
    310 
    311 //===----------------------------------------------------------------------===//
    312 
    313 //===----------------------------------------------------------------------===//
    314 // Miscellaneous instructions.
    315 //===----------------------------------------------------------------------===//
    316 
    317 let Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1 in {
    318 // We set Sched to empty list because we expect these instructions to simply get
    319 // removed in most cases.
    320 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt),
    321                               [(AArch64callseq_start timm:$amt)]>, Sched<[]>;
    322 def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2),
    323                             [(AArch64callseq_end timm:$amt1, timm:$amt2)]>,
    324                             Sched<[]>;
    325 } // Defs = [SP], Uses = [SP], hasSideEffects = 1, isCodeGenOnly = 1
    326 
    327 let isReMaterializable = 1, isCodeGenOnly = 1 in {
    328 // FIXME: The following pseudo instructions are only needed because remat
    329 // cannot handle multiple instructions.  When that changes, they can be
    330 // removed, along with the AArch64Wrapper node.
    331 
    332 let AddedComplexity = 10 in
    333 def LOADgot : Pseudo<(outs GPR64:$dst), (ins i64imm:$addr),
    334                      [(set GPR64:$dst, (AArch64LOADgot tglobaladdr:$addr))]>,
    335               Sched<[WriteLDAdr]>;
    336 
    337 // The MOVaddr instruction should match only when the add is not folded
    338 // into a load or store address.
    339 def MOVaddr
    340     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    341              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaladdr:$hi),
    342                                             tglobaladdr:$low))]>,
    343       Sched<[WriteAdrAdr]>;
    344 def MOVaddrJT
    345     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    346              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tjumptable:$hi),
    347                                              tjumptable:$low))]>,
    348       Sched<[WriteAdrAdr]>;
    349 def MOVaddrCP
    350     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    351              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tconstpool:$hi),
    352                                              tconstpool:$low))]>,
    353       Sched<[WriteAdrAdr]>;
    354 def MOVaddrBA
    355     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    356              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tblockaddress:$hi),
    357                                              tblockaddress:$low))]>,
    358       Sched<[WriteAdrAdr]>;
    359 def MOVaddrTLS
    360     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    361              [(set GPR64:$dst, (AArch64addlow (AArch64adrp tglobaltlsaddr:$hi),
    362                                             tglobaltlsaddr:$low))]>,
    363       Sched<[WriteAdrAdr]>;
    364 def MOVaddrEXT
    365     : Pseudo<(outs GPR64:$dst), (ins i64imm:$hi, i64imm:$low),
    366              [(set GPR64:$dst, (AArch64addlow (AArch64adrp texternalsym:$hi),
    367                                             texternalsym:$low))]>,
    368       Sched<[WriteAdrAdr]>;
    369 
    370 } // isReMaterializable, isCodeGenOnly
    371 
    372 def : Pat<(AArch64LOADgot tglobaltlsaddr:$addr),
    373           (LOADgot tglobaltlsaddr:$addr)>;
    374 
    375 def : Pat<(AArch64LOADgot texternalsym:$addr),
    376           (LOADgot texternalsym:$addr)>;
    377 
    378 def : Pat<(AArch64LOADgot tconstpool:$addr),
    379           (LOADgot tconstpool:$addr)>;
    380 
    381 //===----------------------------------------------------------------------===//
    382 // System instructions.
    383 //===----------------------------------------------------------------------===//
    384 
    385 def HINT : HintI<"hint">;
    386 def : InstAlias<"nop",  (HINT 0b000)>;
    387 def : InstAlias<"yield",(HINT 0b001)>;
    388 def : InstAlias<"wfe",  (HINT 0b010)>;
    389 def : InstAlias<"wfi",  (HINT 0b011)>;
    390 def : InstAlias<"sev",  (HINT 0b100)>;
    391 def : InstAlias<"sevl", (HINT 0b101)>;
    392 def : InstAlias<"esb",  (HINT 0b10000)>, Requires<[HasRAS]>;
    393 
    394 // v8.2a Statistical Profiling extension
    395 def : InstAlias<"psb $op",  (HINT psbhint_op:$op)>, Requires<[HasSPE]>;
    396 
    397 // As far as LLVM is concerned this writes to the system's exclusive monitors.
    398 let mayLoad = 1, mayStore = 1 in
    399 def CLREX : CRmSystemI<imm0_15, 0b010, "clrex">;
    400 
    401 // NOTE: ideally, this would have mayStore = 0, mayLoad = 0, but we cannot
    402 // model patterns with sufficiently fine granularity.
    403 let mayLoad = ?, mayStore = ? in {
    404 def DMB   : CRmSystemI<barrier_op, 0b101, "dmb",
    405                        [(int_aarch64_dmb (i32 imm32_0_15:$CRm))]>;
    406 
    407 def DSB   : CRmSystemI<barrier_op, 0b100, "dsb",
    408                        [(int_aarch64_dsb (i32 imm32_0_15:$CRm))]>;
    409 
    410 def ISB   : CRmSystemI<barrier_op, 0b110, "isb",
    411                        [(int_aarch64_isb (i32 imm32_0_15:$CRm))]>;
    412 }
    413 
    414 def : InstAlias<"clrex", (CLREX 0xf)>;
    415 def : InstAlias<"isb", (ISB 0xf)>;
    416 
    417 def MRS    : MRSI;
    418 def MSR    : MSRI;
    419 def MSRpstateImm1 : MSRpstateImm0_1;
    420 def MSRpstateImm4 : MSRpstateImm0_15;
    421 
    422 // The thread pointer (on Linux, at least, where this has been implemented) is
    423 // TPIDR_EL0.
    424 def : Pat<(AArch64threadpointer), (MRS 0xde82)>;
    425 
    426 // The cycle counter PMC register is PMCCNTR_EL0.
    427 let Predicates = [HasPerfMon] in
    428 def : Pat<(readcyclecounter), (MRS 0xdce8)>;
    429 
    430 // Generic system instructions
    431 def SYSxt  : SystemXtI<0, "sys">;
    432 def SYSLxt : SystemLXtI<1, "sysl">;
    433 
    434 def : InstAlias<"sys $op1, $Cn, $Cm, $op2",
    435                 (SYSxt imm0_7:$op1, sys_cr_op:$Cn,
    436                  sys_cr_op:$Cm, imm0_7:$op2, XZR)>;
    437 
    438 //===----------------------------------------------------------------------===//
    439 // Move immediate instructions.
    440 //===----------------------------------------------------------------------===//
    441 
    442 defm MOVK : InsertImmediate<0b11, "movk">;
    443 defm MOVN : MoveImmediate<0b00, "movn">;
    444 
    445 let PostEncoderMethod = "fixMOVZ" in
    446 defm MOVZ : MoveImmediate<0b10, "movz">;
    447 
    448 // First group of aliases covers an implicit "lsl #0".
    449 def : InstAlias<"movk $dst, $imm", (MOVKWi GPR32:$dst, imm0_65535:$imm, 0)>;
    450 def : InstAlias<"movk $dst, $imm", (MOVKXi GPR64:$dst, imm0_65535:$imm, 0)>;
    451 def : InstAlias<"movn $dst, $imm", (MOVNWi GPR32:$dst, imm0_65535:$imm, 0)>;
    452 def : InstAlias<"movn $dst, $imm", (MOVNXi GPR64:$dst, imm0_65535:$imm, 0)>;
    453 def : InstAlias<"movz $dst, $imm", (MOVZWi GPR32:$dst, imm0_65535:$imm, 0)>;
    454 def : InstAlias<"movz $dst, $imm", (MOVZXi GPR64:$dst, imm0_65535:$imm, 0)>;
    455 
    456 // Next, we have various ELF relocations with the ":XYZ_g0:sym" syntax.
    457 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
    458 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
    459 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
    460 def : InstAlias<"movz $Rd, $sym", (MOVZXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
    461 
    462 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g3:$sym, 48)>;
    463 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g2:$sym, 32)>;
    464 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g1:$sym, 16)>;
    465 def : InstAlias<"movn $Rd, $sym", (MOVNXi GPR64:$Rd, movz_symbol_g0:$sym, 0)>;
    466 
    467 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g3:$sym, 48)>;
    468 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g2:$sym, 32)>;
    469 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g1:$sym, 16)>;
    470 def : InstAlias<"movk $Rd, $sym", (MOVKXi GPR64:$Rd, movk_symbol_g0:$sym, 0)>;
    471 
    472 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
    473 def : InstAlias<"movz $Rd, $sym", (MOVZWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
    474 
    475 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g1:$sym, 16)>;
    476 def : InstAlias<"movn $Rd, $sym", (MOVNWi GPR32:$Rd, movz_symbol_g0:$sym, 0)>;
    477 
    478 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g1:$sym, 16)>;
    479 def : InstAlias<"movk $Rd, $sym", (MOVKWi GPR32:$Rd, movk_symbol_g0:$sym, 0)>;
    480 
    481 // Final group of aliases covers true "mov $Rd, $imm" cases.
    482 multiclass movw_mov_alias<string basename,Instruction INST, RegisterClass GPR,
    483                           int width, int shift> {
    484   def _asmoperand : AsmOperandClass {
    485     let Name = basename # width # "_lsl" # shift # "MovAlias";
    486     let PredicateMethod = "is" # basename # "MovAlias<" # width # ", "
    487                                # shift # ">";
    488     let RenderMethod = "add" # basename # "MovAliasOperands<" # shift # ">";
    489   }
    490 
    491   def _movimm : Operand<i32> {
    492     let ParserMatchClass = !cast<AsmOperandClass>(NAME # "_asmoperand");
    493   }
    494 
    495   def : InstAlias<"mov $Rd, $imm",
    496                   (INST GPR:$Rd, !cast<Operand>(NAME # "_movimm"):$imm, shift)>;
    497 }
    498 
    499 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 0>;
    500 defm : movw_mov_alias<"MOVZ", MOVZWi, GPR32, 32, 16>;
    501 
    502 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 0>;
    503 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 16>;
    504 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 32>;
    505 defm : movw_mov_alias<"MOVZ", MOVZXi, GPR64, 64, 48>;
    506 
    507 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 0>;
    508 defm : movw_mov_alias<"MOVN", MOVNWi, GPR32, 32, 16>;
    509 
    510 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 0>;
    511 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 16>;
    512 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 32>;
    513 defm : movw_mov_alias<"MOVN", MOVNXi, GPR64, 64, 48>;
    514 
    515 let isReMaterializable = 1, isCodeGenOnly = 1, isMoveImm = 1,
    516     isAsCheapAsAMove = 1 in {
    517 // FIXME: The following pseudo instructions are only needed because remat
    518 // cannot handle multiple instructions.  When that changes, we can select
    519 // directly to the real instructions and get rid of these pseudos.
    520 
    521 def MOVi32imm
    522     : Pseudo<(outs GPR32:$dst), (ins i32imm:$src),
    523              [(set GPR32:$dst, imm:$src)]>,
    524       Sched<[WriteImm]>;
    525 def MOVi64imm
    526     : Pseudo<(outs GPR64:$dst), (ins i64imm:$src),
    527              [(set GPR64:$dst, imm:$src)]>,
    528       Sched<[WriteImm]>;
    529 } // isReMaterializable, isCodeGenOnly
    530 
    531 // If possible, we want to use MOVi32imm even for 64-bit moves. This gives the
    532 // eventual expansion code fewer bits to worry about getting right. Marshalling
    533 // the types is a little tricky though:
    534 def i64imm_32bit : ImmLeaf<i64, [{
    535   return (Imm & 0xffffffffULL) == static_cast<uint64_t>(Imm);
    536 }]>;
    537 
    538 def s64imm_32bit : ImmLeaf<i64, [{
    539   int64_t Imm64 = static_cast<int64_t>(Imm);
    540   return Imm64 >= std::numeric_limits<int32_t>::min() &&
    541          Imm64 <= std::numeric_limits<int32_t>::max();
    542 }]>;
    543 
    544 def trunc_imm : SDNodeXForm<imm, [{
    545   return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i32);
    546 }]>;
    547 
    548 def : Pat<(i64 i64imm_32bit:$src),
    549           (SUBREG_TO_REG (i64 0), (MOVi32imm (trunc_imm imm:$src)), sub_32)>;
    550 
    551 // Materialize FP constants via MOVi32imm/MOVi64imm (MachO large code model).
    552 def bitcast_fpimm_to_i32 : SDNodeXForm<fpimm, [{
    553 return CurDAG->getTargetConstant(
    554   N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i32);
    555 }]>;
    556 
    557 def bitcast_fpimm_to_i64 : SDNodeXForm<fpimm, [{
    558 return CurDAG->getTargetConstant(
    559   N->getValueAPF().bitcastToAPInt().getZExtValue(), SDLoc(N), MVT::i64);
    560 }]>;
    561 
    562 
    563 def : Pat<(f32 fpimm:$in),
    564   (COPY_TO_REGCLASS (MOVi32imm (bitcast_fpimm_to_i32 f32:$in)), FPR32)>;
    565 def : Pat<(f64 fpimm:$in),
    566   (COPY_TO_REGCLASS (MOVi64imm (bitcast_fpimm_to_i64 f64:$in)), FPR64)>;
    567 
    568 
    569 // Deal with the various forms of (ELF) large addressing with MOVZ/MOVK
    570 // sequences.
    571 def : Pat<(AArch64WrapperLarge tglobaladdr:$g3, tglobaladdr:$g2,
    572                              tglobaladdr:$g1, tglobaladdr:$g0),
    573           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tglobaladdr:$g3, 48),
    574                                   tglobaladdr:$g2, 32),
    575                           tglobaladdr:$g1, 16),
    576                   tglobaladdr:$g0, 0)>;
    577 
    578 def : Pat<(AArch64WrapperLarge tblockaddress:$g3, tblockaddress:$g2,
    579                              tblockaddress:$g1, tblockaddress:$g0),
    580           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tblockaddress:$g3, 48),
    581                                   tblockaddress:$g2, 32),
    582                           tblockaddress:$g1, 16),
    583                   tblockaddress:$g0, 0)>;
    584 
    585 def : Pat<(AArch64WrapperLarge tconstpool:$g3, tconstpool:$g2,
    586                              tconstpool:$g1, tconstpool:$g0),
    587           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tconstpool:$g3, 48),
    588                                   tconstpool:$g2, 32),
    589                           tconstpool:$g1, 16),
    590                   tconstpool:$g0, 0)>;
    591 
    592 def : Pat<(AArch64WrapperLarge tjumptable:$g3, tjumptable:$g2,
    593                              tjumptable:$g1, tjumptable:$g0),
    594           (MOVKXi (MOVKXi (MOVKXi (MOVZXi tjumptable:$g3, 48),
    595                                   tjumptable:$g2, 32),
    596                           tjumptable:$g1, 16),
    597                   tjumptable:$g0, 0)>;
    598 
    599 
    600 //===----------------------------------------------------------------------===//
    601 // Arithmetic instructions.
    602 //===----------------------------------------------------------------------===//
    603 
    604 // Add/subtract with carry.
    605 defm ADC : AddSubCarry<0, "adc", "adcs", AArch64adc, AArch64adc_flag>;
    606 defm SBC : AddSubCarry<1, "sbc", "sbcs", AArch64sbc, AArch64sbc_flag>;
    607 
    608 def : InstAlias<"ngc $dst, $src",  (SBCWr  GPR32:$dst, WZR, GPR32:$src)>;
    609 def : InstAlias<"ngc $dst, $src",  (SBCXr  GPR64:$dst, XZR, GPR64:$src)>;
    610 def : InstAlias<"ngcs $dst, $src", (SBCSWr GPR32:$dst, WZR, GPR32:$src)>;
    611 def : InstAlias<"ngcs $dst, $src", (SBCSXr GPR64:$dst, XZR, GPR64:$src)>;
    612 
    613 // Add/subtract
    614 defm ADD : AddSub<0, "add", "sub", add>;
    615 defm SUB : AddSub<1, "sub", "add">;
    616 
    617 def : InstAlias<"mov $dst, $src",
    618                 (ADDWri GPR32sponly:$dst, GPR32sp:$src, 0, 0)>;
    619 def : InstAlias<"mov $dst, $src",
    620                 (ADDWri GPR32sp:$dst, GPR32sponly:$src, 0, 0)>;
    621 def : InstAlias<"mov $dst, $src",
    622                 (ADDXri GPR64sponly:$dst, GPR64sp:$src, 0, 0)>;
    623 def : InstAlias<"mov $dst, $src",
    624                 (ADDXri GPR64sp:$dst, GPR64sponly:$src, 0, 0)>;
    625 
    626 defm ADDS : AddSubS<0, "adds", AArch64add_flag, "cmn", "subs", "cmp">;
    627 defm SUBS : AddSubS<1, "subs", AArch64sub_flag, "cmp", "adds", "cmn">;
    628 
    629 // Use SUBS instead of SUB to enable CSE between SUBS and SUB.
    630 def : Pat<(sub GPR32sp:$Rn, addsub_shifted_imm32:$imm),
    631           (SUBSWri GPR32sp:$Rn, addsub_shifted_imm32:$imm)>;
    632 def : Pat<(sub GPR64sp:$Rn, addsub_shifted_imm64:$imm),
    633           (SUBSXri GPR64sp:$Rn, addsub_shifted_imm64:$imm)>;
    634 def : Pat<(sub GPR32:$Rn, GPR32:$Rm),
    635           (SUBSWrr GPR32:$Rn, GPR32:$Rm)>;
    636 def : Pat<(sub GPR64:$Rn, GPR64:$Rm),
    637           (SUBSXrr GPR64:$Rn, GPR64:$Rm)>;
    638 def : Pat<(sub GPR32:$Rn, arith_shifted_reg32:$Rm),
    639           (SUBSWrs GPR32:$Rn, arith_shifted_reg32:$Rm)>;
    640 def : Pat<(sub GPR64:$Rn, arith_shifted_reg64:$Rm),
    641           (SUBSXrs GPR64:$Rn, arith_shifted_reg64:$Rm)>;
    642 let AddedComplexity = 1 in {
    643 def : Pat<(sub GPR32sp:$R2, arith_extended_reg32<i32>:$R3),
    644           (SUBSWrx GPR32sp:$R2, arith_extended_reg32<i32>:$R3)>;
    645 def : Pat<(sub GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3),
    646           (SUBSXrx GPR64sp:$R2, arith_extended_reg32to64<i64>:$R3)>;
    647 }
    648 
    649 // Because of the immediate format for add/sub-imm instructions, the
    650 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
    651 //  These patterns capture that transformation.
    652 let AddedComplexity = 1 in {
    653 def : Pat<(add GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
    654           (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
    655 def : Pat<(add GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
    656           (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
    657 def : Pat<(sub GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
    658           (ADDWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
    659 def : Pat<(sub GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
    660           (ADDXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
    661 }
    662 
    663 // Because of the immediate format for add/sub-imm instructions, the
    664 // expression (add x, -1) must be transformed to (SUB{W,X}ri x, 1).
    665 //  These patterns capture that transformation.
    666 let AddedComplexity = 1 in {
    667 def : Pat<(AArch64add_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
    668           (SUBSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
    669 def : Pat<(AArch64add_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
    670           (SUBSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
    671 def : Pat<(AArch64sub_flag GPR32:$Rn, neg_addsub_shifted_imm32:$imm),
    672           (ADDSWri GPR32:$Rn, neg_addsub_shifted_imm32:$imm)>;
    673 def : Pat<(AArch64sub_flag GPR64:$Rn, neg_addsub_shifted_imm64:$imm),
    674           (ADDSXri GPR64:$Rn, neg_addsub_shifted_imm64:$imm)>;
    675 }
    676 
    677 def : InstAlias<"neg $dst, $src", (SUBWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
    678 def : InstAlias<"neg $dst, $src", (SUBXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
    679 def : InstAlias<"neg $dst, $src$shift",
    680                 (SUBWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
    681 def : InstAlias<"neg $dst, $src$shift",
    682                 (SUBXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
    683 
    684 def : InstAlias<"negs $dst, $src", (SUBSWrs GPR32:$dst, WZR, GPR32:$src, 0), 3>;
    685 def : InstAlias<"negs $dst, $src", (SUBSXrs GPR64:$dst, XZR, GPR64:$src, 0), 3>;
    686 def : InstAlias<"negs $dst, $src$shift",
    687                 (SUBSWrs GPR32:$dst, WZR, GPR32:$src, arith_shift32:$shift), 2>;
    688 def : InstAlias<"negs $dst, $src$shift",
    689                 (SUBSXrs GPR64:$dst, XZR, GPR64:$src, arith_shift64:$shift), 2>;
    690 
    691 
    692 // Unsigned/Signed divide
    693 defm UDIV : Div<0, "udiv", udiv>;
    694 defm SDIV : Div<1, "sdiv", sdiv>;
    695 
    696 def : Pat<(int_aarch64_udiv GPR32:$Rn, GPR32:$Rm), (UDIVWr $Rn, $Rm)>;
    697 def : Pat<(int_aarch64_udiv GPR64:$Rn, GPR64:$Rm), (UDIVXr $Rn, $Rm)>;
    698 def : Pat<(int_aarch64_sdiv GPR32:$Rn, GPR32:$Rm), (SDIVWr $Rn, $Rm)>;
    699 def : Pat<(int_aarch64_sdiv GPR64:$Rn, GPR64:$Rm), (SDIVXr $Rn, $Rm)>;
    700 
    701 // Variable shift
    702 defm ASRV : Shift<0b10, "asr", sra>;
    703 defm LSLV : Shift<0b00, "lsl", shl>;
    704 defm LSRV : Shift<0b01, "lsr", srl>;
    705 defm RORV : Shift<0b11, "ror", rotr>;
    706 
    707 def : ShiftAlias<"asrv", ASRVWr, GPR32>;
    708 def : ShiftAlias<"asrv", ASRVXr, GPR64>;
    709 def : ShiftAlias<"lslv", LSLVWr, GPR32>;
    710 def : ShiftAlias<"lslv", LSLVXr, GPR64>;
    711 def : ShiftAlias<"lsrv", LSRVWr, GPR32>;
    712 def : ShiftAlias<"lsrv", LSRVXr, GPR64>;
    713 def : ShiftAlias<"rorv", RORVWr, GPR32>;
    714 def : ShiftAlias<"rorv", RORVXr, GPR64>;
    715 
    716 // Multiply-add
    717 let AddedComplexity = 7 in {
    718 defm MADD : MulAccum<0, "madd", add>;
    719 defm MSUB : MulAccum<1, "msub", sub>;
    720 
    721 def : Pat<(i32 (mul GPR32:$Rn, GPR32:$Rm)),
    722           (MADDWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
    723 def : Pat<(i64 (mul GPR64:$Rn, GPR64:$Rm)),
    724           (MADDXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
    725 
    726 def : Pat<(i32 (ineg (mul GPR32:$Rn, GPR32:$Rm))),
    727           (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
    728 def : Pat<(i64 (ineg (mul GPR64:$Rn, GPR64:$Rm))),
    729           (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
    730 def : Pat<(i32 (mul (ineg GPR32:$Rn), GPR32:$Rm)),
    731           (MSUBWrrr GPR32:$Rn, GPR32:$Rm, WZR)>;
    732 def : Pat<(i64 (mul (ineg GPR64:$Rn), GPR64:$Rm)),
    733           (MSUBXrrr GPR64:$Rn, GPR64:$Rm, XZR)>;
    734 } // AddedComplexity = 7
    735 
    736 let AddedComplexity = 5 in {
    737 def SMADDLrrr : WideMulAccum<0, 0b001, "smaddl", add, sext>;
    738 def SMSUBLrrr : WideMulAccum<1, 0b001, "smsubl", sub, sext>;
    739 def UMADDLrrr : WideMulAccum<0, 0b101, "umaddl", add, zext>;
    740 def UMSUBLrrr : WideMulAccum<1, 0b101, "umsubl", sub, zext>;
    741 
    742 def : Pat<(i64 (mul (sext GPR32:$Rn), (sext GPR32:$Rm))),
    743           (SMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
    744 def : Pat<(i64 (mul (zext GPR32:$Rn), (zext GPR32:$Rm))),
    745           (UMADDLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
    746 
    747 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (sext GPR32:$Rm)))),
    748           (SMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
    749 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (zext GPR32:$Rm)))),
    750           (UMSUBLrrr GPR32:$Rn, GPR32:$Rm, XZR)>;
    751 
    752 def : Pat<(i64 (mul (sext GPR32:$Rn), (s64imm_32bit:$C))),
    753           (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    754 def : Pat<(i64 (mul (zext GPR32:$Rn), (i64imm_32bit:$C))),
    755           (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    756 def : Pat<(i64 (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C))),
    757           (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
    758                      (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    759 
    760 def : Pat<(i64 (ineg (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
    761           (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    762 def : Pat<(i64 (ineg (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
    763           (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    764 def : Pat<(i64 (ineg (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)))),
    765           (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
    766                      (MOVi32imm (trunc_imm imm:$C)), XZR)>;
    767 
    768 def : Pat<(i64 (add (mul (sext GPR32:$Rn), (s64imm_32bit:$C)), GPR64:$Ra)),
    769           (SMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    770 def : Pat<(i64 (add (mul (zext GPR32:$Rn), (i64imm_32bit:$C)), GPR64:$Ra)),
    771           (UMADDLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    772 def : Pat<(i64 (add (mul (sext_inreg GPR64:$Rn, i32), (s64imm_32bit:$C)),
    773                     GPR64:$Ra)),
    774           (SMADDLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
    775                      (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    776 
    777 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext GPR32:$Rn), (s64imm_32bit:$C)))),
    778           (SMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    779 def : Pat<(i64 (sub GPR64:$Ra, (mul (zext GPR32:$Rn), (i64imm_32bit:$C)))),
    780           (UMSUBLrrr GPR32:$Rn, (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    781 def : Pat<(i64 (sub GPR64:$Ra, (mul (sext_inreg GPR64:$Rn, i32),
    782                                     (s64imm_32bit:$C)))),
    783           (SMSUBLrrr (i32 (EXTRACT_SUBREG GPR64:$Rn, sub_32)),
    784                      (MOVi32imm (trunc_imm imm:$C)), GPR64:$Ra)>;
    785 } // AddedComplexity = 5
    786 
    787 def : MulAccumWAlias<"mul", MADDWrrr>;
    788 def : MulAccumXAlias<"mul", MADDXrrr>;
    789 def : MulAccumWAlias<"mneg", MSUBWrrr>;
    790 def : MulAccumXAlias<"mneg", MSUBXrrr>;
    791 def : WideMulAccumAlias<"smull", SMADDLrrr>;
    792 def : WideMulAccumAlias<"smnegl", SMSUBLrrr>;
    793 def : WideMulAccumAlias<"umull", UMADDLrrr>;
    794 def : WideMulAccumAlias<"umnegl", UMSUBLrrr>;
    795 
    796 // Multiply-high
    797 def SMULHrr : MulHi<0b010, "smulh", mulhs>;
    798 def UMULHrr : MulHi<0b110, "umulh", mulhu>;
    799 
    800 // CRC32
    801 def CRC32Brr : BaseCRC32<0, 0b00, 0, GPR32, int_aarch64_crc32b, "crc32b">;
    802 def CRC32Hrr : BaseCRC32<0, 0b01, 0, GPR32, int_aarch64_crc32h, "crc32h">;
    803 def CRC32Wrr : BaseCRC32<0, 0b10, 0, GPR32, int_aarch64_crc32w, "crc32w">;
    804 def CRC32Xrr : BaseCRC32<1, 0b11, 0, GPR64, int_aarch64_crc32x, "crc32x">;
    805 
    806 def CRC32CBrr : BaseCRC32<0, 0b00, 1, GPR32, int_aarch64_crc32cb, "crc32cb">;
    807 def CRC32CHrr : BaseCRC32<0, 0b01, 1, GPR32, int_aarch64_crc32ch, "crc32ch">;
    808 def CRC32CWrr : BaseCRC32<0, 0b10, 1, GPR32, int_aarch64_crc32cw, "crc32cw">;
    809 def CRC32CXrr : BaseCRC32<1, 0b11, 1, GPR64, int_aarch64_crc32cx, "crc32cx">;
    810 
    811 // v8.1 atomic CAS
    812 defm CAS   : CompareAndSwap<0, 0, "">;
    813 defm CASA  : CompareAndSwap<1, 0, "a">;
    814 defm CASL  : CompareAndSwap<0, 1, "l">;
    815 defm CASAL : CompareAndSwap<1, 1, "al">;
    816 
    817 // v8.1 atomic CASP
    818 defm CASP   : CompareAndSwapPair<0, 0, "">;
    819 defm CASPA  : CompareAndSwapPair<1, 0, "a">;
    820 defm CASPL  : CompareAndSwapPair<0, 1, "l">;
    821 defm CASPAL : CompareAndSwapPair<1, 1, "al">;
    822 
    823 // v8.1 atomic SWP
    824 defm SWP   : Swap<0, 0, "">;
    825 defm SWPA  : Swap<1, 0, "a">;
    826 defm SWPL  : Swap<0, 1, "l">;
    827 defm SWPAL : Swap<1, 1, "al">;
    828 
    829 // v8.1 atomic LD<OP>(register). Performs load and then ST<OP>(register)
    830 defm LDADD   : LDOPregister<0b000, "add", 0, 0, "">;
    831 defm LDADDA  : LDOPregister<0b000, "add", 1, 0, "a">;
    832 defm LDADDL  : LDOPregister<0b000, "add", 0, 1, "l">;
    833 defm LDADDAL : LDOPregister<0b000, "add", 1, 1, "al">;
    834 
    835 defm LDCLR   : LDOPregister<0b001, "clr", 0, 0, "">;
    836 defm LDCLRA  : LDOPregister<0b001, "clr", 1, 0, "a">;
    837 defm LDCLRL  : LDOPregister<0b001, "clr", 0, 1, "l">;
    838 defm LDCLRAL : LDOPregister<0b001, "clr", 1, 1, "al">;
    839 
    840 defm LDEOR   : LDOPregister<0b010, "eor", 0, 0, "">;
    841 defm LDEORA  : LDOPregister<0b010, "eor", 1, 0, "a">;
    842 defm LDEORL  : LDOPregister<0b010, "eor", 0, 1, "l">;
    843 defm LDEORAL : LDOPregister<0b010, "eor", 1, 1, "al">;
    844 
    845 defm LDSET   : LDOPregister<0b011, "set", 0, 0, "">;
    846 defm LDSETA  : LDOPregister<0b011, "set", 1, 0, "a">;
    847 defm LDSETL  : LDOPregister<0b011, "set", 0, 1, "l">;
    848 defm LDSETAL : LDOPregister<0b011, "set", 1, 1, "al">;
    849 
    850 defm LDSMAX   : LDOPregister<0b100, "smax", 0, 0, "">;
    851 defm LDSMAXA  : LDOPregister<0b100, "smax", 1, 0, "a">;
    852 defm LDSMAXL  : LDOPregister<0b100, "smax", 0, 1, "l">;
    853 defm LDSMAXAL : LDOPregister<0b100, "smax", 1, 1, "al">;
    854 
    855 defm LDSMIN   : LDOPregister<0b101, "smin", 0, 0, "">;
    856 defm LDSMINA  : LDOPregister<0b101, "smin", 1, 0, "a">;
    857 defm LDSMINL  : LDOPregister<0b101, "smin", 0, 1, "l">;
    858 defm LDSMINAL : LDOPregister<0b101, "smin", 1, 1, "al">;
    859 
    860 defm LDUMAX   : LDOPregister<0b110, "umax", 0, 0, "">;
    861 defm LDUMAXA  : LDOPregister<0b110, "umax", 1, 0, "a">;
    862 defm LDUMAXL  : LDOPregister<0b110, "umax", 0, 1, "l">;
    863 defm LDUMAXAL : LDOPregister<0b110, "umax", 1, 1, "al">;
    864 
    865 defm LDUMIN   : LDOPregister<0b111, "umin", 0, 0, "">;
    866 defm LDUMINA  : LDOPregister<0b111, "umin", 1, 0, "a">;
    867 defm LDUMINL  : LDOPregister<0b111, "umin", 0, 1, "l">;
    868 defm LDUMINAL : LDOPregister<0b111, "umin", 1, 1, "al">;
    869 
    870 // v8.1 atomic ST<OP>(register) as aliases to "LD<OP>(register) when Rt=xZR"
    871 defm : STOPregister<"stadd","LDADD">; // STADDx
    872 defm : STOPregister<"stclr","LDCLR">; // STCLRx
    873 defm : STOPregister<"steor","LDEOR">; // STEORx
    874 defm : STOPregister<"stset","LDSET">; // STSETx
    875 defm : STOPregister<"stsmax","LDSMAX">;// STSMAXx
    876 defm : STOPregister<"stsmin","LDSMIN">;// STSMINx
    877 defm : STOPregister<"stumax","LDUMAX">;// STUMAXx
    878 defm : STOPregister<"stumin","LDUMIN">;// STUMINx
    879 
    880 //===----------------------------------------------------------------------===//
    881 // Logical instructions.
    882 //===----------------------------------------------------------------------===//
    883 
    884 // (immediate)
    885 defm ANDS : LogicalImmS<0b11, "ands", AArch64and_flag, "bics">;
    886 defm AND  : LogicalImm<0b00, "and", and, "bic">;
    887 defm EOR  : LogicalImm<0b10, "eor", xor, "eon">;
    888 defm ORR  : LogicalImm<0b01, "orr", or, "orn">;
    889 
    890 // FIXME: these aliases *are* canonical sometimes (when movz can't be
    891 // used). Actually, it seems to be working right now, but putting logical_immXX
    892 // here is a bit dodgy on the AsmParser side too.
    893 def : InstAlias<"mov $dst, $imm", (ORRWri GPR32sp:$dst, WZR,
    894                                           logical_imm32:$imm), 0>;
    895 def : InstAlias<"mov $dst, $imm", (ORRXri GPR64sp:$dst, XZR,
    896                                           logical_imm64:$imm), 0>;
    897 
    898 
    899 // (register)
    900 defm ANDS : LogicalRegS<0b11, 0, "ands", AArch64and_flag>;
    901 defm BICS : LogicalRegS<0b11, 1, "bics",
    902                         BinOpFrag<(AArch64and_flag node:$LHS, (not node:$RHS))>>;
    903 defm AND  : LogicalReg<0b00, 0, "and", and>;
    904 defm BIC  : LogicalReg<0b00, 1, "bic",
    905                        BinOpFrag<(and node:$LHS, (not node:$RHS))>>;
    906 defm EON  : LogicalReg<0b10, 1, "eon",
    907                        BinOpFrag<(not (xor node:$LHS, node:$RHS))>>;
    908 defm EOR  : LogicalReg<0b10, 0, "eor", xor>;
    909 defm ORN  : LogicalReg<0b01, 1, "orn",
    910                        BinOpFrag<(or node:$LHS, (not node:$RHS))>>;
    911 defm ORR  : LogicalReg<0b01, 0, "orr", or>;
    912 
    913 def : InstAlias<"mov $dst, $src", (ORRWrs GPR32:$dst, WZR, GPR32:$src, 0), 2>;
    914 def : InstAlias<"mov $dst, $src", (ORRXrs GPR64:$dst, XZR, GPR64:$src, 0), 2>;
    915 
    916 def : InstAlias<"mvn $Wd, $Wm", (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, 0), 3>;
    917 def : InstAlias<"mvn $Xd, $Xm", (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, 0), 3>;
    918 
    919 def : InstAlias<"mvn $Wd, $Wm$sh",
    920                 (ORNWrs GPR32:$Wd, WZR, GPR32:$Wm, logical_shift32:$sh), 2>;
    921 def : InstAlias<"mvn $Xd, $Xm$sh",
    922                 (ORNXrs GPR64:$Xd, XZR, GPR64:$Xm, logical_shift64:$sh), 2>;
    923 
    924 def : InstAlias<"tst $src1, $src2",
    925                 (ANDSWri WZR, GPR32:$src1, logical_imm32:$src2), 2>;
    926 def : InstAlias<"tst $src1, $src2",
    927                 (ANDSXri XZR, GPR64:$src1, logical_imm64:$src2), 2>;
    928 
    929 def : InstAlias<"tst $src1, $src2",
    930                         (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, 0), 3>;
    931 def : InstAlias<"tst $src1, $src2",
    932                         (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, 0), 3>;
    933 
    934 def : InstAlias<"tst $src1, $src2$sh",
    935                (ANDSWrs WZR, GPR32:$src1, GPR32:$src2, logical_shift32:$sh), 2>;
    936 def : InstAlias<"tst $src1, $src2$sh",
    937                (ANDSXrs XZR, GPR64:$src1, GPR64:$src2, logical_shift64:$sh), 2>;
    938 
    939 
    940 def : Pat<(not GPR32:$Wm), (ORNWrr WZR, GPR32:$Wm)>;
    941 def : Pat<(not GPR64:$Xm), (ORNXrr XZR, GPR64:$Xm)>;
    942 
    943 
    944 //===----------------------------------------------------------------------===//
    945 // One operand data processing instructions.
    946 //===----------------------------------------------------------------------===//
    947 
    948 defm CLS    : OneOperandData<0b101, "cls">;
    949 defm CLZ    : OneOperandData<0b100, "clz", ctlz>;
    950 defm RBIT   : OneOperandData<0b000, "rbit">;
    951 
    952 def : Pat<(int_aarch64_rbit GPR32:$Rn), (RBITWr $Rn)>;
    953 def : Pat<(int_aarch64_rbit GPR64:$Rn), (RBITXr $Rn)>;
    954 
    955 def  REV16Wr : OneWRegData<0b001, "rev16",
    956                                   UnOpFrag<(rotr (bswap node:$LHS), (i64 16))>>;
    957 def  REV16Xr : OneXRegData<0b001, "rev16", null_frag>;
    958 
    959 def : Pat<(cttz GPR32:$Rn),
    960           (CLZWr (RBITWr GPR32:$Rn))>;
    961 def : Pat<(cttz GPR64:$Rn),
    962           (CLZXr (RBITXr GPR64:$Rn))>;
    963 def : Pat<(ctlz (or (shl (xor (sra GPR32:$Rn, (i64 31)), GPR32:$Rn), (i64 1)),
    964                 (i32 1))),
    965           (CLSWr GPR32:$Rn)>;
    966 def : Pat<(ctlz (or (shl (xor (sra GPR64:$Rn, (i64 63)), GPR64:$Rn), (i64 1)),
    967                 (i64 1))),
    968           (CLSXr GPR64:$Rn)>;
    969 
    970 // Unlike the other one operand instructions, the instructions with the "rev"
    971 // mnemonic do *not* just different in the size bit, but actually use different
    972 // opcode bits for the different sizes.
    973 def REVWr   : OneWRegData<0b010, "rev", bswap>;
    974 def REVXr   : OneXRegData<0b011, "rev", bswap>;
    975 def REV32Xr : OneXRegData<0b010, "rev32",
    976                                  UnOpFrag<(rotr (bswap node:$LHS), (i64 32))>>;
    977 
    978 def : InstAlias<"rev64 $Rd, $Rn", (REVXr GPR64:$Rd, GPR64:$Rn), 0>;
    979 
    980 // The bswap commutes with the rotr so we want a pattern for both possible
    981 // orders.
    982 def : Pat<(bswap (rotr GPR32:$Rn, (i64 16))), (REV16Wr GPR32:$Rn)>;
    983 def : Pat<(bswap (rotr GPR64:$Rn, (i64 32))), (REV32Xr GPR64:$Rn)>;
    984 
    985 //===----------------------------------------------------------------------===//
    986 // Bitfield immediate extraction instruction.
    987 //===----------------------------------------------------------------------===//
    988 let hasSideEffects = 0 in
    989 defm EXTR : ExtractImm<"extr">;
    990 def : InstAlias<"ror $dst, $src, $shift",
    991             (EXTRWrri GPR32:$dst, GPR32:$src, GPR32:$src, imm0_31:$shift)>;
    992 def : InstAlias<"ror $dst, $src, $shift",
    993             (EXTRXrri GPR64:$dst, GPR64:$src, GPR64:$src, imm0_63:$shift)>;
    994 
    995 def : Pat<(rotr GPR32:$Rn, (i64 imm0_31:$imm)),
    996           (EXTRWrri GPR32:$Rn, GPR32:$Rn, imm0_31:$imm)>;
    997 def : Pat<(rotr GPR64:$Rn, (i64 imm0_63:$imm)),
    998           (EXTRXrri GPR64:$Rn, GPR64:$Rn, imm0_63:$imm)>;
    999 
   1000 //===----------------------------------------------------------------------===//
   1001 // Other bitfield immediate instructions.
   1002 //===----------------------------------------------------------------------===//
   1003 let hasSideEffects = 0 in {
   1004 defm BFM  : BitfieldImmWith2RegArgs<0b01, "bfm">;
   1005 defm SBFM : BitfieldImm<0b00, "sbfm">;
   1006 defm UBFM : BitfieldImm<0b10, "ubfm">;
   1007 }
   1008 
   1009 def i32shift_a : Operand<i64>, SDNodeXForm<imm, [{
   1010   uint64_t enc = (32 - N->getZExtValue()) & 0x1f;
   1011   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1012 }]>;
   1013 
   1014 def i32shift_b : Operand<i64>, SDNodeXForm<imm, [{
   1015   uint64_t enc = 31 - N->getZExtValue();
   1016   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1017 }]>;
   1018 
   1019 // min(7, 31 - shift_amt)
   1020 def i32shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
   1021   uint64_t enc = 31 - N->getZExtValue();
   1022   enc = enc > 7 ? 7 : enc;
   1023   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1024 }]>;
   1025 
   1026 // min(15, 31 - shift_amt)
   1027 def i32shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
   1028   uint64_t enc = 31 - N->getZExtValue();
   1029   enc = enc > 15 ? 15 : enc;
   1030   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1031 }]>;
   1032 
   1033 def i64shift_a : Operand<i64>, SDNodeXForm<imm, [{
   1034   uint64_t enc = (64 - N->getZExtValue()) & 0x3f;
   1035   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1036 }]>;
   1037 
   1038 def i64shift_b : Operand<i64>, SDNodeXForm<imm, [{
   1039   uint64_t enc = 63 - N->getZExtValue();
   1040   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1041 }]>;
   1042 
   1043 // min(7, 63 - shift_amt)
   1044 def i64shift_sext_i8 : Operand<i64>, SDNodeXForm<imm, [{
   1045   uint64_t enc = 63 - N->getZExtValue();
   1046   enc = enc > 7 ? 7 : enc;
   1047   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1048 }]>;
   1049 
   1050 // min(15, 63 - shift_amt)
   1051 def i64shift_sext_i16 : Operand<i64>, SDNodeXForm<imm, [{
   1052   uint64_t enc = 63 - N->getZExtValue();
   1053   enc = enc > 15 ? 15 : enc;
   1054   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1055 }]>;
   1056 
   1057 // min(31, 63 - shift_amt)
   1058 def i64shift_sext_i32 : Operand<i64>, SDNodeXForm<imm, [{
   1059   uint64_t enc = 63 - N->getZExtValue();
   1060   enc = enc > 31 ? 31 : enc;
   1061   return CurDAG->getTargetConstant(enc, SDLoc(N), MVT::i64);
   1062 }]>;
   1063 
   1064 def : Pat<(shl GPR32:$Rn, (i64 imm0_31:$imm)),
   1065           (UBFMWri GPR32:$Rn, (i64 (i32shift_a imm0_31:$imm)),
   1066                               (i64 (i32shift_b imm0_31:$imm)))>;
   1067 def : Pat<(shl GPR64:$Rn, (i64 imm0_63:$imm)),
   1068           (UBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
   1069                               (i64 (i64shift_b imm0_63:$imm)))>;
   1070 
   1071 let AddedComplexity = 10 in {
   1072 def : Pat<(sra GPR32:$Rn, (i64 imm0_31:$imm)),
   1073           (SBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
   1074 def : Pat<(sra GPR64:$Rn, (i64 imm0_63:$imm)),
   1075           (SBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
   1076 }
   1077 
   1078 def : InstAlias<"asr $dst, $src, $shift",
   1079                 (SBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
   1080 def : InstAlias<"asr $dst, $src, $shift",
   1081                 (SBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
   1082 def : InstAlias<"sxtb $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
   1083 def : InstAlias<"sxtb $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
   1084 def : InstAlias<"sxth $dst, $src", (SBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
   1085 def : InstAlias<"sxth $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
   1086 def : InstAlias<"sxtw $dst, $src", (SBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
   1087 
   1088 def : Pat<(srl GPR32:$Rn, (i64 imm0_31:$imm)),
   1089           (UBFMWri GPR32:$Rn, imm0_31:$imm, 31)>;
   1090 def : Pat<(srl GPR64:$Rn, (i64 imm0_63:$imm)),
   1091           (UBFMXri GPR64:$Rn, imm0_63:$imm, 63)>;
   1092 
   1093 def : InstAlias<"lsr $dst, $src, $shift",
   1094                 (UBFMWri GPR32:$dst, GPR32:$src, imm0_31:$shift, 31)>;
   1095 def : InstAlias<"lsr $dst, $src, $shift",
   1096                 (UBFMXri GPR64:$dst, GPR64:$src, imm0_63:$shift, 63)>;
   1097 def : InstAlias<"uxtb $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 7)>;
   1098 def : InstAlias<"uxtb $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 7)>;
   1099 def : InstAlias<"uxth $dst, $src", (UBFMWri GPR32:$dst, GPR32:$src, 0, 15)>;
   1100 def : InstAlias<"uxth $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 15)>;
   1101 def : InstAlias<"uxtw $dst, $src", (UBFMXri GPR64:$dst, GPR64:$src, 0, 31)>;
   1102 
   1103 //===----------------------------------------------------------------------===//
   1104 // Conditional comparison instructions.
   1105 //===----------------------------------------------------------------------===//
   1106 defm CCMN : CondComparison<0, "ccmn", AArch64ccmn>;
   1107 defm CCMP : CondComparison<1, "ccmp", AArch64ccmp>;
   1108 
   1109 //===----------------------------------------------------------------------===//
   1110 // Conditional select instructions.
   1111 //===----------------------------------------------------------------------===//
   1112 defm CSEL  : CondSelect<0, 0b00, "csel">;
   1113 
   1114 def inc : PatFrag<(ops node:$in), (add node:$in, 1)>;
   1115 defm CSINC : CondSelectOp<0, 0b01, "csinc", inc>;
   1116 defm CSINV : CondSelectOp<1, 0b00, "csinv", not>;
   1117 defm CSNEG : CondSelectOp<1, 0b01, "csneg", ineg>;
   1118 
   1119 def : Pat<(AArch64csinv GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
   1120           (CSINVWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
   1121 def : Pat<(AArch64csinv GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
   1122           (CSINVXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
   1123 def : Pat<(AArch64csneg GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
   1124           (CSNEGWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
   1125 def : Pat<(AArch64csneg GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
   1126           (CSNEGXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
   1127 def : Pat<(AArch64csinc GPR32:$tval, GPR32:$fval, (i32 imm:$cc), NZCV),
   1128           (CSINCWr GPR32:$tval, GPR32:$fval, (i32 imm:$cc))>;
   1129 def : Pat<(AArch64csinc GPR64:$tval, GPR64:$fval, (i32 imm:$cc), NZCV),
   1130           (CSINCXr GPR64:$tval, GPR64:$fval, (i32 imm:$cc))>;
   1131 
   1132 def : Pat<(AArch64csel (i32 0), (i32 1), (i32 imm:$cc), NZCV),
   1133           (CSINCWr WZR, WZR, (i32 imm:$cc))>;
   1134 def : Pat<(AArch64csel (i64 0), (i64 1), (i32 imm:$cc), NZCV),
   1135           (CSINCXr XZR, XZR, (i32 imm:$cc))>;
   1136 def : Pat<(AArch64csel (i32 0), (i32 -1), (i32 imm:$cc), NZCV),
   1137           (CSINVWr WZR, WZR, (i32 imm:$cc))>;
   1138 def : Pat<(AArch64csel (i64 0), (i64 -1), (i32 imm:$cc), NZCV),
   1139           (CSINVXr XZR, XZR, (i32 imm:$cc))>;
   1140 def : Pat<(AArch64csel GPR32:$tval, (i32 -1), (i32 imm:$cc), NZCV),
   1141           (CSINVWr GPR32:$tval, WZR, (i32 imm:$cc))>;
   1142 def : Pat<(AArch64csel GPR64:$tval, (i64 -1), (i32 imm:$cc), NZCV),
   1143           (CSINVXr GPR64:$tval, XZR, (i32 imm:$cc))>;
   1144 def : Pat<(AArch64csel (i32 -1), GPR32:$fval, (i32 imm:$cc), NZCV),
   1145           (CSINVWr GPR32:$fval, WZR, (i32 (inv_cond_XFORM imm:$cc)))>;
   1146 def : Pat<(AArch64csel (i64 -1), GPR64:$fval, (i32 imm:$cc), NZCV),
   1147           (CSINVXr GPR64:$fval, XZR, (i32 (inv_cond_XFORM imm:$cc)))>;
   1148 
   1149 // The inverse of the condition code from the alias instruction is what is used
   1150 // in the aliased instruction. The parser all ready inverts the condition code
   1151 // for these aliases.
   1152 def : InstAlias<"cset $dst, $cc",
   1153                 (CSINCWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
   1154 def : InstAlias<"cset $dst, $cc",
   1155                 (CSINCXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
   1156 
   1157 def : InstAlias<"csetm $dst, $cc",
   1158                 (CSINVWr GPR32:$dst, WZR, WZR, inv_ccode:$cc)>;
   1159 def : InstAlias<"csetm $dst, $cc",
   1160                 (CSINVXr GPR64:$dst, XZR, XZR, inv_ccode:$cc)>;
   1161 
   1162 def : InstAlias<"cinc $dst, $src, $cc",
   1163                 (CSINCWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
   1164 def : InstAlias<"cinc $dst, $src, $cc",
   1165                 (CSINCXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
   1166 
   1167 def : InstAlias<"cinv $dst, $src, $cc",
   1168                 (CSINVWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
   1169 def : InstAlias<"cinv $dst, $src, $cc",
   1170                 (CSINVXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
   1171 
   1172 def : InstAlias<"cneg $dst, $src, $cc",
   1173                 (CSNEGWr GPR32:$dst, GPR32:$src, GPR32:$src, inv_ccode:$cc)>;
   1174 def : InstAlias<"cneg $dst, $src, $cc",
   1175                 (CSNEGXr GPR64:$dst, GPR64:$src, GPR64:$src, inv_ccode:$cc)>;
   1176 
   1177 //===----------------------------------------------------------------------===//
   1178 // PC-relative instructions.
   1179 //===----------------------------------------------------------------------===//
   1180 let isReMaterializable = 1 in {
   1181 let hasSideEffects = 0, mayStore = 0, mayLoad = 0 in {
   1182 def ADR  : ADRI<0, "adr", adrlabel, []>;
   1183 } // hasSideEffects = 0
   1184 
   1185 def ADRP : ADRI<1, "adrp", adrplabel,
   1186                 [(set GPR64:$Xd, (AArch64adrp tglobaladdr:$label))]>;
   1187 } // isReMaterializable = 1
   1188 
   1189 // page address of a constant pool entry, block address
   1190 def : Pat<(AArch64adrp tconstpool:$cp), (ADRP tconstpool:$cp)>;
   1191 def : Pat<(AArch64adrp tblockaddress:$cp), (ADRP tblockaddress:$cp)>;
   1192 
   1193 //===----------------------------------------------------------------------===//
   1194 // Unconditional branch (register) instructions.
   1195 //===----------------------------------------------------------------------===//
   1196 
   1197 let isReturn = 1, isTerminator = 1, isBarrier = 1 in {
   1198 def RET  : BranchReg<0b0010, "ret", []>;
   1199 def DRPS : SpecialReturn<0b0101, "drps">;
   1200 def ERET : SpecialReturn<0b0100, "eret">;
   1201 } // isReturn = 1, isTerminator = 1, isBarrier = 1
   1202 
   1203 // Default to the LR register.
   1204 def : InstAlias<"ret", (RET LR)>;
   1205 
   1206 let isCall = 1, Defs = [LR], Uses = [SP] in {
   1207 def BLR : BranchReg<0b0001, "blr", [(AArch64call GPR64:$Rn)]>;
   1208 } // isCall
   1209 
   1210 let isBranch = 1, isTerminator = 1, isBarrier = 1, isIndirectBranch = 1 in {
   1211 def BR  : BranchReg<0b0000, "br", [(brind GPR64:$Rn)]>;
   1212 } // isBranch, isTerminator, isBarrier, isIndirectBranch
   1213 
   1214 // Create a separate pseudo-instruction for codegen to use so that we don't
   1215 // flag lr as used in every function. It'll be restored before the RET by the
   1216 // epilogue if it's legitimately used.
   1217 def RET_ReallyLR : Pseudo<(outs), (ins), [(AArch64retflag)]>,
   1218                    Sched<[WriteBrReg]> {
   1219   let isTerminator = 1;
   1220   let isBarrier = 1;
   1221   let isReturn = 1;
   1222 }
   1223 
   1224 // This is a directive-like pseudo-instruction. The purpose is to insert an
   1225 // R_AARCH64_TLSDESC_CALL relocation at the offset of the following instruction
   1226 // (which in the usual case is a BLR).
   1227 let hasSideEffects = 1 in
   1228 def TLSDESCCALL : Pseudo<(outs), (ins i64imm:$sym), []>, Sched<[]> {
   1229   let AsmString = ".tlsdesccall $sym";
   1230 }
   1231 
   1232 // FIXME: maybe the scratch register used shouldn't be fixed to X1?
   1233 // FIXME: can "hasSideEffects be dropped?
   1234 let isCall = 1, Defs = [LR, X0, X1], hasSideEffects = 1,
   1235     isCodeGenOnly = 1 in
   1236 def TLSDESC_CALLSEQ
   1237     : Pseudo<(outs), (ins i64imm:$sym),
   1238              [(AArch64tlsdesc_callseq tglobaltlsaddr:$sym)]>,
   1239       Sched<[WriteI, WriteLD, WriteI, WriteBrReg]>;
   1240 def : Pat<(AArch64tlsdesc_callseq texternalsym:$sym),
   1241           (TLSDESC_CALLSEQ texternalsym:$sym)>;
   1242 
   1243 //===----------------------------------------------------------------------===//
   1244 // Conditional branch (immediate) instruction.
   1245 //===----------------------------------------------------------------------===//
   1246 def Bcc : BranchCond;
   1247 
   1248 //===----------------------------------------------------------------------===//
   1249 // Compare-and-branch instructions.
   1250 //===----------------------------------------------------------------------===//
   1251 defm CBZ  : CmpBranch<0, "cbz", AArch64cbz>;
   1252 defm CBNZ : CmpBranch<1, "cbnz", AArch64cbnz>;
   1253 
   1254 //===----------------------------------------------------------------------===//
   1255 // Test-bit-and-branch instructions.
   1256 //===----------------------------------------------------------------------===//
   1257 defm TBZ  : TestBranch<0, "tbz", AArch64tbz>;
   1258 defm TBNZ : TestBranch<1, "tbnz", AArch64tbnz>;
   1259 
   1260 //===----------------------------------------------------------------------===//
   1261 // Unconditional branch (immediate) instructions.
   1262 //===----------------------------------------------------------------------===//
   1263 let isBranch = 1, isTerminator = 1, isBarrier = 1 in {
   1264 def B  : BranchImm<0, "b", [(br bb:$addr)]>;
   1265 } // isBranch, isTerminator, isBarrier
   1266 
   1267 let isCall = 1, Defs = [LR], Uses = [SP] in {
   1268 def BL : CallImm<1, "bl", [(AArch64call tglobaladdr:$addr)]>;
   1269 } // isCall
   1270 def : Pat<(AArch64call texternalsym:$func), (BL texternalsym:$func)>;
   1271 
   1272 //===----------------------------------------------------------------------===//
   1273 // Exception generation instructions.
   1274 //===----------------------------------------------------------------------===//
   1275 def BRK   : ExceptionGeneration<0b001, 0b00, "brk">;
   1276 def DCPS1 : ExceptionGeneration<0b101, 0b01, "dcps1">;
   1277 def DCPS2 : ExceptionGeneration<0b101, 0b10, "dcps2">;
   1278 def DCPS3 : ExceptionGeneration<0b101, 0b11, "dcps3">;
   1279 def HLT   : ExceptionGeneration<0b010, 0b00, "hlt">;
   1280 def HVC   : ExceptionGeneration<0b000, 0b10, "hvc">;
   1281 def SMC   : ExceptionGeneration<0b000, 0b11, "smc">;
   1282 def SVC   : ExceptionGeneration<0b000, 0b01, "svc">;
   1283 
   1284 // DCPSn defaults to an immediate operand of zero if unspecified.
   1285 def : InstAlias<"dcps1", (DCPS1 0)>;
   1286 def : InstAlias<"dcps2", (DCPS2 0)>;
   1287 def : InstAlias<"dcps3", (DCPS3 0)>;
   1288 
   1289 //===----------------------------------------------------------------------===//
   1290 // Load instructions.
   1291 //===----------------------------------------------------------------------===//
   1292 
   1293 // Pair (indexed, offset)
   1294 defm LDPW : LoadPairOffset<0b00, 0, GPR32, simm7s4, "ldp">;
   1295 defm LDPX : LoadPairOffset<0b10, 0, GPR64, simm7s8, "ldp">;
   1296 defm LDPS : LoadPairOffset<0b00, 1, FPR32, simm7s4, "ldp">;
   1297 defm LDPD : LoadPairOffset<0b01, 1, FPR64, simm7s8, "ldp">;
   1298 defm LDPQ : LoadPairOffset<0b10, 1, FPR128, simm7s16, "ldp">;
   1299 
   1300 defm LDPSW : LoadPairOffset<0b01, 0, GPR64, simm7s4, "ldpsw">;
   1301 
   1302 // Pair (pre-indexed)
   1303 def LDPWpre : LoadPairPreIdx<0b00, 0, GPR32, simm7s4, "ldp">;
   1304 def LDPXpre : LoadPairPreIdx<0b10, 0, GPR64, simm7s8, "ldp">;
   1305 def LDPSpre : LoadPairPreIdx<0b00, 1, FPR32, simm7s4, "ldp">;
   1306 def LDPDpre : LoadPairPreIdx<0b01, 1, FPR64, simm7s8, "ldp">;
   1307 def LDPQpre : LoadPairPreIdx<0b10, 1, FPR128, simm7s16, "ldp">;
   1308 
   1309 def LDPSWpre : LoadPairPreIdx<0b01, 0, GPR64, simm7s4, "ldpsw">;
   1310 
   1311 // Pair (post-indexed)
   1312 def LDPWpost : LoadPairPostIdx<0b00, 0, GPR32, simm7s4, "ldp">;
   1313 def LDPXpost : LoadPairPostIdx<0b10, 0, GPR64, simm7s8, "ldp">;
   1314 def LDPSpost : LoadPairPostIdx<0b00, 1, FPR32, simm7s4, "ldp">;
   1315 def LDPDpost : LoadPairPostIdx<0b01, 1, FPR64, simm7s8, "ldp">;
   1316 def LDPQpost : LoadPairPostIdx<0b10, 1, FPR128, simm7s16, "ldp">;
   1317 
   1318 def LDPSWpost : LoadPairPostIdx<0b01, 0, GPR64, simm7s4, "ldpsw">;
   1319 
   1320 
   1321 // Pair (no allocate)
   1322 defm LDNPW : LoadPairNoAlloc<0b00, 0, GPR32, simm7s4, "ldnp">;
   1323 defm LDNPX : LoadPairNoAlloc<0b10, 0, GPR64, simm7s8, "ldnp">;
   1324 defm LDNPS : LoadPairNoAlloc<0b00, 1, FPR32, simm7s4, "ldnp">;
   1325 defm LDNPD : LoadPairNoAlloc<0b01, 1, FPR64, simm7s8, "ldnp">;
   1326 defm LDNPQ : LoadPairNoAlloc<0b10, 1, FPR128, simm7s16, "ldnp">;
   1327 
   1328 //---
   1329 // (register offset)
   1330 //---
   1331 
   1332 // Integer
   1333 defm LDRBB : Load8RO<0b00,  0, 0b01, GPR32, "ldrb", i32, zextloadi8>;
   1334 defm LDRHH : Load16RO<0b01, 0, 0b01, GPR32, "ldrh", i32, zextloadi16>;
   1335 defm LDRW  : Load32RO<0b10, 0, 0b01, GPR32, "ldr", i32, load>;
   1336 defm LDRX  : Load64RO<0b11, 0, 0b01, GPR64, "ldr", i64, load>;
   1337 
   1338 // Floating-point
   1339 defm LDRB : Load8RO<0b00,   1, 0b01, FPR8,   "ldr", untyped, load>;
   1340 defm LDRH : Load16RO<0b01,  1, 0b01, FPR16,  "ldr", f16, load>;
   1341 defm LDRS : Load32RO<0b10,  1, 0b01, FPR32,  "ldr", f32, load>;
   1342 defm LDRD : Load64RO<0b11,  1, 0b01, FPR64,  "ldr", f64, load>;
   1343 defm LDRQ : Load128RO<0b00, 1, 0b11, FPR128, "ldr", f128, load>;
   1344 
   1345 // Load sign-extended half-word
   1346 defm LDRSHW : Load16RO<0b01, 0, 0b11, GPR32, "ldrsh", i32, sextloadi16>;
   1347 defm LDRSHX : Load16RO<0b01, 0, 0b10, GPR64, "ldrsh", i64, sextloadi16>;
   1348 
   1349 // Load sign-extended byte
   1350 defm LDRSBW : Load8RO<0b00, 0, 0b11, GPR32, "ldrsb", i32, sextloadi8>;
   1351 defm LDRSBX : Load8RO<0b00, 0, 0b10, GPR64, "ldrsb", i64, sextloadi8>;
   1352 
   1353 // Load sign-extended word
   1354 defm LDRSW  : Load32RO<0b10, 0, 0b10, GPR64, "ldrsw", i64, sextloadi32>;
   1355 
   1356 // Pre-fetch.
   1357 defm PRFM : PrefetchRO<0b11, 0, 0b10, "prfm">;
   1358 
   1359 // For regular load, we do not have any alignment requirement.
   1360 // Thus, it is safe to directly map the vector loads with interesting
   1361 // addressing modes.
   1362 // FIXME: We could do the same for bitconvert to floating point vectors.
   1363 multiclass ScalToVecROLoadPat<ROAddrMode ro, SDPatternOperator loadop,
   1364                               ValueType ScalTy, ValueType VecTy,
   1365                               Instruction LOADW, Instruction LOADX,
   1366                               SubRegIndex sub> {
   1367   def : Pat<(VecTy (scalar_to_vector (ScalTy
   1368               (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset))))),
   1369             (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
   1370                            (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$offset),
   1371                            sub)>;
   1372 
   1373   def : Pat<(VecTy (scalar_to_vector (ScalTy
   1374               (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset))))),
   1375             (INSERT_SUBREG (VecTy (IMPLICIT_DEF)),
   1376                            (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$offset),
   1377                            sub)>;
   1378 }
   1379 
   1380 let AddedComplexity = 10 in {
   1381 defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v8i8,  LDRBroW, LDRBroX, bsub>;
   1382 defm : ScalToVecROLoadPat<ro8,  extloadi8,  i32, v16i8, LDRBroW, LDRBroX, bsub>;
   1383 
   1384 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v4i16, LDRHroW, LDRHroX, hsub>;
   1385 defm : ScalToVecROLoadPat<ro16, extloadi16, i32, v8i16, LDRHroW, LDRHroX, hsub>;
   1386 
   1387 defm : ScalToVecROLoadPat<ro16, load,       i32, v4f16, LDRHroW, LDRHroX, hsub>;
   1388 defm : ScalToVecROLoadPat<ro16, load,       i32, v8f16, LDRHroW, LDRHroX, hsub>;
   1389 
   1390 defm : ScalToVecROLoadPat<ro32, load,       i32, v2i32, LDRSroW, LDRSroX, ssub>;
   1391 defm : ScalToVecROLoadPat<ro32, load,       i32, v4i32, LDRSroW, LDRSroX, ssub>;
   1392 
   1393 defm : ScalToVecROLoadPat<ro32, load,       f32, v2f32, LDRSroW, LDRSroX, ssub>;
   1394 defm : ScalToVecROLoadPat<ro32, load,       f32, v4f32, LDRSroW, LDRSroX, ssub>;
   1395 
   1396 defm : ScalToVecROLoadPat<ro64, load,       i64, v2i64, LDRDroW, LDRDroX, dsub>;
   1397 
   1398 defm : ScalToVecROLoadPat<ro64, load,       f64, v2f64, LDRDroW, LDRDroX, dsub>;
   1399 
   1400 
   1401 def : Pat <(v1i64 (scalar_to_vector (i64
   1402                       (load (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
   1403                                            ro_Wextend64:$extend))))),
   1404            (LDRDroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
   1405 
   1406 def : Pat <(v1i64 (scalar_to_vector (i64
   1407                       (load (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
   1408                                            ro_Xextend64:$extend))))),
   1409            (LDRDroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
   1410 }
   1411 
   1412 // Match all load 64 bits width whose type is compatible with FPR64
   1413 multiclass VecROLoadPat<ROAddrMode ro, ValueType VecTy,
   1414                         Instruction LOADW, Instruction LOADX> {
   1415 
   1416   def : Pat<(VecTy (load (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
   1417             (LOADW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   1418 
   1419   def : Pat<(VecTy (load (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
   1420             (LOADX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   1421 }
   1422 
   1423 let AddedComplexity = 10 in {
   1424 let Predicates = [IsLE] in {
   1425   // We must do vector loads with LD1 in big-endian.
   1426   defm : VecROLoadPat<ro64, v2i32, LDRDroW, LDRDroX>;
   1427   defm : VecROLoadPat<ro64, v2f32, LDRDroW, LDRDroX>;
   1428   defm : VecROLoadPat<ro64, v8i8,  LDRDroW, LDRDroX>;
   1429   defm : VecROLoadPat<ro64, v4i16, LDRDroW, LDRDroX>;
   1430   defm : VecROLoadPat<ro64, v4f16, LDRDroW, LDRDroX>;
   1431 }
   1432 
   1433 defm : VecROLoadPat<ro64, v1i64,  LDRDroW, LDRDroX>;
   1434 defm : VecROLoadPat<ro64, v1f64,  LDRDroW, LDRDroX>;
   1435 
   1436 // Match all load 128 bits width whose type is compatible with FPR128
   1437 let Predicates = [IsLE] in {
   1438   // We must do vector loads with LD1 in big-endian.
   1439   defm : VecROLoadPat<ro128, v2i64,  LDRQroW, LDRQroX>;
   1440   defm : VecROLoadPat<ro128, v2f64,  LDRQroW, LDRQroX>;
   1441   defm : VecROLoadPat<ro128, v4i32,  LDRQroW, LDRQroX>;
   1442   defm : VecROLoadPat<ro128, v4f32,  LDRQroW, LDRQroX>;
   1443   defm : VecROLoadPat<ro128, v8i16,  LDRQroW, LDRQroX>;
   1444   defm : VecROLoadPat<ro128, v8f16,  LDRQroW, LDRQroX>;
   1445   defm : VecROLoadPat<ro128, v16i8,  LDRQroW, LDRQroX>;
   1446 }
   1447 } // AddedComplexity = 10
   1448 
   1449 // zextload -> i64
   1450 multiclass ExtLoadTo64ROPat<ROAddrMode ro, SDPatternOperator loadop,
   1451                             Instruction INSTW, Instruction INSTX> {
   1452   def : Pat<(i64 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
   1453             (SUBREG_TO_REG (i64 0),
   1454                            (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
   1455                            sub_32)>;
   1456 
   1457   def : Pat<(i64 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
   1458             (SUBREG_TO_REG (i64 0),
   1459                            (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
   1460                            sub_32)>;
   1461 }
   1462 
   1463 let AddedComplexity = 10 in {
   1464   defm : ExtLoadTo64ROPat<ro8,  zextloadi8,  LDRBBroW, LDRBBroX>;
   1465   defm : ExtLoadTo64ROPat<ro16, zextloadi16, LDRHHroW, LDRHHroX>;
   1466   defm : ExtLoadTo64ROPat<ro32, zextloadi32, LDRWroW,  LDRWroX>;
   1467 
   1468   // zextloadi1 -> zextloadi8
   1469   defm : ExtLoadTo64ROPat<ro8,  zextloadi1,  LDRBBroW, LDRBBroX>;
   1470 
   1471   // extload -> zextload
   1472   defm : ExtLoadTo64ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
   1473   defm : ExtLoadTo64ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
   1474   defm : ExtLoadTo64ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
   1475 
   1476   // extloadi1 -> zextloadi8
   1477   defm : ExtLoadTo64ROPat<ro8,  extloadi1,   LDRBBroW, LDRBBroX>;
   1478 }
   1479 
   1480 
   1481 // zextload -> i64
   1482 multiclass ExtLoadTo32ROPat<ROAddrMode ro, SDPatternOperator loadop,
   1483                             Instruction INSTW, Instruction INSTX> {
   1484   def : Pat<(i32 (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend))),
   1485             (INSTW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   1486 
   1487   def : Pat<(i32 (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend))),
   1488             (INSTX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   1489 
   1490 }
   1491 
   1492 let AddedComplexity = 10 in {
   1493   // extload -> zextload
   1494   defm : ExtLoadTo32ROPat<ro8,  extloadi8,   LDRBBroW, LDRBBroX>;
   1495   defm : ExtLoadTo32ROPat<ro16, extloadi16,  LDRHHroW, LDRHHroX>;
   1496   defm : ExtLoadTo32ROPat<ro32, extloadi32,  LDRWroW,  LDRWroX>;
   1497 
   1498   // zextloadi1 -> zextloadi8
   1499   defm : ExtLoadTo32ROPat<ro8, zextloadi1, LDRBBroW, LDRBBroX>;
   1500 }
   1501 
   1502 //---
   1503 // (unsigned immediate)
   1504 //---
   1505 defm LDRX : LoadUI<0b11, 0, 0b01, GPR64, uimm12s8, "ldr",
   1506                    [(set GPR64:$Rt,
   1507                          (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
   1508 defm LDRW : LoadUI<0b10, 0, 0b01, GPR32, uimm12s4, "ldr",
   1509                    [(set GPR32:$Rt,
   1510                          (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
   1511 defm LDRB : LoadUI<0b00, 1, 0b01, FPR8, uimm12s1, "ldr",
   1512                    [(set FPR8:$Rt,
   1513                          (load (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)))]>;
   1514 defm LDRH : LoadUI<0b01, 1, 0b01, FPR16, uimm12s2, "ldr",
   1515                    [(set (f16 FPR16:$Rt),
   1516                          (load (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)))]>;
   1517 defm LDRS : LoadUI<0b10, 1, 0b01, FPR32, uimm12s4, "ldr",
   1518                    [(set (f32 FPR32:$Rt),
   1519                          (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)))]>;
   1520 defm LDRD : LoadUI<0b11, 1, 0b01, FPR64, uimm12s8, "ldr",
   1521                    [(set (f64 FPR64:$Rt),
   1522                          (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)))]>;
   1523 defm LDRQ : LoadUI<0b00, 1, 0b11, FPR128, uimm12s16, "ldr",
   1524                  [(set (f128 FPR128:$Rt),
   1525                        (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)))]>;
   1526 
   1527 // For regular load, we do not have any alignment requirement.
   1528 // Thus, it is safe to directly map the vector loads with interesting
   1529 // addressing modes.
   1530 // FIXME: We could do the same for bitconvert to floating point vectors.
   1531 def : Pat <(v8i8 (scalar_to_vector (i32
   1532                (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
   1533            (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
   1534                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
   1535 def : Pat <(v16i8 (scalar_to_vector (i32
   1536                (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
   1537            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   1538                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub)>;
   1539 def : Pat <(v4i16 (scalar_to_vector (i32
   1540                (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
   1541            (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
   1542                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
   1543 def : Pat <(v8i16 (scalar_to_vector (i32
   1544                (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
   1545            (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
   1546                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub)>;
   1547 def : Pat <(v2i32 (scalar_to_vector (i32
   1548                (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
   1549            (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
   1550                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
   1551 def : Pat <(v4i32 (scalar_to_vector (i32
   1552                (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
   1553            (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
   1554                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub)>;
   1555 def : Pat <(v1i64 (scalar_to_vector (i64
   1556                (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
   1557            (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1558 def : Pat <(v2i64 (scalar_to_vector (i64
   1559                (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))))),
   1560            (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
   1561                           (LDRDui GPR64sp:$Rn, uimm12s8:$offset), dsub)>;
   1562 
   1563 // Match all load 64 bits width whose type is compatible with FPR64
   1564 let Predicates = [IsLE] in {
   1565   // We must use LD1 to perform vector loads in big-endian.
   1566   def : Pat<(v2f32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1567             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1568   def : Pat<(v8i8 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1569             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1570   def : Pat<(v4i16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1571             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1572   def : Pat<(v2i32 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1573             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1574   def : Pat<(v4f16 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1575             (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1576 }
   1577 def : Pat<(v1f64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1578           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1579 def : Pat<(v1i64 (load (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))),
   1580           (LDRDui GPR64sp:$Rn, uimm12s8:$offset)>;
   1581 
   1582 // Match all load 128 bits width whose type is compatible with FPR128
   1583 let Predicates = [IsLE] in {
   1584   // We must use LD1 to perform vector loads in big-endian.
   1585   def : Pat<(v4f32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1586             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1587   def : Pat<(v2f64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1588             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1589   def : Pat<(v16i8 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1590             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1591   def : Pat<(v8i16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1592             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1593   def : Pat<(v4i32 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1594             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1595   def : Pat<(v2i64 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1596             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1597   def : Pat<(v8f16 (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1598             (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1599 }
   1600 def : Pat<(f128  (load (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset))),
   1601           (LDRQui GPR64sp:$Rn, uimm12s16:$offset)>;
   1602 
   1603 defm LDRHH : LoadUI<0b01, 0, 0b01, GPR32, uimm12s2, "ldrh",
   1604                     [(set GPR32:$Rt,
   1605                           (zextloadi16 (am_indexed16 GPR64sp:$Rn,
   1606                                                      uimm12s2:$offset)))]>;
   1607 defm LDRBB : LoadUI<0b00, 0, 0b01, GPR32, uimm12s1, "ldrb",
   1608                     [(set GPR32:$Rt,
   1609                           (zextloadi8 (am_indexed8 GPR64sp:$Rn,
   1610                                                    uimm12s1:$offset)))]>;
   1611 // zextload -> i64
   1612 def : Pat<(i64 (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1613     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
   1614 def : Pat<(i64 (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
   1615     (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
   1616 
   1617 // zextloadi1 -> zextloadi8
   1618 def : Pat<(i32 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1619           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
   1620 def : Pat<(i64 (zextloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1621     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
   1622 
   1623 // extload -> zextload
   1624 def : Pat<(i32 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
   1625           (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
   1626 def : Pat<(i32 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1627           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
   1628 def : Pat<(i32 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1629           (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
   1630 def : Pat<(i64 (extloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
   1631     (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
   1632 def : Pat<(i64 (extloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))),
   1633     (SUBREG_TO_REG (i64 0), (LDRHHui GPR64sp:$Rn, uimm12s2:$offset), sub_32)>;
   1634 def : Pat<(i64 (extloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1635     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
   1636 def : Pat<(i64 (extloadi1 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))),
   1637     (SUBREG_TO_REG (i64 0), (LDRBBui GPR64sp:$Rn, uimm12s1:$offset), sub_32)>;
   1638 
   1639 // load sign-extended half-word
   1640 defm LDRSHW : LoadUI<0b01, 0, 0b11, GPR32, uimm12s2, "ldrsh",
   1641                      [(set GPR32:$Rt,
   1642                            (sextloadi16 (am_indexed16 GPR64sp:$Rn,
   1643                                                       uimm12s2:$offset)))]>;
   1644 defm LDRSHX : LoadUI<0b01, 0, 0b10, GPR64, uimm12s2, "ldrsh",
   1645                      [(set GPR64:$Rt,
   1646                            (sextloadi16 (am_indexed16 GPR64sp:$Rn,
   1647                                                       uimm12s2:$offset)))]>;
   1648 
   1649 // load sign-extended byte
   1650 defm LDRSBW : LoadUI<0b00, 0, 0b11, GPR32, uimm12s1, "ldrsb",
   1651                      [(set GPR32:$Rt,
   1652                            (sextloadi8 (am_indexed8 GPR64sp:$Rn,
   1653                                                     uimm12s1:$offset)))]>;
   1654 defm LDRSBX : LoadUI<0b00, 0, 0b10, GPR64, uimm12s1, "ldrsb",
   1655                      [(set GPR64:$Rt,
   1656                            (sextloadi8 (am_indexed8 GPR64sp:$Rn,
   1657                                                     uimm12s1:$offset)))]>;
   1658 
   1659 // load sign-extended word
   1660 defm LDRSW  : LoadUI<0b10, 0, 0b10, GPR64, uimm12s4, "ldrsw",
   1661                      [(set GPR64:$Rt,
   1662                            (sextloadi32 (am_indexed32 GPR64sp:$Rn,
   1663                                                       uimm12s4:$offset)))]>;
   1664 
   1665 // load zero-extended word
   1666 def : Pat<(i64 (zextloadi32 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))),
   1667       (SUBREG_TO_REG (i64 0), (LDRWui GPR64sp:$Rn, uimm12s4:$offset), sub_32)>;
   1668 
   1669 // Pre-fetch.
   1670 def PRFMui : PrefetchUI<0b11, 0, 0b10, "prfm",
   1671                         [(AArch64Prefetch imm:$Rt,
   1672                                         (am_indexed64 GPR64sp:$Rn,
   1673                                                       uimm12s8:$offset))]>;
   1674 
   1675 def : InstAlias<"prfm $Rt, [$Rn]", (PRFMui prfop:$Rt, GPR64sp:$Rn, 0)>;
   1676 
   1677 //---
   1678 // (literal)
   1679 def LDRWl : LoadLiteral<0b00, 0, GPR32, "ldr">;
   1680 def LDRXl : LoadLiteral<0b01, 0, GPR64, "ldr">;
   1681 def LDRSl : LoadLiteral<0b00, 1, FPR32, "ldr">;
   1682 def LDRDl : LoadLiteral<0b01, 1, FPR64, "ldr">;
   1683 def LDRQl : LoadLiteral<0b10, 1, FPR128, "ldr">;
   1684 
   1685 // load sign-extended word
   1686 def LDRSWl : LoadLiteral<0b10, 0, GPR64, "ldrsw">;
   1687 
   1688 // prefetch
   1689 def PRFMl : PrefetchLiteral<0b11, 0, "prfm", []>;
   1690 //                   [(AArch64Prefetch imm:$Rt, tglobaladdr:$label)]>;
   1691 
   1692 //---
   1693 // (unscaled immediate)
   1694 defm LDURX : LoadUnscaled<0b11, 0, 0b01, GPR64, "ldur",
   1695                     [(set GPR64:$Rt,
   1696                           (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
   1697 defm LDURW : LoadUnscaled<0b10, 0, 0b01, GPR32, "ldur",
   1698                     [(set GPR32:$Rt,
   1699                           (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
   1700 defm LDURB : LoadUnscaled<0b00, 1, 0b01, FPR8, "ldur",
   1701                     [(set FPR8:$Rt,
   1702                           (load (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
   1703 defm LDURH : LoadUnscaled<0b01, 1, 0b01, FPR16, "ldur",
   1704                     [(set FPR16:$Rt,
   1705                           (load (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   1706 defm LDURS : LoadUnscaled<0b10, 1, 0b01, FPR32, "ldur",
   1707                     [(set (f32 FPR32:$Rt),
   1708                           (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
   1709 defm LDURD : LoadUnscaled<0b11, 1, 0b01, FPR64, "ldur",
   1710                     [(set (f64 FPR64:$Rt),
   1711                           (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset)))]>;
   1712 defm LDURQ : LoadUnscaled<0b00, 1, 0b11, FPR128, "ldur",
   1713                     [(set (f128 FPR128:$Rt),
   1714                           (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset)))]>;
   1715 
   1716 defm LDURHH
   1717     : LoadUnscaled<0b01, 0, 0b01, GPR32, "ldurh",
   1718              [(set GPR32:$Rt,
   1719                     (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   1720 defm LDURBB
   1721     : LoadUnscaled<0b00, 0, 0b01, GPR32, "ldurb",
   1722              [(set GPR32:$Rt,
   1723                     (zextloadi8 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   1724 
   1725 // Match all load 64 bits width whose type is compatible with FPR64
   1726 let Predicates = [IsLE] in {
   1727   def : Pat<(v2f32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1728             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1729   def : Pat<(v2i32 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1730             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1731   def : Pat<(v4i16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1732             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1733   def : Pat<(v8i8 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1734             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1735   def : Pat<(v4f16 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1736             (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1737 }
   1738 def : Pat<(v1f64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1739           (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1740 def : Pat<(v1i64 (load (am_unscaled64 GPR64sp:$Rn, simm9:$offset))),
   1741           (LDURDi GPR64sp:$Rn, simm9:$offset)>;
   1742 
   1743 // Match all load 128 bits width whose type is compatible with FPR128
   1744 let Predicates = [IsLE] in {
   1745   def : Pat<(v2f64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1746             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1747   def : Pat<(v2i64 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1748             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1749   def : Pat<(v4f32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1750             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1751   def : Pat<(v4i32 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1752             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1753   def : Pat<(v8i16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1754             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1755   def : Pat<(v16i8 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1756             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1757   def : Pat<(v8f16 (load (am_unscaled128 GPR64sp:$Rn, simm9:$offset))),
   1758             (LDURQi GPR64sp:$Rn, simm9:$offset)>;
   1759 }
   1760 
   1761 //  anyext -> zext
   1762 def : Pat<(i32 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1763           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
   1764 def : Pat<(i32 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1765           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
   1766 def : Pat<(i32 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1767           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
   1768 def : Pat<(i64 (extloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
   1769     (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1770 def : Pat<(i64 (extloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1771     (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1772 def : Pat<(i64 (extloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1773     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1774 def : Pat<(i64 (extloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1775     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1776 // unscaled zext
   1777 def : Pat<(i32 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1778           (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
   1779 def : Pat<(i32 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1780           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
   1781 def : Pat<(i32 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1782           (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
   1783 def : Pat<(i64 (zextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset))),
   1784     (SUBREG_TO_REG (i64 0), (LDURWi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1785 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1786     (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1787 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1788     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1789 def : Pat<(i64 (zextloadi1 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1790     (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1791 
   1792 
   1793 //---
   1794 // LDR mnemonics fall back to LDUR for negative or unaligned offsets.
   1795 
   1796 // Define new assembler match classes as we want to only match these when
   1797 // the don't otherwise match the scaled addressing mode for LDR/STR. Don't
   1798 // associate a DiagnosticType either, as we want the diagnostic for the
   1799 // canonical form (the scaled operand) to take precedence.
   1800 class SImm9OffsetOperand<int Width> : AsmOperandClass {
   1801   let Name = "SImm9OffsetFB" # Width;
   1802   let PredicateMethod = "isSImm9OffsetFB<" # Width # ">";
   1803   let RenderMethod = "addImmOperands";
   1804 }
   1805 
   1806 def SImm9OffsetFB8Operand : SImm9OffsetOperand<8>;
   1807 def SImm9OffsetFB16Operand : SImm9OffsetOperand<16>;
   1808 def SImm9OffsetFB32Operand : SImm9OffsetOperand<32>;
   1809 def SImm9OffsetFB64Operand : SImm9OffsetOperand<64>;
   1810 def SImm9OffsetFB128Operand : SImm9OffsetOperand<128>;
   1811 
   1812 def simm9_offset_fb8 : Operand<i64> {
   1813   let ParserMatchClass = SImm9OffsetFB8Operand;
   1814 }
   1815 def simm9_offset_fb16 : Operand<i64> {
   1816   let ParserMatchClass = SImm9OffsetFB16Operand;
   1817 }
   1818 def simm9_offset_fb32 : Operand<i64> {
   1819   let ParserMatchClass = SImm9OffsetFB32Operand;
   1820 }
   1821 def simm9_offset_fb64 : Operand<i64> {
   1822   let ParserMatchClass = SImm9OffsetFB64Operand;
   1823 }
   1824 def simm9_offset_fb128 : Operand<i64> {
   1825   let ParserMatchClass = SImm9OffsetFB128Operand;
   1826 }
   1827 
   1828 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   1829                 (LDURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
   1830 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   1831                 (LDURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   1832 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   1833                 (LDURBi FPR8:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   1834 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   1835                 (LDURHi FPR16:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   1836 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   1837                 (LDURSi FPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   1838 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   1839                 (LDURDi FPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
   1840 def : InstAlias<"ldr $Rt, [$Rn, $offset]",
   1841                (LDURQi FPR128:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
   1842 
   1843 // zextload -> i64
   1844 def : Pat<(i64 (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))),
   1845   (SUBREG_TO_REG (i64 0), (LDURBBi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1846 def : Pat<(i64 (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))),
   1847   (SUBREG_TO_REG (i64 0), (LDURHHi GPR64sp:$Rn, simm9:$offset), sub_32)>;
   1848 
   1849 // load sign-extended half-word
   1850 defm LDURSHW
   1851     : LoadUnscaled<0b01, 0, 0b11, GPR32, "ldursh",
   1852                [(set GPR32:$Rt,
   1853                     (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   1854 defm LDURSHX
   1855     : LoadUnscaled<0b01, 0, 0b10, GPR64, "ldursh",
   1856               [(set GPR64:$Rt,
   1857                     (sextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)))]>;
   1858 
   1859 // load sign-extended byte
   1860 defm LDURSBW
   1861     : LoadUnscaled<0b00, 0, 0b11, GPR32, "ldursb",
   1862                 [(set GPR32:$Rt,
   1863                       (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
   1864 defm LDURSBX
   1865     : LoadUnscaled<0b00, 0, 0b10, GPR64, "ldursb",
   1866                 [(set GPR64:$Rt,
   1867                       (sextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)))]>;
   1868 
   1869 // load sign-extended word
   1870 defm LDURSW
   1871     : LoadUnscaled<0b10, 0, 0b10, GPR64, "ldursw",
   1872               [(set GPR64:$Rt,
   1873                     (sextloadi32 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)))]>;
   1874 
   1875 // zero and sign extending aliases from generic LDR* mnemonics to LDUR*.
   1876 def : InstAlias<"ldrb $Rt, [$Rn, $offset]",
   1877                 (LDURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   1878 def : InstAlias<"ldrh $Rt, [$Rn, $offset]",
   1879                 (LDURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   1880 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
   1881                 (LDURSBWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   1882 def : InstAlias<"ldrsb $Rt, [$Rn, $offset]",
   1883                 (LDURSBXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   1884 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
   1885                 (LDURSHWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   1886 def : InstAlias<"ldrsh $Rt, [$Rn, $offset]",
   1887                 (LDURSHXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   1888 def : InstAlias<"ldrsw $Rt, [$Rn, $offset]",
   1889                 (LDURSWi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   1890 
   1891 // Pre-fetch.
   1892 defm PRFUM : PrefetchUnscaled<0b11, 0, 0b10, "prfum",
   1893                   [(AArch64Prefetch imm:$Rt,
   1894                                   (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
   1895 
   1896 //---
   1897 // (unscaled immediate, unprivileged)
   1898 defm LDTRX : LoadUnprivileged<0b11, 0, 0b01, GPR64, "ldtr">;
   1899 defm LDTRW : LoadUnprivileged<0b10, 0, 0b01, GPR32, "ldtr">;
   1900 
   1901 defm LDTRH : LoadUnprivileged<0b01, 0, 0b01, GPR32, "ldtrh">;
   1902 defm LDTRB : LoadUnprivileged<0b00, 0, 0b01, GPR32, "ldtrb">;
   1903 
   1904 // load sign-extended half-word
   1905 defm LDTRSHW : LoadUnprivileged<0b01, 0, 0b11, GPR32, "ldtrsh">;
   1906 defm LDTRSHX : LoadUnprivileged<0b01, 0, 0b10, GPR64, "ldtrsh">;
   1907 
   1908 // load sign-extended byte
   1909 defm LDTRSBW : LoadUnprivileged<0b00, 0, 0b11, GPR32, "ldtrsb">;
   1910 defm LDTRSBX : LoadUnprivileged<0b00, 0, 0b10, GPR64, "ldtrsb">;
   1911 
   1912 // load sign-extended word
   1913 defm LDTRSW  : LoadUnprivileged<0b10, 0, 0b10, GPR64, "ldtrsw">;
   1914 
   1915 //---
   1916 // (immediate pre-indexed)
   1917 def LDRWpre : LoadPreIdx<0b10, 0, 0b01, GPR32, "ldr">;
   1918 def LDRXpre : LoadPreIdx<0b11, 0, 0b01, GPR64, "ldr">;
   1919 def LDRBpre : LoadPreIdx<0b00, 1, 0b01, FPR8,  "ldr">;
   1920 def LDRHpre : LoadPreIdx<0b01, 1, 0b01, FPR16, "ldr">;
   1921 def LDRSpre : LoadPreIdx<0b10, 1, 0b01, FPR32, "ldr">;
   1922 def LDRDpre : LoadPreIdx<0b11, 1, 0b01, FPR64, "ldr">;
   1923 def LDRQpre : LoadPreIdx<0b00, 1, 0b11, FPR128, "ldr">;
   1924 
   1925 // load sign-extended half-word
   1926 def LDRSHWpre : LoadPreIdx<0b01, 0, 0b11, GPR32, "ldrsh">;
   1927 def LDRSHXpre : LoadPreIdx<0b01, 0, 0b10, GPR64, "ldrsh">;
   1928 
   1929 // load sign-extended byte
   1930 def LDRSBWpre : LoadPreIdx<0b00, 0, 0b11, GPR32, "ldrsb">;
   1931 def LDRSBXpre : LoadPreIdx<0b00, 0, 0b10, GPR64, "ldrsb">;
   1932 
   1933 // load zero-extended byte
   1934 def LDRBBpre : LoadPreIdx<0b00, 0, 0b01, GPR32, "ldrb">;
   1935 def LDRHHpre : LoadPreIdx<0b01, 0, 0b01, GPR32, "ldrh">;
   1936 
   1937 // load sign-extended word
   1938 def LDRSWpre : LoadPreIdx<0b10, 0, 0b10, GPR64, "ldrsw">;
   1939 
   1940 //---
   1941 // (immediate post-indexed)
   1942 def LDRWpost : LoadPostIdx<0b10, 0, 0b01, GPR32, "ldr">;
   1943 def LDRXpost : LoadPostIdx<0b11, 0, 0b01, GPR64, "ldr">;
   1944 def LDRBpost : LoadPostIdx<0b00, 1, 0b01, FPR8,  "ldr">;
   1945 def LDRHpost : LoadPostIdx<0b01, 1, 0b01, FPR16, "ldr">;
   1946 def LDRSpost : LoadPostIdx<0b10, 1, 0b01, FPR32, "ldr">;
   1947 def LDRDpost : LoadPostIdx<0b11, 1, 0b01, FPR64, "ldr">;
   1948 def LDRQpost : LoadPostIdx<0b00, 1, 0b11, FPR128, "ldr">;
   1949 
   1950 // load sign-extended half-word
   1951 def LDRSHWpost : LoadPostIdx<0b01, 0, 0b11, GPR32, "ldrsh">;
   1952 def LDRSHXpost : LoadPostIdx<0b01, 0, 0b10, GPR64, "ldrsh">;
   1953 
   1954 // load sign-extended byte
   1955 def LDRSBWpost : LoadPostIdx<0b00, 0, 0b11, GPR32, "ldrsb">;
   1956 def LDRSBXpost : LoadPostIdx<0b00, 0, 0b10, GPR64, "ldrsb">;
   1957 
   1958 // load zero-extended byte
   1959 def LDRBBpost : LoadPostIdx<0b00, 0, 0b01, GPR32, "ldrb">;
   1960 def LDRHHpost : LoadPostIdx<0b01, 0, 0b01, GPR32, "ldrh">;
   1961 
   1962 // load sign-extended word
   1963 def LDRSWpost : LoadPostIdx<0b10, 0, 0b10, GPR64, "ldrsw">;
   1964 
   1965 //===----------------------------------------------------------------------===//
   1966 // Store instructions.
   1967 //===----------------------------------------------------------------------===//
   1968 
   1969 // Pair (indexed, offset)
   1970 // FIXME: Use dedicated range-checked addressing mode operand here.
   1971 defm STPW : StorePairOffset<0b00, 0, GPR32, simm7s4, "stp">;
   1972 defm STPX : StorePairOffset<0b10, 0, GPR64, simm7s8, "stp">;
   1973 defm STPS : StorePairOffset<0b00, 1, FPR32, simm7s4, "stp">;
   1974 defm STPD : StorePairOffset<0b01, 1, FPR64, simm7s8, "stp">;
   1975 defm STPQ : StorePairOffset<0b10, 1, FPR128, simm7s16, "stp">;
   1976 
   1977 // Pair (pre-indexed)
   1978 def STPWpre : StorePairPreIdx<0b00, 0, GPR32, simm7s4, "stp">;
   1979 def STPXpre : StorePairPreIdx<0b10, 0, GPR64, simm7s8, "stp">;
   1980 def STPSpre : StorePairPreIdx<0b00, 1, FPR32, simm7s4, "stp">;
   1981 def STPDpre : StorePairPreIdx<0b01, 1, FPR64, simm7s8, "stp">;
   1982 def STPQpre : StorePairPreIdx<0b10, 1, FPR128, simm7s16, "stp">;
   1983 
   1984 // Pair (pre-indexed)
   1985 def STPWpost : StorePairPostIdx<0b00, 0, GPR32, simm7s4, "stp">;
   1986 def STPXpost : StorePairPostIdx<0b10, 0, GPR64, simm7s8, "stp">;
   1987 def STPSpost : StorePairPostIdx<0b00, 1, FPR32, simm7s4, "stp">;
   1988 def STPDpost : StorePairPostIdx<0b01, 1, FPR64, simm7s8, "stp">;
   1989 def STPQpost : StorePairPostIdx<0b10, 1, FPR128, simm7s16, "stp">;
   1990 
   1991 // Pair (no allocate)
   1992 defm STNPW : StorePairNoAlloc<0b00, 0, GPR32, simm7s4, "stnp">;
   1993 defm STNPX : StorePairNoAlloc<0b10, 0, GPR64, simm7s8, "stnp">;
   1994 defm STNPS : StorePairNoAlloc<0b00, 1, FPR32, simm7s4, "stnp">;
   1995 defm STNPD : StorePairNoAlloc<0b01, 1, FPR64, simm7s8, "stnp">;
   1996 defm STNPQ : StorePairNoAlloc<0b10, 1, FPR128, simm7s16, "stnp">;
   1997 
   1998 //---
   1999 // (Register offset)
   2000 
   2001 // Integer
   2002 defm STRBB : Store8RO< 0b00, 0, 0b00, GPR32, "strb", i32, truncstorei8>;
   2003 defm STRHH : Store16RO<0b01, 0, 0b00, GPR32, "strh", i32, truncstorei16>;
   2004 defm STRW  : Store32RO<0b10, 0, 0b00, GPR32, "str",  i32, store>;
   2005 defm STRX  : Store64RO<0b11, 0, 0b00, GPR64, "str",  i64, store>;
   2006 
   2007 
   2008 // Floating-point
   2009 defm STRB : Store8RO< 0b00,  1, 0b00, FPR8,   "str", untyped, store>;
   2010 defm STRH : Store16RO<0b01,  1, 0b00, FPR16,  "str", f16,     store>;
   2011 defm STRS : Store32RO<0b10,  1, 0b00, FPR32,  "str", f32,     store>;
   2012 defm STRD : Store64RO<0b11,  1, 0b00, FPR64,  "str", f64,     store>;
   2013 defm STRQ : Store128RO<0b00, 1, 0b10, FPR128, "str", f128,    store>;
   2014 
   2015 multiclass TruncStoreFrom64ROPat<ROAddrMode ro, SDPatternOperator storeop,
   2016                                  Instruction STRW, Instruction STRX> {
   2017 
   2018   def : Pat<(storeop GPR64:$Rt,
   2019                      (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
   2020             (STRW (EXTRACT_SUBREG GPR64:$Rt, sub_32),
   2021                   GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   2022 
   2023   def : Pat<(storeop GPR64:$Rt,
   2024                      (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
   2025             (STRX (EXTRACT_SUBREG GPR64:$Rt, sub_32),
   2026                   GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   2027 }
   2028 
   2029 let AddedComplexity = 10 in {
   2030   // truncstore i64
   2031   defm : TruncStoreFrom64ROPat<ro8,  truncstorei8,  STRBBroW, STRBBroX>;
   2032   defm : TruncStoreFrom64ROPat<ro16, truncstorei16, STRHHroW, STRHHroX>;
   2033   defm : TruncStoreFrom64ROPat<ro32, truncstorei32, STRWroW,  STRWroX>;
   2034 }
   2035 
   2036 multiclass VecROStorePat<ROAddrMode ro, ValueType VecTy, RegisterClass FPR,
   2037                          Instruction STRW, Instruction STRX> {
   2038   def : Pat<(store (VecTy FPR:$Rt),
   2039                    (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
   2040             (STRW FPR:$Rt, GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   2041 
   2042   def : Pat<(store (VecTy FPR:$Rt),
   2043                    (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
   2044             (STRX FPR:$Rt, GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   2045 }
   2046 
   2047 let AddedComplexity = 10 in {
   2048 // Match all store 64 bits width whose type is compatible with FPR64
   2049 let Predicates = [IsLE] in {
   2050   // We must use ST1 to store vectors in big-endian.
   2051   defm : VecROStorePat<ro64, v2i32, FPR64, STRDroW, STRDroX>;
   2052   defm : VecROStorePat<ro64, v2f32, FPR64, STRDroW, STRDroX>;
   2053   defm : VecROStorePat<ro64, v4i16, FPR64, STRDroW, STRDroX>;
   2054   defm : VecROStorePat<ro64, v8i8, FPR64, STRDroW, STRDroX>;
   2055   defm : VecROStorePat<ro64, v4f16, FPR64, STRDroW, STRDroX>;
   2056 }
   2057 
   2058 defm : VecROStorePat<ro64, v1i64, FPR64, STRDroW, STRDroX>;
   2059 defm : VecROStorePat<ro64, v1f64, FPR64, STRDroW, STRDroX>;
   2060 
   2061 // Match all store 128 bits width whose type is compatible with FPR128
   2062 let Predicates = [IsLE] in {
   2063   // We must use ST1 to store vectors in big-endian.
   2064   defm : VecROStorePat<ro128, v2i64, FPR128, STRQroW, STRQroX>;
   2065   defm : VecROStorePat<ro128, v2f64, FPR128, STRQroW, STRQroX>;
   2066   defm : VecROStorePat<ro128, v4i32, FPR128, STRQroW, STRQroX>;
   2067   defm : VecROStorePat<ro128, v4f32, FPR128, STRQroW, STRQroX>;
   2068   defm : VecROStorePat<ro128, v8i16, FPR128, STRQroW, STRQroX>;
   2069   defm : VecROStorePat<ro128, v16i8, FPR128, STRQroW, STRQroX>;
   2070   defm : VecROStorePat<ro128, v8f16, FPR128, STRQroW, STRQroX>;
   2071 }
   2072 } // AddedComplexity = 10
   2073 
   2074 // Match stores from lane 0 to the appropriate subreg's store.
   2075 multiclass VecROStoreLane0Pat<ROAddrMode ro, SDPatternOperator storeop,
   2076                               ValueType VecTy, ValueType STy,
   2077                               SubRegIndex SubRegIdx,
   2078                               Instruction STRW, Instruction STRX> {
   2079 
   2080   def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
   2081                      (ro.Wpat GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)),
   2082             (STRW (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
   2083                   GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend)>;
   2084 
   2085   def : Pat<(storeop (STy (vector_extract (VecTy VecListOne128:$Vt), 0)),
   2086                      (ro.Xpat GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)),
   2087             (STRX (EXTRACT_SUBREG VecListOne128:$Vt, SubRegIdx),
   2088                   GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend)>;
   2089 }
   2090 
   2091 let AddedComplexity = 19 in {
   2092   defm : VecROStoreLane0Pat<ro16, truncstorei16, v8i16, i32, hsub, STRHroW, STRHroX>;
   2093   defm : VecROStoreLane0Pat<ro16,      store   , v8i16, i16, hsub, STRHroW, STRHroX>;
   2094   defm : VecROStoreLane0Pat<ro32, truncstorei32, v4i32, i32, ssub, STRSroW, STRSroX>;
   2095   defm : VecROStoreLane0Pat<ro32,      store   , v4i32, i32, ssub, STRSroW, STRSroX>;
   2096   defm : VecROStoreLane0Pat<ro32,      store   , v4f32, f32, ssub, STRSroW, STRSroX>;
   2097   defm : VecROStoreLane0Pat<ro64,      store   , v2i64, i64, dsub, STRDroW, STRDroX>;
   2098   defm : VecROStoreLane0Pat<ro64,      store   , v2f64, f64, dsub, STRDroW, STRDroX>;
   2099 }
   2100 
   2101 //---
   2102 // (unsigned immediate)
   2103 defm STRX : StoreUI<0b11, 0, 0b00, GPR64, uimm12s8, "str",
   2104                    [(store GPR64:$Rt,
   2105                             (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
   2106 defm STRW : StoreUI<0b10, 0, 0b00, GPR32, uimm12s4, "str",
   2107                     [(store GPR32:$Rt,
   2108                             (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
   2109 defm STRB : StoreUI<0b00, 1, 0b00, FPR8, uimm12s1, "str",
   2110                     [(store FPR8:$Rt,
   2111                             (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))]>;
   2112 defm STRH : StoreUI<0b01, 1, 0b00, FPR16, uimm12s2, "str",
   2113                     [(store (f16 FPR16:$Rt),
   2114                             (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))]>;
   2115 defm STRS : StoreUI<0b10, 1, 0b00, FPR32, uimm12s4, "str",
   2116                     [(store (f32 FPR32:$Rt),
   2117                             (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))]>;
   2118 defm STRD : StoreUI<0b11, 1, 0b00, FPR64, uimm12s8, "str",
   2119                     [(store (f64 FPR64:$Rt),
   2120                             (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset))]>;
   2121 defm STRQ : StoreUI<0b00, 1, 0b10, FPR128, uimm12s16, "str", []>;
   2122 
   2123 defm STRHH : StoreUI<0b01, 0, 0b00, GPR32, uimm12s2, "strh",
   2124                      [(truncstorei16 GPR32:$Rt,
   2125                                      (am_indexed16 GPR64sp:$Rn,
   2126                                                    uimm12s2:$offset))]>;
   2127 defm STRBB : StoreUI<0b00, 0, 0b00, GPR32, uimm12s1,  "strb",
   2128                      [(truncstorei8 GPR32:$Rt,
   2129                                     (am_indexed8 GPR64sp:$Rn,
   2130                                                  uimm12s1:$offset))]>;
   2131 
   2132 // Match all store 64 bits width whose type is compatible with FPR64
   2133 let AddedComplexity = 10 in {
   2134 let Predicates = [IsLE] in {
   2135   // We must use ST1 to store vectors in big-endian.
   2136   def : Pat<(store (v2f32 FPR64:$Rt),
   2137                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2138             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2139   def : Pat<(store (v8i8 FPR64:$Rt),
   2140                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2141             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2142   def : Pat<(store (v4i16 FPR64:$Rt),
   2143                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2144             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2145   def : Pat<(store (v2i32 FPR64:$Rt),
   2146                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2147             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2148   def : Pat<(store (v4f16 FPR64:$Rt),
   2149                    (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2150             (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2151 }
   2152 def : Pat<(store (v1f64 FPR64:$Rt),
   2153                  (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2154           (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2155 def : Pat<(store (v1i64 FPR64:$Rt),
   2156                  (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset)),
   2157           (STRDui FPR64:$Rt, GPR64sp:$Rn, uimm12s8:$offset)>;
   2158 
   2159 // Match all store 128 bits width whose type is compatible with FPR128
   2160 let Predicates = [IsLE] in {
   2161   // We must use ST1 to store vectors in big-endian.
   2162   def : Pat<(store (v4f32 FPR128:$Rt),
   2163                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2164             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2165   def : Pat<(store (v2f64 FPR128:$Rt),
   2166                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2167             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2168   def : Pat<(store (v16i8 FPR128:$Rt),
   2169                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2170             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2171   def : Pat<(store (v8i16 FPR128:$Rt),
   2172                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2173             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2174   def : Pat<(store (v4i32 FPR128:$Rt),
   2175                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2176             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2177   def : Pat<(store (v2i64 FPR128:$Rt),
   2178                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2179             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2180   def : Pat<(store (v8f16 FPR128:$Rt),
   2181                    (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2182             (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2183 }
   2184 def : Pat<(store (f128  FPR128:$Rt),
   2185                  (am_indexed128 GPR64sp:$Rn, uimm12s16:$offset)),
   2186           (STRQui FPR128:$Rt, GPR64sp:$Rn, uimm12s16:$offset)>;
   2187 
   2188 // truncstore i64
   2189 def : Pat<(truncstorei32 GPR64:$Rt,
   2190                          (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset)),
   2191   (STRWui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s4:$offset)>;
   2192 def : Pat<(truncstorei16 GPR64:$Rt,
   2193                          (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset)),
   2194   (STRHHui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s2:$offset)>;
   2195 def : Pat<(truncstorei8 GPR64:$Rt, (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset)),
   2196   (STRBBui (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, uimm12s1:$offset)>;
   2197 
   2198 } // AddedComplexity = 10
   2199 
   2200 //---
   2201 // (unscaled immediate)
   2202 defm STURX : StoreUnscaled<0b11, 0, 0b00, GPR64, "stur",
   2203                          [(store GPR64:$Rt,
   2204                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
   2205 defm STURW : StoreUnscaled<0b10, 0, 0b00, GPR32, "stur",
   2206                          [(store GPR32:$Rt,
   2207                                  (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
   2208 defm STURB : StoreUnscaled<0b00, 1, 0b00, FPR8, "stur",
   2209                          [(store FPR8:$Rt,
   2210                                  (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
   2211 defm STURH : StoreUnscaled<0b01, 1, 0b00, FPR16, "stur",
   2212                          [(store (f16 FPR16:$Rt),
   2213                                  (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
   2214 defm STURS : StoreUnscaled<0b10, 1, 0b00, FPR32, "stur",
   2215                          [(store (f32 FPR32:$Rt),
   2216                                  (am_unscaled32 GPR64sp:$Rn, simm9:$offset))]>;
   2217 defm STURD : StoreUnscaled<0b11, 1, 0b00, FPR64, "stur",
   2218                          [(store (f64 FPR64:$Rt),
   2219                                  (am_unscaled64 GPR64sp:$Rn, simm9:$offset))]>;
   2220 defm STURQ : StoreUnscaled<0b00, 1, 0b10, FPR128, "stur",
   2221                          [(store (f128 FPR128:$Rt),
   2222                                  (am_unscaled128 GPR64sp:$Rn, simm9:$offset))]>;
   2223 defm STURHH : StoreUnscaled<0b01, 0, 0b00, GPR32, "sturh",
   2224                          [(truncstorei16 GPR32:$Rt,
   2225                                  (am_unscaled16 GPR64sp:$Rn, simm9:$offset))]>;
   2226 defm STURBB : StoreUnscaled<0b00, 0, 0b00, GPR32, "sturb",
   2227                          [(truncstorei8 GPR32:$Rt,
   2228                                   (am_unscaled8 GPR64sp:$Rn, simm9:$offset))]>;
   2229 
   2230 // Match all store 64 bits width whose type is compatible with FPR64
   2231 let Predicates = [IsLE] in {
   2232   // We must use ST1 to store vectors in big-endian.
   2233   def : Pat<(store (v2f32 FPR64:$Rt),
   2234                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2235             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2236   def : Pat<(store (v8i8 FPR64:$Rt),
   2237                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2238             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2239   def : Pat<(store (v4i16 FPR64:$Rt),
   2240                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2241             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2242   def : Pat<(store (v2i32 FPR64:$Rt),
   2243                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2244             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2245   def : Pat<(store (v4f16 FPR64:$Rt),
   2246                    (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2247             (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2248 }
   2249 def : Pat<(store (v1f64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2250           (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2251 def : Pat<(store (v1i64 FPR64:$Rt), (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
   2252           (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2253 
   2254 // Match all store 128 bits width whose type is compatible with FPR128
   2255 let Predicates = [IsLE] in {
   2256   // We must use ST1 to store vectors in big-endian.
   2257   def : Pat<(store (v4f32 FPR128:$Rt),
   2258                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2259             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2260   def : Pat<(store (v2f64 FPR128:$Rt),
   2261                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2262             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2263   def : Pat<(store (v16i8 FPR128:$Rt),
   2264                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2265             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2266   def : Pat<(store (v8i16 FPR128:$Rt),
   2267                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2268             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2269   def : Pat<(store (v4i32 FPR128:$Rt),
   2270                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2271             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2272   def : Pat<(store (v2i64 FPR128:$Rt),
   2273                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2274             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2275   def : Pat<(store (v2f64 FPR128:$Rt),
   2276                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2277             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2278   def : Pat<(store (v8f16 FPR128:$Rt),
   2279                    (am_unscaled128 GPR64sp:$Rn, simm9:$offset)),
   2280             (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9:$offset)>;
   2281 }
   2282 
   2283 // unscaled i64 truncating stores
   2284 def : Pat<(truncstorei32 GPR64:$Rt, (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
   2285   (STURWi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
   2286 def : Pat<(truncstorei16 GPR64:$Rt, (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
   2287   (STURHHi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
   2288 def : Pat<(truncstorei8 GPR64:$Rt, (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
   2289   (STURBBi (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$Rn, simm9:$offset)>;
   2290 
   2291 //---
   2292 // STR mnemonics fall back to STUR for negative or unaligned offsets.
   2293 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2294                 (STURXi GPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
   2295 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2296                 (STURWi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   2297 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2298                 (STURBi FPR8:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   2299 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2300                 (STURHi FPR16:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   2301 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2302                 (STURSi FPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb32:$offset), 0>;
   2303 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2304                 (STURDi FPR64:$Rt, GPR64sp:$Rn, simm9_offset_fb64:$offset), 0>;
   2305 def : InstAlias<"str $Rt, [$Rn, $offset]",
   2306                 (STURQi FPR128:$Rt, GPR64sp:$Rn, simm9_offset_fb128:$offset), 0>;
   2307 
   2308 def : InstAlias<"strb $Rt, [$Rn, $offset]",
   2309                 (STURBBi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb8:$offset), 0>;
   2310 def : InstAlias<"strh $Rt, [$Rn, $offset]",
   2311                 (STURHHi GPR32:$Rt, GPR64sp:$Rn, simm9_offset_fb16:$offset), 0>;
   2312 
   2313 //---
   2314 // (unscaled immediate, unprivileged)
   2315 defm STTRW : StoreUnprivileged<0b10, 0, 0b00, GPR32, "sttr">;
   2316 defm STTRX : StoreUnprivileged<0b11, 0, 0b00, GPR64, "sttr">;
   2317 
   2318 defm STTRH : StoreUnprivileged<0b01, 0, 0b00, GPR32, "sttrh">;
   2319 defm STTRB : StoreUnprivileged<0b00, 0, 0b00, GPR32, "sttrb">;
   2320 
   2321 //---
   2322 // (immediate pre-indexed)
   2323 def STRWpre : StorePreIdx<0b10, 0, 0b00, GPR32, "str",  pre_store, i32>;
   2324 def STRXpre : StorePreIdx<0b11, 0, 0b00, GPR64, "str",  pre_store, i64>;
   2325 def STRBpre : StorePreIdx<0b00, 1, 0b00, FPR8,  "str",  pre_store, untyped>;
   2326 def STRHpre : StorePreIdx<0b01, 1, 0b00, FPR16, "str",  pre_store, f16>;
   2327 def STRSpre : StorePreIdx<0b10, 1, 0b00, FPR32, "str",  pre_store, f32>;
   2328 def STRDpre : StorePreIdx<0b11, 1, 0b00, FPR64, "str",  pre_store, f64>;
   2329 def STRQpre : StorePreIdx<0b00, 1, 0b10, FPR128, "str", pre_store, f128>;
   2330 
   2331 def STRBBpre : StorePreIdx<0b00, 0, 0b00, GPR32, "strb", pre_truncsti8,  i32>;
   2332 def STRHHpre : StorePreIdx<0b01, 0, 0b00, GPR32, "strh", pre_truncsti16, i32>;
   2333 
   2334 // truncstore i64
   2335 def : Pat<(pre_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2336   (STRWpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2337            simm9:$off)>;
   2338 def : Pat<(pre_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2339   (STRHHpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2340             simm9:$off)>;
   2341 def : Pat<(pre_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2342   (STRBBpre (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2343             simm9:$off)>;
   2344 
   2345 def : Pat<(pre_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2346           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2347 def : Pat<(pre_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2348           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2349 def : Pat<(pre_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2350           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2351 def : Pat<(pre_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2352           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2353 def : Pat<(pre_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2354           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2355 def : Pat<(pre_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2356           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2357 def : Pat<(pre_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2358           (STRDpre FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2359 
   2360 def : Pat<(pre_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2361           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2362 def : Pat<(pre_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2363           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2364 def : Pat<(pre_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2365           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2366 def : Pat<(pre_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2367           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2368 def : Pat<(pre_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2369           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2370 def : Pat<(pre_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2371           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2372 def : Pat<(pre_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2373           (STRQpre FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2374 
   2375 //---
   2376 // (immediate post-indexed)
   2377 def STRWpost : StorePostIdx<0b10, 0, 0b00, GPR32,  "str", post_store, i32>;
   2378 def STRXpost : StorePostIdx<0b11, 0, 0b00, GPR64,  "str", post_store, i64>;
   2379 def STRBpost : StorePostIdx<0b00, 1, 0b00, FPR8,   "str", post_store, untyped>;
   2380 def STRHpost : StorePostIdx<0b01, 1, 0b00, FPR16,  "str", post_store, f16>;
   2381 def STRSpost : StorePostIdx<0b10, 1, 0b00, FPR32,  "str", post_store, f32>;
   2382 def STRDpost : StorePostIdx<0b11, 1, 0b00, FPR64,  "str", post_store, f64>;
   2383 def STRQpost : StorePostIdx<0b00, 1, 0b10, FPR128, "str", post_store, f128>;
   2384 
   2385 def STRBBpost : StorePostIdx<0b00, 0, 0b00, GPR32, "strb", post_truncsti8, i32>;
   2386 def STRHHpost : StorePostIdx<0b01, 0, 0b00, GPR32, "strh", post_truncsti16, i32>;
   2387 
   2388 // truncstore i64
   2389 def : Pat<(post_truncsti32 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2390   (STRWpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2391             simm9:$off)>;
   2392 def : Pat<(post_truncsti16 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2393   (STRHHpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2394              simm9:$off)>;
   2395 def : Pat<(post_truncsti8 GPR64:$Rt, GPR64sp:$addr, simm9:$off),
   2396   (STRBBpost (EXTRACT_SUBREG GPR64:$Rt, sub_32), GPR64sp:$addr,
   2397              simm9:$off)>;
   2398 
   2399 def : Pat<(post_store (v8i8 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2400           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2401 def : Pat<(post_store (v4i16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2402           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2403 def : Pat<(post_store (v2i32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2404           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2405 def : Pat<(post_store (v2f32 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2406           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2407 def : Pat<(post_store (v1i64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2408           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2409 def : Pat<(post_store (v1f64 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2410           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2411 def : Pat<(post_store (v4f16 FPR64:$Rt), GPR64sp:$addr, simm9:$off),
   2412           (STRDpost FPR64:$Rt, GPR64sp:$addr, simm9:$off)>;
   2413 
   2414 def : Pat<(post_store (v16i8 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2415           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2416 def : Pat<(post_store (v8i16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2417           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2418 def : Pat<(post_store (v4i32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2419           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2420 def : Pat<(post_store (v4f32 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2421           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2422 def : Pat<(post_store (v2i64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2423           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2424 def : Pat<(post_store (v2f64 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2425           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2426 def : Pat<(post_store (v8f16 FPR128:$Rt), GPR64sp:$addr, simm9:$off),
   2427           (STRQpost FPR128:$Rt, GPR64sp:$addr, simm9:$off)>;
   2428 
   2429 //===----------------------------------------------------------------------===//
   2430 // Load/store exclusive instructions.
   2431 //===----------------------------------------------------------------------===//
   2432 
   2433 def LDARW  : LoadAcquire   <0b10, 1, 1, 0, 1, GPR32, "ldar">;
   2434 def LDARX  : LoadAcquire   <0b11, 1, 1, 0, 1, GPR64, "ldar">;
   2435 def LDARB  : LoadAcquire   <0b00, 1, 1, 0, 1, GPR32, "ldarb">;
   2436 def LDARH  : LoadAcquire   <0b01, 1, 1, 0, 1, GPR32, "ldarh">;
   2437 
   2438 def LDAXRW : LoadExclusive <0b10, 0, 1, 0, 1, GPR32, "ldaxr">;
   2439 def LDAXRX : LoadExclusive <0b11, 0, 1, 0, 1, GPR64, "ldaxr">;
   2440 def LDAXRB : LoadExclusive <0b00, 0, 1, 0, 1, GPR32, "ldaxrb">;
   2441 def LDAXRH : LoadExclusive <0b01, 0, 1, 0, 1, GPR32, "ldaxrh">;
   2442 
   2443 def LDXRW  : LoadExclusive <0b10, 0, 1, 0, 0, GPR32, "ldxr">;
   2444 def LDXRX  : LoadExclusive <0b11, 0, 1, 0, 0, GPR64, "ldxr">;
   2445 def LDXRB  : LoadExclusive <0b00, 0, 1, 0, 0, GPR32, "ldxrb">;
   2446 def LDXRH  : LoadExclusive <0b01, 0, 1, 0, 0, GPR32, "ldxrh">;
   2447 
   2448 def STLRW  : StoreRelease  <0b10, 1, 0, 0, 1, GPR32, "stlr">;
   2449 def STLRX  : StoreRelease  <0b11, 1, 0, 0, 1, GPR64, "stlr">;
   2450 def STLRB  : StoreRelease  <0b00, 1, 0, 0, 1, GPR32, "stlrb">;
   2451 def STLRH  : StoreRelease  <0b01, 1, 0, 0, 1, GPR32, "stlrh">;
   2452 
   2453 def STLXRW : StoreExclusive<0b10, 0, 0, 0, 1, GPR32, "stlxr">;
   2454 def STLXRX : StoreExclusive<0b11, 0, 0, 0, 1, GPR64, "stlxr">;
   2455 def STLXRB : StoreExclusive<0b00, 0, 0, 0, 1, GPR32, "stlxrb">;
   2456 def STLXRH : StoreExclusive<0b01, 0, 0, 0, 1, GPR32, "stlxrh">;
   2457 
   2458 def STXRW  : StoreExclusive<0b10, 0, 0, 0, 0, GPR32, "stxr">;
   2459 def STXRX  : StoreExclusive<0b11, 0, 0, 0, 0, GPR64, "stxr">;
   2460 def STXRB  : StoreExclusive<0b00, 0, 0, 0, 0, GPR32, "stxrb">;
   2461 def STXRH  : StoreExclusive<0b01, 0, 0, 0, 0, GPR32, "stxrh">;
   2462 
   2463 def LDAXPW : LoadExclusivePair<0b10, 0, 1, 1, 1, GPR32, "ldaxp">;
   2464 def LDAXPX : LoadExclusivePair<0b11, 0, 1, 1, 1, GPR64, "ldaxp">;
   2465 
   2466 def LDXPW  : LoadExclusivePair<0b10, 0, 1, 1, 0, GPR32, "ldxp">;
   2467 def LDXPX  : LoadExclusivePair<0b11, 0, 1, 1, 0, GPR64, "ldxp">;
   2468 
   2469 def STLXPW : StoreExclusivePair<0b10, 0, 0, 1, 1, GPR32, "stlxp">;
   2470 def STLXPX : StoreExclusivePair<0b11, 0, 0, 1, 1, GPR64, "stlxp">;
   2471 
   2472 def STXPW  : StoreExclusivePair<0b10, 0, 0, 1, 0, GPR32, "stxp">;
   2473 def STXPX  : StoreExclusivePair<0b11, 0, 0, 1, 0, GPR64, "stxp">;
   2474 
   2475 let Predicates = [HasV8_1a] in {
   2476   // v8.1a "Limited Order Region" extension load-acquire instructions
   2477   def LDLARW  : LoadAcquire   <0b10, 1, 1, 0, 0, GPR32, "ldlar">;
   2478   def LDLARX  : LoadAcquire   <0b11, 1, 1, 0, 0, GPR64, "ldlar">;
   2479   def LDLARB  : LoadAcquire   <0b00, 1, 1, 0, 0, GPR32, "ldlarb">;
   2480   def LDLARH  : LoadAcquire   <0b01, 1, 1, 0, 0, GPR32, "ldlarh">;
   2481 
   2482   // v8.1a "Limited Order Region" extension store-release instructions
   2483   def STLLRW  : StoreRelease   <0b10, 1, 0, 0, 0, GPR32, "stllr">;
   2484   def STLLRX  : StoreRelease   <0b11, 1, 0, 0, 0, GPR64, "stllr">;
   2485   def STLLRB  : StoreRelease   <0b00, 1, 0, 0, 0, GPR32, "stllrb">;
   2486   def STLLRH  : StoreRelease   <0b01, 1, 0, 0, 0, GPR32, "stllrh">;
   2487 }
   2488 
   2489 //===----------------------------------------------------------------------===//
   2490 // Scaled floating point to integer conversion instructions.
   2491 //===----------------------------------------------------------------------===//
   2492 
   2493 defm FCVTAS : FPToIntegerUnscaled<0b00, 0b100, "fcvtas", int_aarch64_neon_fcvtas>;
   2494 defm FCVTAU : FPToIntegerUnscaled<0b00, 0b101, "fcvtau", int_aarch64_neon_fcvtau>;
   2495 defm FCVTMS : FPToIntegerUnscaled<0b10, 0b000, "fcvtms", int_aarch64_neon_fcvtms>;
   2496 defm FCVTMU : FPToIntegerUnscaled<0b10, 0b001, "fcvtmu", int_aarch64_neon_fcvtmu>;
   2497 defm FCVTNS : FPToIntegerUnscaled<0b00, 0b000, "fcvtns", int_aarch64_neon_fcvtns>;
   2498 defm FCVTNU : FPToIntegerUnscaled<0b00, 0b001, "fcvtnu", int_aarch64_neon_fcvtnu>;
   2499 defm FCVTPS : FPToIntegerUnscaled<0b01, 0b000, "fcvtps", int_aarch64_neon_fcvtps>;
   2500 defm FCVTPU : FPToIntegerUnscaled<0b01, 0b001, "fcvtpu", int_aarch64_neon_fcvtpu>;
   2501 defm FCVTZS : FPToIntegerUnscaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
   2502 defm FCVTZU : FPToIntegerUnscaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
   2503 defm FCVTZS : FPToIntegerScaled<0b11, 0b000, "fcvtzs", fp_to_sint>;
   2504 defm FCVTZU : FPToIntegerScaled<0b11, 0b001, "fcvtzu", fp_to_uint>;
   2505 
   2506 multiclass FPToIntegerIntPats<Intrinsic round, string INST> {
   2507   def : Pat<(i32 (round f16:$Rn)), (!cast<Instruction>(INST # UWHr) $Rn)>;
   2508   def : Pat<(i64 (round f16:$Rn)), (!cast<Instruction>(INST # UXHr) $Rn)>;
   2509   def : Pat<(i32 (round f32:$Rn)), (!cast<Instruction>(INST # UWSr) $Rn)>;
   2510   def : Pat<(i64 (round f32:$Rn)), (!cast<Instruction>(INST # UXSr) $Rn)>;
   2511   def : Pat<(i32 (round f64:$Rn)), (!cast<Instruction>(INST # UWDr) $Rn)>;
   2512   def : Pat<(i64 (round f64:$Rn)), (!cast<Instruction>(INST # UXDr) $Rn)>;
   2513 
   2514   def : Pat<(i32 (round (fmul f16:$Rn, fixedpoint_f16_i32:$scale))),
   2515             (!cast<Instruction>(INST # SWHri) $Rn, $scale)>;
   2516   def : Pat<(i64 (round (fmul f16:$Rn, fixedpoint_f16_i64:$scale))),
   2517             (!cast<Instruction>(INST # SXHri) $Rn, $scale)>;
   2518   def : Pat<(i32 (round (fmul f32:$Rn, fixedpoint_f32_i32:$scale))),
   2519             (!cast<Instruction>(INST # SWSri) $Rn, $scale)>;
   2520   def : Pat<(i64 (round (fmul f32:$Rn, fixedpoint_f32_i64:$scale))),
   2521             (!cast<Instruction>(INST # SXSri) $Rn, $scale)>;
   2522   def : Pat<(i32 (round (fmul f64:$Rn, fixedpoint_f64_i32:$scale))),
   2523             (!cast<Instruction>(INST # SWDri) $Rn, $scale)>;
   2524   def : Pat<(i64 (round (fmul f64:$Rn, fixedpoint_f64_i64:$scale))),
   2525             (!cast<Instruction>(INST # SXDri) $Rn, $scale)>;
   2526 }
   2527 
   2528 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzs, "FCVTZS">;
   2529 defm : FPToIntegerIntPats<int_aarch64_neon_fcvtzu, "FCVTZU">;
   2530 
   2531 multiclass FPToIntegerPats<SDNode to_int, SDNode round, string INST> {
   2532   def : Pat<(i32 (to_int (round f32:$Rn))),
   2533             (!cast<Instruction>(INST # UWSr) f32:$Rn)>;
   2534   def : Pat<(i64 (to_int (round f32:$Rn))),
   2535             (!cast<Instruction>(INST # UXSr) f32:$Rn)>;
   2536   def : Pat<(i32 (to_int (round f64:$Rn))),
   2537             (!cast<Instruction>(INST # UWDr) f64:$Rn)>;
   2538   def : Pat<(i64 (to_int (round f64:$Rn))),
   2539             (!cast<Instruction>(INST # UXDr) f64:$Rn)>;
   2540 }
   2541 
   2542 defm : FPToIntegerPats<fp_to_sint, fceil,  "FCVTPS">;
   2543 defm : FPToIntegerPats<fp_to_uint, fceil,  "FCVTPU">;
   2544 defm : FPToIntegerPats<fp_to_sint, ffloor, "FCVTMS">;
   2545 defm : FPToIntegerPats<fp_to_uint, ffloor, "FCVTMU">;
   2546 defm : FPToIntegerPats<fp_to_sint, ftrunc, "FCVTZS">;
   2547 defm : FPToIntegerPats<fp_to_uint, ftrunc, "FCVTZU">;
   2548 defm : FPToIntegerPats<fp_to_sint, frnd,   "FCVTAS">;
   2549 defm : FPToIntegerPats<fp_to_uint, frnd,   "FCVTAU">;
   2550 
   2551 //===----------------------------------------------------------------------===//
   2552 // Scaled integer to floating point conversion instructions.
   2553 //===----------------------------------------------------------------------===//
   2554 
   2555 defm SCVTF : IntegerToFP<0, "scvtf", sint_to_fp>;
   2556 defm UCVTF : IntegerToFP<1, "ucvtf", uint_to_fp>;
   2557 
   2558 //===----------------------------------------------------------------------===//
   2559 // Unscaled integer to floating point conversion instruction.
   2560 //===----------------------------------------------------------------------===//
   2561 
   2562 defm FMOV : UnscaledConversion<"fmov">;
   2563 
   2564 // Add pseudo ops for FMOV 0 so we can mark them as isReMaterializable
   2565 let isReMaterializable = 1, isCodeGenOnly = 1, isAsCheapAsAMove = 1 in {
   2566 def FMOVS0 : Pseudo<(outs FPR32:$Rd), (ins), [(set f32:$Rd, (fpimm0))]>,
   2567     Sched<[WriteF]>;
   2568 def FMOVD0 : Pseudo<(outs FPR64:$Rd), (ins), [(set f64:$Rd, (fpimm0))]>,
   2569     Sched<[WriteF]>;
   2570 }
   2571 
   2572 //===----------------------------------------------------------------------===//
   2573 // Floating point conversion instruction.
   2574 //===----------------------------------------------------------------------===//
   2575 
   2576 defm FCVT : FPConversion<"fcvt">;
   2577 
   2578 //===----------------------------------------------------------------------===//
   2579 // Floating point single operand instructions.
   2580 //===----------------------------------------------------------------------===//
   2581 
   2582 defm FABS   : SingleOperandFPData<0b0001, "fabs", fabs>;
   2583 defm FMOV   : SingleOperandFPData<0b0000, "fmov">;
   2584 defm FNEG   : SingleOperandFPData<0b0010, "fneg", fneg>;
   2585 defm FRINTA : SingleOperandFPData<0b1100, "frinta", frnd>;
   2586 defm FRINTI : SingleOperandFPData<0b1111, "frinti", fnearbyint>;
   2587 defm FRINTM : SingleOperandFPData<0b1010, "frintm", ffloor>;
   2588 defm FRINTN : SingleOperandFPData<0b1000, "frintn", int_aarch64_neon_frintn>;
   2589 defm FRINTP : SingleOperandFPData<0b1001, "frintp", fceil>;
   2590 
   2591 def : Pat<(v1f64 (int_aarch64_neon_frintn (v1f64 FPR64:$Rn))),
   2592           (FRINTNDr FPR64:$Rn)>;
   2593 
   2594 defm FRINTX : SingleOperandFPData<0b1110, "frintx", frint>;
   2595 defm FRINTZ : SingleOperandFPData<0b1011, "frintz", ftrunc>;
   2596 
   2597 let SchedRW = [WriteFDiv] in {
   2598 defm FSQRT  : SingleOperandFPData<0b0011, "fsqrt", fsqrt>;
   2599 }
   2600 
   2601 //===----------------------------------------------------------------------===//
   2602 // Floating point two operand instructions.
   2603 //===----------------------------------------------------------------------===//
   2604 
   2605 defm FADD   : TwoOperandFPData<0b0010, "fadd", fadd>;
   2606 let SchedRW = [WriteFDiv] in {
   2607 defm FDIV   : TwoOperandFPData<0b0001, "fdiv", fdiv>;
   2608 }
   2609 defm FMAXNM : TwoOperandFPData<0b0110, "fmaxnm", fmaxnum>;
   2610 defm FMAX   : TwoOperandFPData<0b0100, "fmax", fmaxnan>;
   2611 defm FMINNM : TwoOperandFPData<0b0111, "fminnm", fminnum>;
   2612 defm FMIN   : TwoOperandFPData<0b0101, "fmin", fminnan>;
   2613 let SchedRW = [WriteFMul] in {
   2614 defm FMUL   : TwoOperandFPData<0b0000, "fmul", fmul>;
   2615 defm FNMUL  : TwoOperandFPDataNeg<0b1000, "fnmul", fmul>;
   2616 }
   2617 defm FSUB   : TwoOperandFPData<0b0011, "fsub", fsub>;
   2618 
   2619 def : Pat<(v1f64 (fmaxnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   2620           (FMAXDrr FPR64:$Rn, FPR64:$Rm)>;
   2621 def : Pat<(v1f64 (fminnan (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   2622           (FMINDrr FPR64:$Rn, FPR64:$Rm)>;
   2623 def : Pat<(v1f64 (fmaxnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   2624           (FMAXNMDrr FPR64:$Rn, FPR64:$Rm)>;
   2625 def : Pat<(v1f64 (fminnum (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   2626           (FMINNMDrr FPR64:$Rn, FPR64:$Rm)>;
   2627 
   2628 //===----------------------------------------------------------------------===//
   2629 // Floating point three operand instructions.
   2630 //===----------------------------------------------------------------------===//
   2631 
   2632 defm FMADD  : ThreeOperandFPData<0, 0, "fmadd", fma>;
   2633 defm FMSUB  : ThreeOperandFPData<0, 1, "fmsub",
   2634      TriOpFrag<(fma node:$LHS, (fneg node:$MHS), node:$RHS)> >;
   2635 defm FNMADD : ThreeOperandFPData<1, 0, "fnmadd",
   2636      TriOpFrag<(fneg (fma node:$LHS, node:$MHS, node:$RHS))> >;
   2637 defm FNMSUB : ThreeOperandFPData<1, 1, "fnmsub",
   2638      TriOpFrag<(fma node:$LHS, node:$MHS, (fneg node:$RHS))> >;
   2639 
   2640 // The following def pats catch the case where the LHS of an FMA is negated.
   2641 // The TriOpFrag above catches the case where the middle operand is negated.
   2642 
   2643 // N.b. FMSUB etc have the accumulator at the *end* of (outs), unlike
   2644 // the NEON variant.
   2645 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, FPR32:$Ra)),
   2646           (FMSUBSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2647 
   2648 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, FPR64:$Ra)),
   2649           (FMSUBDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2650 
   2651 // We handled -(a + b*c) for FNMADD above, now it's time for "(-a) + (-b)*c" and
   2652 // "(-a) + b*(-c)".
   2653 def : Pat<(f32 (fma (fneg FPR32:$Rn), FPR32:$Rm, (fneg FPR32:$Ra))),
   2654           (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2655 
   2656 def : Pat<(f64 (fma (fneg FPR64:$Rn), FPR64:$Rm, (fneg FPR64:$Ra))),
   2657           (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2658 
   2659 def : Pat<(f32 (fma FPR32:$Rn, (fneg FPR32:$Rm), (fneg FPR32:$Ra))),
   2660           (FNMADDSrrr FPR32:$Rn, FPR32:$Rm, FPR32:$Ra)>;
   2661 
   2662 def : Pat<(f64 (fma FPR64:$Rn, (fneg FPR64:$Rm), (fneg FPR64:$Ra))),
   2663           (FNMADDDrrr FPR64:$Rn, FPR64:$Rm, FPR64:$Ra)>;
   2664 
   2665 //===----------------------------------------------------------------------===//
   2666 // Floating point comparison instructions.
   2667 //===----------------------------------------------------------------------===//
   2668 
   2669 defm FCMPE : FPComparison<1, "fcmpe">;
   2670 defm FCMP  : FPComparison<0, "fcmp", AArch64fcmp>;
   2671 
   2672 //===----------------------------------------------------------------------===//
   2673 // Floating point conditional comparison instructions.
   2674 //===----------------------------------------------------------------------===//
   2675 
   2676 defm FCCMPE : FPCondComparison<1, "fccmpe">;
   2677 defm FCCMP  : FPCondComparison<0, "fccmp", AArch64fccmp>;
   2678 
   2679 //===----------------------------------------------------------------------===//
   2680 // Floating point conditional select instruction.
   2681 //===----------------------------------------------------------------------===//
   2682 
   2683 defm FCSEL : FPCondSelect<"fcsel">;
   2684 
   2685 // CSEL instructions providing f128 types need to be handled by a
   2686 // pseudo-instruction since the eventual code will need to introduce basic
   2687 // blocks and control flow.
   2688 def F128CSEL : Pseudo<(outs FPR128:$Rd),
   2689                       (ins FPR128:$Rn, FPR128:$Rm, ccode:$cond),
   2690                       [(set (f128 FPR128:$Rd),
   2691                             (AArch64csel FPR128:$Rn, FPR128:$Rm,
   2692                                        (i32 imm:$cond), NZCV))]> {
   2693   let Uses = [NZCV];
   2694   let usesCustomInserter = 1;
   2695   let hasNoSchedulingInfo = 1;
   2696 }
   2697 
   2698 
   2699 //===----------------------------------------------------------------------===//
   2700 // Floating point immediate move.
   2701 //===----------------------------------------------------------------------===//
   2702 
   2703 let isReMaterializable = 1 in {
   2704 defm FMOV : FPMoveImmediate<"fmov">;
   2705 }
   2706 
   2707 //===----------------------------------------------------------------------===//
   2708 // Advanced SIMD two vector instructions.
   2709 //===----------------------------------------------------------------------===//
   2710 
   2711 defm UABDL   : SIMDLongThreeVectorBHSabdl<1, 0b0111, "uabdl",
   2712                                           int_aarch64_neon_uabd>;
   2713 // Match UABDL in log2-shuffle patterns.
   2714 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
   2715                (v8i16 (add (sub (zext (v8i8 V64:$opA)),
   2716                                 (zext (v8i8 V64:$opB))),
   2717                            (AArch64vashr v8i16:$src, (i32 15))))),
   2718           (UABDLv8i8_v8i16 V64:$opA, V64:$opB)>;
   2719 def : Pat<(xor (v8i16 (AArch64vashr v8i16:$src, (i32 15))),
   2720                (v8i16 (add (sub (zext (extract_high_v16i8 V128:$opA)),
   2721                                 (zext (extract_high_v16i8 V128:$opB))),
   2722                            (AArch64vashr v8i16:$src, (i32 15))))),
   2723           (UABDLv16i8_v8i16 V128:$opA, V128:$opB)>;
   2724 def : Pat<(xor (v4i32 (AArch64vashr v4i32:$src, (i32 31))),
   2725                (v4i32 (add (sub (zext (v4i16 V64:$opA)),
   2726                                 (zext (v4i16 V64:$opB))),
   2727                            (AArch64vashr v4i32:$src, (i32 31))))),
   2728           (UABDLv4i16_v4i32 V64:$opA, V64:$opB)>;
   2729 def : Pat<(xor (v4i32 (AArch64vashr v4i32:$src, (i32 31))),
   2730                (v4i32 (add (sub (zext (extract_high_v8i16 V128:$opA)),
   2731                                 (zext (extract_high_v8i16 V128:$opB))),
   2732                           (AArch64vashr v4i32:$src, (i32 31))))),
   2733           (UABDLv8i16_v4i32 V128:$opA, V128:$opB)>;
   2734 def : Pat<(xor (v2i64 (AArch64vashr v2i64:$src, (i32 63))),
   2735                (v2i64 (add (sub (zext (v2i32 V64:$opA)),
   2736                                 (zext (v2i32 V64:$opB))),
   2737                            (AArch64vashr v2i64:$src, (i32 63))))),
   2738           (UABDLv2i32_v2i64 V64:$opA, V64:$opB)>;
   2739 def : Pat<(xor (v2i64 (AArch64vashr v2i64:$src, (i32 63))),
   2740                (v2i64 (add (sub (zext (extract_high_v4i32 V128:$opA)),
   2741                                 (zext (extract_high_v4i32 V128:$opB))),
   2742                           (AArch64vashr v2i64:$src, (i32 63))))),
   2743           (UABDLv4i32_v2i64 V128:$opA, V128:$opB)>;
   2744 
   2745 defm ABS    : SIMDTwoVectorBHSD<0, 0b01011, "abs", int_aarch64_neon_abs>;
   2746 def : Pat<(xor (v8i8 (AArch64vashr V64:$src, (i32 7))),
   2747                (v8i8 (add V64:$src, (AArch64vashr V64:$src, (i32 7))))),
   2748           (ABSv8i8 V64:$src)>;
   2749 def : Pat<(xor (v4i16 (AArch64vashr V64:$src, (i32 15))),
   2750                (v4i16 (add V64:$src, (AArch64vashr V64:$src, (i32 15))))),
   2751           (ABSv4i16 V64:$src)>;
   2752 def : Pat<(xor (v2i32 (AArch64vashr V64:$src, (i32 31))),
   2753                (v2i32 (add V64:$src, (AArch64vashr V64:$src, (i32 31))))),
   2754           (ABSv2i32 V64:$src)>;
   2755 def : Pat<(xor (v16i8 (AArch64vashr V128:$src, (i32 7))),
   2756                (v16i8 (add V128:$src, (AArch64vashr V128:$src, (i32 7))))),
   2757           (ABSv16i8 V128:$src)>;
   2758 def : Pat<(xor (v8i16 (AArch64vashr V128:$src, (i32 15))),
   2759                (v8i16 (add V128:$src, (AArch64vashr V128:$src, (i32 15))))),
   2760           (ABSv8i16 V128:$src)>;
   2761 def : Pat<(xor (v4i32 (AArch64vashr V128:$src, (i32 31))),
   2762                (v4i32 (add V128:$src, (AArch64vashr V128:$src, (i32 31))))),
   2763           (ABSv4i32 V128:$src)>;
   2764 def : Pat<(xor (v2i64 (AArch64vashr V128:$src, (i32 63))),
   2765                (v2i64 (add V128:$src, (AArch64vashr V128:$src, (i32 63))))),
   2766           (ABSv2i64 V128:$src)>;
   2767 
   2768 defm CLS    : SIMDTwoVectorBHS<0, 0b00100, "cls", int_aarch64_neon_cls>;
   2769 defm CLZ    : SIMDTwoVectorBHS<1, 0b00100, "clz", ctlz>;
   2770 defm CMEQ   : SIMDCmpTwoVector<0, 0b01001, "cmeq", AArch64cmeqz>;
   2771 defm CMGE   : SIMDCmpTwoVector<1, 0b01000, "cmge", AArch64cmgez>;
   2772 defm CMGT   : SIMDCmpTwoVector<0, 0b01000, "cmgt", AArch64cmgtz>;
   2773 defm CMLE   : SIMDCmpTwoVector<1, 0b01001, "cmle", AArch64cmlez>;
   2774 defm CMLT   : SIMDCmpTwoVector<0, 0b01010, "cmlt", AArch64cmltz>;
   2775 defm CNT    : SIMDTwoVectorB<0, 0b00, 0b00101, "cnt", ctpop>;
   2776 defm FABS   : SIMDTwoVectorFP<0, 1, 0b01111, "fabs", fabs>;
   2777 
   2778 defm FCMEQ  : SIMDFPCmpTwoVector<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
   2779 defm FCMGE  : SIMDFPCmpTwoVector<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
   2780 defm FCMGT  : SIMDFPCmpTwoVector<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
   2781 defm FCMLE  : SIMDFPCmpTwoVector<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
   2782 defm FCMLT  : SIMDFPCmpTwoVector<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
   2783 defm FCVTAS : SIMDTwoVectorFPToInt<0,0,0b11100, "fcvtas",int_aarch64_neon_fcvtas>;
   2784 defm FCVTAU : SIMDTwoVectorFPToInt<1,0,0b11100, "fcvtau",int_aarch64_neon_fcvtau>;
   2785 defm FCVTL  : SIMDFPWidenTwoVector<0, 0, 0b10111, "fcvtl">;
   2786 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (v4i16 V64:$Rn))),
   2787           (FCVTLv4i16 V64:$Rn)>;
   2788 def : Pat<(v4f32 (int_aarch64_neon_vcvthf2fp (extract_subvector (v8i16 V128:$Rn),
   2789                                                               (i64 4)))),
   2790           (FCVTLv8i16 V128:$Rn)>;
   2791 def : Pat<(v2f64 (fextend (v2f32 V64:$Rn))), (FCVTLv2i32 V64:$Rn)>;
   2792 def : Pat<(v2f64 (fextend (v2f32 (extract_subvector (v4f32 V128:$Rn),
   2793                                                     (i64 2))))),
   2794           (FCVTLv4i32 V128:$Rn)>;
   2795 
   2796 def : Pat<(v4f32 (fextend (v4f16 V64:$Rn))), (FCVTLv4i16 V64:$Rn)>;
   2797 def : Pat<(v4f32 (fextend (v4f16 (extract_subvector (v8f16 V128:$Rn),
   2798                                                     (i64 4))))),
   2799           (FCVTLv8i16 V128:$Rn)>;
   2800 
   2801 defm FCVTMS : SIMDTwoVectorFPToInt<0,0,0b11011, "fcvtms",int_aarch64_neon_fcvtms>;
   2802 defm FCVTMU : SIMDTwoVectorFPToInt<1,0,0b11011, "fcvtmu",int_aarch64_neon_fcvtmu>;
   2803 defm FCVTNS : SIMDTwoVectorFPToInt<0,0,0b11010, "fcvtns",int_aarch64_neon_fcvtns>;
   2804 defm FCVTNU : SIMDTwoVectorFPToInt<1,0,0b11010, "fcvtnu",int_aarch64_neon_fcvtnu>;
   2805 defm FCVTN  : SIMDFPNarrowTwoVector<0, 0, 0b10110, "fcvtn">;
   2806 def : Pat<(v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn))),
   2807           (FCVTNv4i16 V128:$Rn)>;
   2808 def : Pat<(concat_vectors V64:$Rd,
   2809                           (v4i16 (int_aarch64_neon_vcvtfp2hf (v4f32 V128:$Rn)))),
   2810           (FCVTNv8i16 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
   2811 def : Pat<(v2f32 (fround (v2f64 V128:$Rn))), (FCVTNv2i32 V128:$Rn)>;
   2812 def : Pat<(v4f16 (fround (v4f32 V128:$Rn))), (FCVTNv4i16 V128:$Rn)>;
   2813 def : Pat<(concat_vectors V64:$Rd, (v2f32 (fround (v2f64 V128:$Rn)))),
   2814           (FCVTNv4i32 (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), V128:$Rn)>;
   2815 defm FCVTPS : SIMDTwoVectorFPToInt<0,1,0b11010, "fcvtps",int_aarch64_neon_fcvtps>;
   2816 defm FCVTPU : SIMDTwoVectorFPToInt<1,1,0b11010, "fcvtpu",int_aarch64_neon_fcvtpu>;
   2817 defm FCVTXN : SIMDFPInexactCvtTwoVector<1, 0, 0b10110, "fcvtxn",
   2818                                         int_aarch64_neon_fcvtxn>;
   2819 defm FCVTZS : SIMDTwoVectorFPToInt<0, 1, 0b11011, "fcvtzs", fp_to_sint>;
   2820 defm FCVTZU : SIMDTwoVectorFPToInt<1, 1, 0b11011, "fcvtzu", fp_to_uint>;
   2821 
   2822 def : Pat<(v4i16 (int_aarch64_neon_fcvtzs v4f16:$Rn)), (FCVTZSv4f16 $Rn)>;
   2823 def : Pat<(v8i16 (int_aarch64_neon_fcvtzs v8f16:$Rn)), (FCVTZSv8f16 $Rn)>;
   2824 def : Pat<(v2i32 (int_aarch64_neon_fcvtzs v2f32:$Rn)), (FCVTZSv2f32 $Rn)>;
   2825 def : Pat<(v4i32 (int_aarch64_neon_fcvtzs v4f32:$Rn)), (FCVTZSv4f32 $Rn)>;
   2826 def : Pat<(v2i64 (int_aarch64_neon_fcvtzs v2f64:$Rn)), (FCVTZSv2f64 $Rn)>;
   2827 
   2828 def : Pat<(v4i16 (int_aarch64_neon_fcvtzu v4f16:$Rn)), (FCVTZUv4f16 $Rn)>;
   2829 def : Pat<(v8i16 (int_aarch64_neon_fcvtzu v8f16:$Rn)), (FCVTZUv8f16 $Rn)>;
   2830 def : Pat<(v2i32 (int_aarch64_neon_fcvtzu v2f32:$Rn)), (FCVTZUv2f32 $Rn)>;
   2831 def : Pat<(v4i32 (int_aarch64_neon_fcvtzu v4f32:$Rn)), (FCVTZUv4f32 $Rn)>;
   2832 def : Pat<(v2i64 (int_aarch64_neon_fcvtzu v2f64:$Rn)), (FCVTZUv2f64 $Rn)>;
   2833 
   2834 defm FNEG   : SIMDTwoVectorFP<1, 1, 0b01111, "fneg", fneg>;
   2835 defm FRECPE : SIMDTwoVectorFP<0, 1, 0b11101, "frecpe", int_aarch64_neon_frecpe>;
   2836 defm FRINTA : SIMDTwoVectorFP<1, 0, 0b11000, "frinta", frnd>;
   2837 defm FRINTI : SIMDTwoVectorFP<1, 1, 0b11001, "frinti", fnearbyint>;
   2838 defm FRINTM : SIMDTwoVectorFP<0, 0, 0b11001, "frintm", ffloor>;
   2839 defm FRINTN : SIMDTwoVectorFP<0, 0, 0b11000, "frintn", int_aarch64_neon_frintn>;
   2840 defm FRINTP : SIMDTwoVectorFP<0, 1, 0b11000, "frintp", fceil>;
   2841 defm FRINTX : SIMDTwoVectorFP<1, 0, 0b11001, "frintx", frint>;
   2842 defm FRINTZ : SIMDTwoVectorFP<0, 1, 0b11001, "frintz", ftrunc>;
   2843 defm FRSQRTE: SIMDTwoVectorFP<1, 1, 0b11101, "frsqrte", int_aarch64_neon_frsqrte>;
   2844 defm FSQRT  : SIMDTwoVectorFP<1, 1, 0b11111, "fsqrt", fsqrt>;
   2845 defm NEG    : SIMDTwoVectorBHSD<1, 0b01011, "neg",
   2846                                UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
   2847 defm NOT    : SIMDTwoVectorB<1, 0b00, 0b00101, "not", vnot>;
   2848 // Aliases for MVN -> NOT.
   2849 def : InstAlias<"mvn{ $Vd.8b, $Vn.8b|.8b $Vd, $Vn}",
   2850                 (NOTv8i8 V64:$Vd, V64:$Vn)>;
   2851 def : InstAlias<"mvn{ $Vd.16b, $Vn.16b|.16b $Vd, $Vn}",
   2852                 (NOTv16i8 V128:$Vd, V128:$Vn)>;
   2853 
   2854 def : Pat<(AArch64neg (v8i8  V64:$Rn)),  (NEGv8i8  V64:$Rn)>;
   2855 def : Pat<(AArch64neg (v16i8 V128:$Rn)), (NEGv16i8 V128:$Rn)>;
   2856 def : Pat<(AArch64neg (v4i16 V64:$Rn)),  (NEGv4i16 V64:$Rn)>;
   2857 def : Pat<(AArch64neg (v8i16 V128:$Rn)), (NEGv8i16 V128:$Rn)>;
   2858 def : Pat<(AArch64neg (v2i32 V64:$Rn)),  (NEGv2i32 V64:$Rn)>;
   2859 def : Pat<(AArch64neg (v4i32 V128:$Rn)), (NEGv4i32 V128:$Rn)>;
   2860 def : Pat<(AArch64neg (v2i64 V128:$Rn)), (NEGv2i64 V128:$Rn)>;
   2861 
   2862 def : Pat<(AArch64not (v8i8 V64:$Rn)),   (NOTv8i8  V64:$Rn)>;
   2863 def : Pat<(AArch64not (v16i8 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   2864 def : Pat<(AArch64not (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   2865 def : Pat<(AArch64not (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   2866 def : Pat<(AArch64not (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   2867 def : Pat<(AArch64not (v1i64 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   2868 def : Pat<(AArch64not (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   2869 def : Pat<(AArch64not (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   2870 
   2871 def : Pat<(vnot (v4i16 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   2872 def : Pat<(vnot (v8i16 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   2873 def : Pat<(vnot (v2i32 V64:$Rn)),  (NOTv8i8  V64:$Rn)>;
   2874 def : Pat<(vnot (v4i32 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   2875 def : Pat<(vnot (v2i64 V128:$Rn)), (NOTv16i8 V128:$Rn)>;
   2876 
   2877 defm RBIT   : SIMDTwoVectorB<1, 0b01, 0b00101, "rbit", int_aarch64_neon_rbit>;
   2878 defm REV16  : SIMDTwoVectorB<0, 0b00, 0b00001, "rev16", AArch64rev16>;
   2879 defm REV32  : SIMDTwoVectorBH<1, 0b00000, "rev32", AArch64rev32>;
   2880 defm REV64  : SIMDTwoVectorBHS<0, 0b00000, "rev64", AArch64rev64>;
   2881 defm SADALP : SIMDLongTwoVectorTied<0, 0b00110, "sadalp",
   2882        BinOpFrag<(add node:$LHS, (int_aarch64_neon_saddlp node:$RHS))> >;
   2883 defm SADDLP : SIMDLongTwoVector<0, 0b00010, "saddlp", int_aarch64_neon_saddlp>;
   2884 defm SCVTF  : SIMDTwoVectorIntToFP<0, 0, 0b11101, "scvtf", sint_to_fp>;
   2885 defm SHLL   : SIMDVectorLShiftLongBySizeBHS;
   2886 defm SQABS  : SIMDTwoVectorBHSD<0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
   2887 defm SQNEG  : SIMDTwoVectorBHSD<1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
   2888 defm SQXTN  : SIMDMixedTwoVector<0, 0b10100, "sqxtn", int_aarch64_neon_sqxtn>;
   2889 defm SQXTUN : SIMDMixedTwoVector<1, 0b10010, "sqxtun", int_aarch64_neon_sqxtun>;
   2890 defm SUQADD : SIMDTwoVectorBHSDTied<0, 0b00011, "suqadd",int_aarch64_neon_suqadd>;
   2891 defm UADALP : SIMDLongTwoVectorTied<1, 0b00110, "uadalp",
   2892        BinOpFrag<(add node:$LHS, (int_aarch64_neon_uaddlp node:$RHS))> >;
   2893 defm UADDLP : SIMDLongTwoVector<1, 0b00010, "uaddlp",
   2894                     int_aarch64_neon_uaddlp>;
   2895 defm UCVTF  : SIMDTwoVectorIntToFP<1, 0, 0b11101, "ucvtf", uint_to_fp>;
   2896 defm UQXTN  : SIMDMixedTwoVector<1, 0b10100, "uqxtn", int_aarch64_neon_uqxtn>;
   2897 defm URECPE : SIMDTwoVectorS<0, 1, 0b11100, "urecpe", int_aarch64_neon_urecpe>;
   2898 defm URSQRTE: SIMDTwoVectorS<1, 1, 0b11100, "ursqrte", int_aarch64_neon_ursqrte>;
   2899 defm USQADD : SIMDTwoVectorBHSDTied<1, 0b00011, "usqadd",int_aarch64_neon_usqadd>;
   2900 defm XTN    : SIMDMixedTwoVector<0, 0b10010, "xtn", trunc>;
   2901 
   2902 def : Pat<(v4f16 (AArch64rev32 V64:$Rn)), (REV32v4i16 V64:$Rn)>;
   2903 def : Pat<(v4f16 (AArch64rev64 V64:$Rn)), (REV64v4i16 V64:$Rn)>;
   2904 def : Pat<(v8f16 (AArch64rev32 V128:$Rn)), (REV32v8i16 V128:$Rn)>;
   2905 def : Pat<(v8f16 (AArch64rev64 V128:$Rn)), (REV64v8i16 V128:$Rn)>;
   2906 def : Pat<(v2f32 (AArch64rev64 V64:$Rn)), (REV64v2i32 V64:$Rn)>;
   2907 def : Pat<(v4f32 (AArch64rev64 V128:$Rn)), (REV64v4i32 V128:$Rn)>;
   2908 
   2909 // Patterns for vector long shift (by element width). These need to match all
   2910 // three of zext, sext and anyext so it's easier to pull the patterns out of the
   2911 // definition.
   2912 multiclass SIMDVectorLShiftLongBySizeBHSPats<SDPatternOperator ext> {
   2913   def : Pat<(AArch64vshl (v8i16 (ext (v8i8 V64:$Rn))), (i32 8)),
   2914             (SHLLv8i8 V64:$Rn)>;
   2915   def : Pat<(AArch64vshl (v8i16 (ext (extract_high_v16i8 V128:$Rn))), (i32 8)),
   2916             (SHLLv16i8 V128:$Rn)>;
   2917   def : Pat<(AArch64vshl (v4i32 (ext (v4i16 V64:$Rn))), (i32 16)),
   2918             (SHLLv4i16 V64:$Rn)>;
   2919   def : Pat<(AArch64vshl (v4i32 (ext (extract_high_v8i16 V128:$Rn))), (i32 16)),
   2920             (SHLLv8i16 V128:$Rn)>;
   2921   def : Pat<(AArch64vshl (v2i64 (ext (v2i32 V64:$Rn))), (i32 32)),
   2922             (SHLLv2i32 V64:$Rn)>;
   2923   def : Pat<(AArch64vshl (v2i64 (ext (extract_high_v4i32 V128:$Rn))), (i32 32)),
   2924             (SHLLv4i32 V128:$Rn)>;
   2925 }
   2926 
   2927 defm : SIMDVectorLShiftLongBySizeBHSPats<anyext>;
   2928 defm : SIMDVectorLShiftLongBySizeBHSPats<zext>;
   2929 defm : SIMDVectorLShiftLongBySizeBHSPats<sext>;
   2930 
   2931 //===----------------------------------------------------------------------===//
   2932 // Advanced SIMD three vector instructions.
   2933 //===----------------------------------------------------------------------===//
   2934 
   2935 defm ADD     : SIMDThreeSameVector<0, 0b10000, "add", add>;
   2936 defm ADDP    : SIMDThreeSameVector<0, 0b10111, "addp", int_aarch64_neon_addp>;
   2937 defm CMEQ    : SIMDThreeSameVector<1, 0b10001, "cmeq", AArch64cmeq>;
   2938 defm CMGE    : SIMDThreeSameVector<0, 0b00111, "cmge", AArch64cmge>;
   2939 defm CMGT    : SIMDThreeSameVector<0, 0b00110, "cmgt", AArch64cmgt>;
   2940 defm CMHI    : SIMDThreeSameVector<1, 0b00110, "cmhi", AArch64cmhi>;
   2941 defm CMHS    : SIMDThreeSameVector<1, 0b00111, "cmhs", AArch64cmhs>;
   2942 defm CMTST   : SIMDThreeSameVector<0, 0b10001, "cmtst", AArch64cmtst>;
   2943 defm FABD    : SIMDThreeSameVectorFP<1,1,0b010,"fabd", int_aarch64_neon_fabd>;
   2944 defm FACGE   : SIMDThreeSameVectorFPCmp<1,0,0b101,"facge",int_aarch64_neon_facge>;
   2945 defm FACGT   : SIMDThreeSameVectorFPCmp<1,1,0b101,"facgt",int_aarch64_neon_facgt>;
   2946 defm FADDP   : SIMDThreeSameVectorFP<1,0,0b010,"faddp",int_aarch64_neon_addp>;
   2947 defm FADD    : SIMDThreeSameVectorFP<0,0,0b010,"fadd", fadd>;
   2948 defm FCMEQ   : SIMDThreeSameVectorFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
   2949 defm FCMGE   : SIMDThreeSameVectorFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
   2950 defm FCMGT   : SIMDThreeSameVectorFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
   2951 defm FDIV    : SIMDThreeSameVectorFP<1,0,0b111,"fdiv", fdiv>;
   2952 defm FMAXNMP : SIMDThreeSameVectorFP<1,0,0b000,"fmaxnmp", int_aarch64_neon_fmaxnmp>;
   2953 defm FMAXNM  : SIMDThreeSameVectorFP<0,0,0b000,"fmaxnm", fmaxnum>;
   2954 defm FMAXP   : SIMDThreeSameVectorFP<1,0,0b110,"fmaxp", int_aarch64_neon_fmaxp>;
   2955 defm FMAX    : SIMDThreeSameVectorFP<0,0,0b110,"fmax", fmaxnan>;
   2956 defm FMINNMP : SIMDThreeSameVectorFP<1,1,0b000,"fminnmp", int_aarch64_neon_fminnmp>;
   2957 defm FMINNM  : SIMDThreeSameVectorFP<0,1,0b000,"fminnm", fminnum>;
   2958 defm FMINP   : SIMDThreeSameVectorFP<1,1,0b110,"fminp", int_aarch64_neon_fminp>;
   2959 defm FMIN    : SIMDThreeSameVectorFP<0,1,0b110,"fmin", fminnan>;
   2960 
   2961 // NOTE: The operands of the PatFrag are reordered on FMLA/FMLS because the
   2962 // instruction expects the addend first, while the fma intrinsic puts it last.
   2963 defm FMLA     : SIMDThreeSameVectorFPTied<0, 0, 0b001, "fmla",
   2964             TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
   2965 defm FMLS     : SIMDThreeSameVectorFPTied<0, 1, 0b001, "fmls",
   2966             TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
   2967 
   2968 // The following def pats catch the case where the LHS of an FMA is negated.
   2969 // The TriOpFrag above catches the case where the middle operand is negated.
   2970 def : Pat<(v2f32 (fma (fneg V64:$Rn), V64:$Rm, V64:$Rd)),
   2971           (FMLSv2f32 V64:$Rd, V64:$Rn, V64:$Rm)>;
   2972 
   2973 def : Pat<(v4f32 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
   2974           (FMLSv4f32 V128:$Rd, V128:$Rn, V128:$Rm)>;
   2975 
   2976 def : Pat<(v2f64 (fma (fneg V128:$Rn), V128:$Rm, V128:$Rd)),
   2977           (FMLSv2f64 V128:$Rd, V128:$Rn, V128:$Rm)>;
   2978 
   2979 defm FMULX    : SIMDThreeSameVectorFP<0,0,0b011,"fmulx", int_aarch64_neon_fmulx>;
   2980 defm FMUL     : SIMDThreeSameVectorFP<1,0,0b011,"fmul", fmul>;
   2981 defm FRECPS   : SIMDThreeSameVectorFP<0,0,0b111,"frecps", int_aarch64_neon_frecps>;
   2982 defm FRSQRTS  : SIMDThreeSameVectorFP<0,1,0b111,"frsqrts", int_aarch64_neon_frsqrts>;
   2983 defm FSUB     : SIMDThreeSameVectorFP<0,1,0b010,"fsub", fsub>;
   2984 defm MLA      : SIMDThreeSameVectorBHSTied<0, 0b10010, "mla",
   2985                       TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))> >;
   2986 defm MLS      : SIMDThreeSameVectorBHSTied<1, 0b10010, "mls",
   2987                       TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))> >;
   2988 defm MUL      : SIMDThreeSameVectorBHS<0, 0b10011, "mul", mul>;
   2989 defm PMUL     : SIMDThreeSameVectorB<1, 0b10011, "pmul", int_aarch64_neon_pmul>;
   2990 defm SABA     : SIMDThreeSameVectorBHSTied<0, 0b01111, "saba",
   2991       TriOpFrag<(add node:$LHS, (int_aarch64_neon_sabd node:$MHS, node:$RHS))> >;
   2992 defm SABD     : SIMDThreeSameVectorBHS<0,0b01110,"sabd", int_aarch64_neon_sabd>;
   2993 defm SHADD    : SIMDThreeSameVectorBHS<0,0b00000,"shadd", int_aarch64_neon_shadd>;
   2994 defm SHSUB    : SIMDThreeSameVectorBHS<0,0b00100,"shsub", int_aarch64_neon_shsub>;
   2995 defm SMAXP    : SIMDThreeSameVectorBHS<0,0b10100,"smaxp", int_aarch64_neon_smaxp>;
   2996 defm SMAX     : SIMDThreeSameVectorBHS<0,0b01100,"smax", smax>;
   2997 defm SMINP    : SIMDThreeSameVectorBHS<0,0b10101,"sminp", int_aarch64_neon_sminp>;
   2998 defm SMIN     : SIMDThreeSameVectorBHS<0,0b01101,"smin", smin>;
   2999 defm SQADD    : SIMDThreeSameVector<0,0b00001,"sqadd", int_aarch64_neon_sqadd>;
   3000 defm SQDMULH  : SIMDThreeSameVectorHS<0,0b10110,"sqdmulh",int_aarch64_neon_sqdmulh>;
   3001 defm SQRDMULH : SIMDThreeSameVectorHS<1,0b10110,"sqrdmulh",int_aarch64_neon_sqrdmulh>;
   3002 defm SQRSHL   : SIMDThreeSameVector<0,0b01011,"sqrshl", int_aarch64_neon_sqrshl>;
   3003 defm SQSHL    : SIMDThreeSameVector<0,0b01001,"sqshl", int_aarch64_neon_sqshl>;
   3004 defm SQSUB    : SIMDThreeSameVector<0,0b00101,"sqsub", int_aarch64_neon_sqsub>;
   3005 defm SRHADD   : SIMDThreeSameVectorBHS<0,0b00010,"srhadd",int_aarch64_neon_srhadd>;
   3006 defm SRSHL    : SIMDThreeSameVector<0,0b01010,"srshl", int_aarch64_neon_srshl>;
   3007 defm SSHL     : SIMDThreeSameVector<0,0b01000,"sshl", int_aarch64_neon_sshl>;
   3008 defm SUB      : SIMDThreeSameVector<1,0b10000,"sub", sub>;
   3009 defm UABA     : SIMDThreeSameVectorBHSTied<1, 0b01111, "uaba",
   3010       TriOpFrag<(add node:$LHS, (int_aarch64_neon_uabd node:$MHS, node:$RHS))> >;
   3011 defm UABD     : SIMDThreeSameVectorBHS<1,0b01110,"uabd", int_aarch64_neon_uabd>;
   3012 defm UHADD    : SIMDThreeSameVectorBHS<1,0b00000,"uhadd", int_aarch64_neon_uhadd>;
   3013 defm UHSUB    : SIMDThreeSameVectorBHS<1,0b00100,"uhsub", int_aarch64_neon_uhsub>;
   3014 defm UMAXP    : SIMDThreeSameVectorBHS<1,0b10100,"umaxp", int_aarch64_neon_umaxp>;
   3015 defm UMAX     : SIMDThreeSameVectorBHS<1,0b01100,"umax", umax>;
   3016 defm UMINP    : SIMDThreeSameVectorBHS<1,0b10101,"uminp", int_aarch64_neon_uminp>;
   3017 defm UMIN     : SIMDThreeSameVectorBHS<1,0b01101,"umin", umin>;
   3018 defm UQADD    : SIMDThreeSameVector<1,0b00001,"uqadd", int_aarch64_neon_uqadd>;
   3019 defm UQRSHL   : SIMDThreeSameVector<1,0b01011,"uqrshl", int_aarch64_neon_uqrshl>;
   3020 defm UQSHL    : SIMDThreeSameVector<1,0b01001,"uqshl", int_aarch64_neon_uqshl>;
   3021 defm UQSUB    : SIMDThreeSameVector<1,0b00101,"uqsub", int_aarch64_neon_uqsub>;
   3022 defm URHADD   : SIMDThreeSameVectorBHS<1,0b00010,"urhadd", int_aarch64_neon_urhadd>;
   3023 defm URSHL    : SIMDThreeSameVector<1,0b01010,"urshl", int_aarch64_neon_urshl>;
   3024 defm USHL     : SIMDThreeSameVector<1,0b01000,"ushl", int_aarch64_neon_ushl>;
   3025 defm SQRDMLAH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10000,"sqrdmlah",
   3026                                                   int_aarch64_neon_sqadd>;
   3027 defm SQRDMLSH : SIMDThreeSameVectorSQRDMLxHTiedHS<1,0b10001,"sqrdmlsh",
   3028                                                     int_aarch64_neon_sqsub>;
   3029 
   3030 defm AND : SIMDLogicalThreeVector<0, 0b00, "and", and>;
   3031 defm BIC : SIMDLogicalThreeVector<0, 0b01, "bic",
   3032                                   BinOpFrag<(and node:$LHS, (vnot node:$RHS))> >;
   3033 defm BIF : SIMDLogicalThreeVector<1, 0b11, "bif">;
   3034 defm BIT : SIMDLogicalThreeVectorTied<1, 0b10, "bit", AArch64bit>;
   3035 defm BSL : SIMDLogicalThreeVectorTied<1, 0b01, "bsl",
   3036     TriOpFrag<(or (and node:$LHS, node:$MHS), (and (vnot node:$LHS), node:$RHS))>>;
   3037 defm EOR : SIMDLogicalThreeVector<1, 0b00, "eor", xor>;
   3038 defm ORN : SIMDLogicalThreeVector<0, 0b11, "orn",
   3039                                   BinOpFrag<(or node:$LHS, (vnot node:$RHS))> >;
   3040 defm ORR : SIMDLogicalThreeVector<0, 0b10, "orr", or>;
   3041 
   3042 
   3043 def : Pat<(AArch64bsl (v8i8 V64:$Rd), V64:$Rn, V64:$Rm),
   3044           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3045 def : Pat<(AArch64bsl (v4i16 V64:$Rd), V64:$Rn, V64:$Rm),
   3046           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3047 def : Pat<(AArch64bsl (v2i32 V64:$Rd), V64:$Rn, V64:$Rm),
   3048           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3049 def : Pat<(AArch64bsl (v1i64 V64:$Rd), V64:$Rn, V64:$Rm),
   3050           (BSLv8i8 V64:$Rd, V64:$Rn, V64:$Rm)>;
   3051 
   3052 def : Pat<(AArch64bsl (v16i8 V128:$Rd), V128:$Rn, V128:$Rm),
   3053           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3054 def : Pat<(AArch64bsl (v8i16 V128:$Rd), V128:$Rn, V128:$Rm),
   3055           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3056 def : Pat<(AArch64bsl (v4i32 V128:$Rd), V128:$Rn, V128:$Rm),
   3057           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3058 def : Pat<(AArch64bsl (v2i64 V128:$Rd), V128:$Rn, V128:$Rm),
   3059           (BSLv16i8 V128:$Rd, V128:$Rn, V128:$Rm)>;
   3060 
   3061 def : InstAlias<"mov{\t$dst.16b, $src.16b|.16b\t$dst, $src}",
   3062                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 1>;
   3063 def : InstAlias<"mov{\t$dst.8h, $src.8h|.8h\t$dst, $src}",
   3064                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
   3065 def : InstAlias<"mov{\t$dst.4s, $src.4s|.4s\t$dst, $src}",
   3066                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
   3067 def : InstAlias<"mov{\t$dst.2d, $src.2d|.2d\t$dst, $src}",
   3068                 (ORRv16i8 V128:$dst, V128:$src, V128:$src), 0>;
   3069 
   3070 def : InstAlias<"mov{\t$dst.8b, $src.8b|.8b\t$dst, $src}",
   3071                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 1>;
   3072 def : InstAlias<"mov{\t$dst.4h, $src.4h|.4h\t$dst, $src}",
   3073                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
   3074 def : InstAlias<"mov{\t$dst.2s, $src.2s|.2s\t$dst, $src}",
   3075                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
   3076 def : InstAlias<"mov{\t$dst.1d, $src.1d|.1d\t$dst, $src}",
   3077                 (ORRv8i8 V64:$dst, V64:$src, V64:$src), 0>;
   3078 
   3079 def : InstAlias<"{cmls\t$dst.8b, $src1.8b, $src2.8b" #
   3080                 "|cmls.8b\t$dst, $src1, $src2}",
   3081                 (CMHSv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
   3082 def : InstAlias<"{cmls\t$dst.16b, $src1.16b, $src2.16b" #
   3083                 "|cmls.16b\t$dst, $src1, $src2}",
   3084                 (CMHSv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
   3085 def : InstAlias<"{cmls\t$dst.4h, $src1.4h, $src2.4h" #
   3086                 "|cmls.4h\t$dst, $src1, $src2}",
   3087                 (CMHSv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3088 def : InstAlias<"{cmls\t$dst.8h, $src1.8h, $src2.8h" #
   3089                 "|cmls.8h\t$dst, $src1, $src2}",
   3090                 (CMHSv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3091 def : InstAlias<"{cmls\t$dst.2s, $src1.2s, $src2.2s" #
   3092                 "|cmls.2s\t$dst, $src1, $src2}",
   3093                 (CMHSv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3094 def : InstAlias<"{cmls\t$dst.4s, $src1.4s, $src2.4s" #
   3095                 "|cmls.4s\t$dst, $src1, $src2}",
   3096                 (CMHSv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3097 def : InstAlias<"{cmls\t$dst.2d, $src1.2d, $src2.2d" #
   3098                 "|cmls.2d\t$dst, $src1, $src2}",
   3099                 (CMHSv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3100 
   3101 def : InstAlias<"{cmlo\t$dst.8b, $src1.8b, $src2.8b" #
   3102                 "|cmlo.8b\t$dst, $src1, $src2}",
   3103                 (CMHIv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
   3104 def : InstAlias<"{cmlo\t$dst.16b, $src1.16b, $src2.16b" #
   3105                 "|cmlo.16b\t$dst, $src1, $src2}",
   3106                 (CMHIv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
   3107 def : InstAlias<"{cmlo\t$dst.4h, $src1.4h, $src2.4h" #
   3108                 "|cmlo.4h\t$dst, $src1, $src2}",
   3109                 (CMHIv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3110 def : InstAlias<"{cmlo\t$dst.8h, $src1.8h, $src2.8h" #
   3111                 "|cmlo.8h\t$dst, $src1, $src2}",
   3112                 (CMHIv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3113 def : InstAlias<"{cmlo\t$dst.2s, $src1.2s, $src2.2s" #
   3114                 "|cmlo.2s\t$dst, $src1, $src2}",
   3115                 (CMHIv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3116 def : InstAlias<"{cmlo\t$dst.4s, $src1.4s, $src2.4s" #
   3117                 "|cmlo.4s\t$dst, $src1, $src2}",
   3118                 (CMHIv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3119 def : InstAlias<"{cmlo\t$dst.2d, $src1.2d, $src2.2d" #
   3120                 "|cmlo.2d\t$dst, $src1, $src2}",
   3121                 (CMHIv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3122 
   3123 def : InstAlias<"{cmle\t$dst.8b, $src1.8b, $src2.8b" #
   3124                 "|cmle.8b\t$dst, $src1, $src2}",
   3125                 (CMGEv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
   3126 def : InstAlias<"{cmle\t$dst.16b, $src1.16b, $src2.16b" #
   3127                 "|cmle.16b\t$dst, $src1, $src2}",
   3128                 (CMGEv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
   3129 def : InstAlias<"{cmle\t$dst.4h, $src1.4h, $src2.4h" #
   3130                 "|cmle.4h\t$dst, $src1, $src2}",
   3131                 (CMGEv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3132 def : InstAlias<"{cmle\t$dst.8h, $src1.8h, $src2.8h" #
   3133                 "|cmle.8h\t$dst, $src1, $src2}",
   3134                 (CMGEv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3135 def : InstAlias<"{cmle\t$dst.2s, $src1.2s, $src2.2s" #
   3136                 "|cmle.2s\t$dst, $src1, $src2}",
   3137                 (CMGEv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3138 def : InstAlias<"{cmle\t$dst.4s, $src1.4s, $src2.4s" #
   3139                 "|cmle.4s\t$dst, $src1, $src2}",
   3140                 (CMGEv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3141 def : InstAlias<"{cmle\t$dst.2d, $src1.2d, $src2.2d" #
   3142                 "|cmle.2d\t$dst, $src1, $src2}",
   3143                 (CMGEv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3144 
   3145 def : InstAlias<"{cmlt\t$dst.8b, $src1.8b, $src2.8b" #
   3146                 "|cmlt.8b\t$dst, $src1, $src2}",
   3147                 (CMGTv8i8 V64:$dst, V64:$src2, V64:$src1), 0>;
   3148 def : InstAlias<"{cmlt\t$dst.16b, $src1.16b, $src2.16b" #
   3149                 "|cmlt.16b\t$dst, $src1, $src2}",
   3150                 (CMGTv16i8 V128:$dst, V128:$src2, V128:$src1), 0>;
   3151 def : InstAlias<"{cmlt\t$dst.4h, $src1.4h, $src2.4h" #
   3152                 "|cmlt.4h\t$dst, $src1, $src2}",
   3153                 (CMGTv4i16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3154 def : InstAlias<"{cmlt\t$dst.8h, $src1.8h, $src2.8h" #
   3155                 "|cmlt.8h\t$dst, $src1, $src2}",
   3156                 (CMGTv8i16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3157 def : InstAlias<"{cmlt\t$dst.2s, $src1.2s, $src2.2s" #
   3158                 "|cmlt.2s\t$dst, $src1, $src2}",
   3159                 (CMGTv2i32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3160 def : InstAlias<"{cmlt\t$dst.4s, $src1.4s, $src2.4s" #
   3161                 "|cmlt.4s\t$dst, $src1, $src2}",
   3162                 (CMGTv4i32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3163 def : InstAlias<"{cmlt\t$dst.2d, $src1.2d, $src2.2d" #
   3164                 "|cmlt.2d\t$dst, $src1, $src2}",
   3165                 (CMGTv2i64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3166 
   3167 let Predicates = [HasNEON, HasFullFP16] in {
   3168 def : InstAlias<"{fcmle\t$dst.4h, $src1.4h, $src2.4h" #
   3169                 "|fcmle.4h\t$dst, $src1, $src2}",
   3170                 (FCMGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3171 def : InstAlias<"{fcmle\t$dst.8h, $src1.8h, $src2.8h" #
   3172                 "|fcmle.8h\t$dst, $src1, $src2}",
   3173                 (FCMGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3174 }
   3175 def : InstAlias<"{fcmle\t$dst.2s, $src1.2s, $src2.2s" #
   3176                 "|fcmle.2s\t$dst, $src1, $src2}",
   3177                 (FCMGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3178 def : InstAlias<"{fcmle\t$dst.4s, $src1.4s, $src2.4s" #
   3179                 "|fcmle.4s\t$dst, $src1, $src2}",
   3180                 (FCMGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3181 def : InstAlias<"{fcmle\t$dst.2d, $src1.2d, $src2.2d" #
   3182                 "|fcmle.2d\t$dst, $src1, $src2}",
   3183                 (FCMGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3184 
   3185 let Predicates = [HasNEON, HasFullFP16] in {
   3186 def : InstAlias<"{fcmlt\t$dst.4h, $src1.4h, $src2.4h" #
   3187                 "|fcmlt.4h\t$dst, $src1, $src2}",
   3188                 (FCMGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3189 def : InstAlias<"{fcmlt\t$dst.8h, $src1.8h, $src2.8h" #
   3190                 "|fcmlt.8h\t$dst, $src1, $src2}",
   3191                 (FCMGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3192 }
   3193 def : InstAlias<"{fcmlt\t$dst.2s, $src1.2s, $src2.2s" #
   3194                 "|fcmlt.2s\t$dst, $src1, $src2}",
   3195                 (FCMGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3196 def : InstAlias<"{fcmlt\t$dst.4s, $src1.4s, $src2.4s" #
   3197                 "|fcmlt.4s\t$dst, $src1, $src2}",
   3198                 (FCMGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3199 def : InstAlias<"{fcmlt\t$dst.2d, $src1.2d, $src2.2d" #
   3200                 "|fcmlt.2d\t$dst, $src1, $src2}",
   3201                 (FCMGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3202 
   3203 let Predicates = [HasNEON, HasFullFP16] in {
   3204 def : InstAlias<"{facle\t$dst.4h, $src1.4h, $src2.4h" #
   3205                 "|facle.4h\t$dst, $src1, $src2}",
   3206                 (FACGEv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3207 def : InstAlias<"{facle\t$dst.8h, $src1.8h, $src2.8h" #
   3208                 "|facle.8h\t$dst, $src1, $src2}",
   3209                 (FACGEv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3210 }
   3211 def : InstAlias<"{facle\t$dst.2s, $src1.2s, $src2.2s" #
   3212                 "|facle.2s\t$dst, $src1, $src2}",
   3213                 (FACGEv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3214 def : InstAlias<"{facle\t$dst.4s, $src1.4s, $src2.4s" #
   3215                 "|facle.4s\t$dst, $src1, $src2}",
   3216                 (FACGEv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3217 def : InstAlias<"{facle\t$dst.2d, $src1.2d, $src2.2d" #
   3218                 "|facle.2d\t$dst, $src1, $src2}",
   3219                 (FACGEv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3220 
   3221 let Predicates = [HasNEON, HasFullFP16] in {
   3222 def : InstAlias<"{faclt\t$dst.4h, $src1.4h, $src2.4h" #
   3223                 "|faclt.4h\t$dst, $src1, $src2}",
   3224                 (FACGTv4f16 V64:$dst, V64:$src2, V64:$src1), 0>;
   3225 def : InstAlias<"{faclt\t$dst.8h, $src1.8h, $src2.8h" #
   3226                 "|faclt.8h\t$dst, $src1, $src2}",
   3227                 (FACGTv8f16 V128:$dst, V128:$src2, V128:$src1), 0>;
   3228 }
   3229 def : InstAlias<"{faclt\t$dst.2s, $src1.2s, $src2.2s" #
   3230                 "|faclt.2s\t$dst, $src1, $src2}",
   3231                 (FACGTv2f32 V64:$dst, V64:$src2, V64:$src1), 0>;
   3232 def : InstAlias<"{faclt\t$dst.4s, $src1.4s, $src2.4s" #
   3233                 "|faclt.4s\t$dst, $src1, $src2}",
   3234                 (FACGTv4f32 V128:$dst, V128:$src2, V128:$src1), 0>;
   3235 def : InstAlias<"{faclt\t$dst.2d, $src1.2d, $src2.2d" #
   3236                 "|faclt.2d\t$dst, $src1, $src2}",
   3237                 (FACGTv2f64 V128:$dst, V128:$src2, V128:$src1), 0>;
   3238 
   3239 //===----------------------------------------------------------------------===//
   3240 // Advanced SIMD three scalar instructions.
   3241 //===----------------------------------------------------------------------===//
   3242 
   3243 defm ADD      : SIMDThreeScalarD<0, 0b10000, "add", add>;
   3244 defm CMEQ     : SIMDThreeScalarD<1, 0b10001, "cmeq", AArch64cmeq>;
   3245 defm CMGE     : SIMDThreeScalarD<0, 0b00111, "cmge", AArch64cmge>;
   3246 defm CMGT     : SIMDThreeScalarD<0, 0b00110, "cmgt", AArch64cmgt>;
   3247 defm CMHI     : SIMDThreeScalarD<1, 0b00110, "cmhi", AArch64cmhi>;
   3248 defm CMHS     : SIMDThreeScalarD<1, 0b00111, "cmhs", AArch64cmhs>;
   3249 defm CMTST    : SIMDThreeScalarD<0, 0b10001, "cmtst", AArch64cmtst>;
   3250 defm FABD     : SIMDFPThreeScalar<1, 1, 0b010, "fabd", int_aarch64_sisd_fabd>;
   3251 def : Pat<(v1f64 (int_aarch64_neon_fabd (v1f64 FPR64:$Rn), (v1f64 FPR64:$Rm))),
   3252           (FABD64 FPR64:$Rn, FPR64:$Rm)>;
   3253 defm FACGE    : SIMDThreeScalarFPCmp<1, 0, 0b101, "facge",
   3254                                      int_aarch64_neon_facge>;
   3255 defm FACGT    : SIMDThreeScalarFPCmp<1, 1, 0b101, "facgt",
   3256                                      int_aarch64_neon_facgt>;
   3257 defm FCMEQ    : SIMDThreeScalarFPCmp<0, 0, 0b100, "fcmeq", AArch64fcmeq>;
   3258 defm FCMGE    : SIMDThreeScalarFPCmp<1, 0, 0b100, "fcmge", AArch64fcmge>;
   3259 defm FCMGT    : SIMDThreeScalarFPCmp<1, 1, 0b100, "fcmgt", AArch64fcmgt>;
   3260 defm FMULX    : SIMDFPThreeScalar<0, 0, 0b011, "fmulx", int_aarch64_neon_fmulx>;
   3261 defm FRECPS   : SIMDFPThreeScalar<0, 0, 0b111, "frecps", int_aarch64_neon_frecps>;
   3262 defm FRSQRTS  : SIMDFPThreeScalar<0, 1, 0b111, "frsqrts", int_aarch64_neon_frsqrts>;
   3263 defm SQADD    : SIMDThreeScalarBHSD<0, 0b00001, "sqadd", int_aarch64_neon_sqadd>;
   3264 defm SQDMULH  : SIMDThreeScalarHS<  0, 0b10110, "sqdmulh", int_aarch64_neon_sqdmulh>;
   3265 defm SQRDMULH : SIMDThreeScalarHS<  1, 0b10110, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
   3266 defm SQRSHL   : SIMDThreeScalarBHSD<0, 0b01011, "sqrshl",int_aarch64_neon_sqrshl>;
   3267 defm SQSHL    : SIMDThreeScalarBHSD<0, 0b01001, "sqshl", int_aarch64_neon_sqshl>;
   3268 defm SQSUB    : SIMDThreeScalarBHSD<0, 0b00101, "sqsub", int_aarch64_neon_sqsub>;
   3269 defm SRSHL    : SIMDThreeScalarD<   0, 0b01010, "srshl", int_aarch64_neon_srshl>;
   3270 defm SSHL     : SIMDThreeScalarD<   0, 0b01000, "sshl", int_aarch64_neon_sshl>;
   3271 defm SUB      : SIMDThreeScalarD<   1, 0b10000, "sub", sub>;
   3272 defm UQADD    : SIMDThreeScalarBHSD<1, 0b00001, "uqadd", int_aarch64_neon_uqadd>;
   3273 defm UQRSHL   : SIMDThreeScalarBHSD<1, 0b01011, "uqrshl",int_aarch64_neon_uqrshl>;
   3274 defm UQSHL    : SIMDThreeScalarBHSD<1, 0b01001, "uqshl", int_aarch64_neon_uqshl>;
   3275 defm UQSUB    : SIMDThreeScalarBHSD<1, 0b00101, "uqsub", int_aarch64_neon_uqsub>;
   3276 defm URSHL    : SIMDThreeScalarD<   1, 0b01010, "urshl", int_aarch64_neon_urshl>;
   3277 defm USHL     : SIMDThreeScalarD<   1, 0b01000, "ushl", int_aarch64_neon_ushl>;
   3278 let Predicates = [HasV8_1a] in {
   3279   defm SQRDMLAH : SIMDThreeScalarHSTied<1, 0, 0b10000, "sqrdmlah">;
   3280   defm SQRDMLSH : SIMDThreeScalarHSTied<1, 0, 0b10001, "sqrdmlsh">;
   3281   def : Pat<(i32 (int_aarch64_neon_sqadd
   3282                    (i32 FPR32:$Rd),
   3283                    (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
   3284                                                    (i32 FPR32:$Rm))))),
   3285             (SQRDMLAHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
   3286   def : Pat<(i32 (int_aarch64_neon_sqsub
   3287                    (i32 FPR32:$Rd),
   3288                    (i32 (int_aarch64_neon_sqrdmulh (i32 FPR32:$Rn),
   3289                                                    (i32 FPR32:$Rm))))),
   3290             (SQRDMLSHv1i32 FPR32:$Rd, FPR32:$Rn, FPR32:$Rm)>;
   3291 }
   3292 
   3293 def : InstAlias<"cmls $dst, $src1, $src2",
   3294                 (CMHSv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3295 def : InstAlias<"cmle $dst, $src1, $src2",
   3296                 (CMGEv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3297 def : InstAlias<"cmlo $dst, $src1, $src2",
   3298                 (CMHIv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3299 def : InstAlias<"cmlt $dst, $src1, $src2",
   3300                 (CMGTv1i64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3301 def : InstAlias<"fcmle $dst, $src1, $src2",
   3302                 (FCMGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
   3303 def : InstAlias<"fcmle $dst, $src1, $src2",
   3304                 (FCMGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3305 def : InstAlias<"fcmlt $dst, $src1, $src2",
   3306                 (FCMGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
   3307 def : InstAlias<"fcmlt $dst, $src1, $src2",
   3308                 (FCMGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3309 def : InstAlias<"facle $dst, $src1, $src2",
   3310                 (FACGE32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
   3311 def : InstAlias<"facle $dst, $src1, $src2",
   3312                 (FACGE64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3313 def : InstAlias<"faclt $dst, $src1, $src2",
   3314                 (FACGT32 FPR32:$dst, FPR32:$src2, FPR32:$src1), 0>;
   3315 def : InstAlias<"faclt $dst, $src1, $src2",
   3316                 (FACGT64 FPR64:$dst, FPR64:$src2, FPR64:$src1), 0>;
   3317 
   3318 //===----------------------------------------------------------------------===//
   3319 // Advanced SIMD three scalar instructions (mixed operands).
   3320 //===----------------------------------------------------------------------===//
   3321 defm SQDMULL  : SIMDThreeScalarMixedHS<0, 0b11010, "sqdmull",
   3322                                        int_aarch64_neon_sqdmulls_scalar>;
   3323 defm SQDMLAL  : SIMDThreeScalarMixedTiedHS<0, 0b10010, "sqdmlal">;
   3324 defm SQDMLSL  : SIMDThreeScalarMixedTiedHS<0, 0b10110, "sqdmlsl">;
   3325 
   3326 def : Pat<(i64 (int_aarch64_neon_sqadd (i64 FPR64:$Rd),
   3327                    (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
   3328                                                         (i32 FPR32:$Rm))))),
   3329           (SQDMLALi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
   3330 def : Pat<(i64 (int_aarch64_neon_sqsub (i64 FPR64:$Rd),
   3331                    (i64 (int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
   3332                                                         (i32 FPR32:$Rm))))),
   3333           (SQDMLSLi32 FPR64:$Rd, FPR32:$Rn, FPR32:$Rm)>;
   3334 
   3335 //===----------------------------------------------------------------------===//
   3336 // Advanced SIMD two scalar instructions.
   3337 //===----------------------------------------------------------------------===//
   3338 
   3339 defm ABS    : SIMDTwoScalarD<    0, 0b01011, "abs", int_aarch64_neon_abs>;
   3340 defm CMEQ   : SIMDCmpTwoScalarD< 0, 0b01001, "cmeq", AArch64cmeqz>;
   3341 defm CMGE   : SIMDCmpTwoScalarD< 1, 0b01000, "cmge", AArch64cmgez>;
   3342 defm CMGT   : SIMDCmpTwoScalarD< 0, 0b01000, "cmgt", AArch64cmgtz>;
   3343 defm CMLE   : SIMDCmpTwoScalarD< 1, 0b01001, "cmle", AArch64cmlez>;
   3344 defm CMLT   : SIMDCmpTwoScalarD< 0, 0b01010, "cmlt", AArch64cmltz>;
   3345 defm FCMEQ  : SIMDFPCmpTwoScalar<0, 1, 0b01101, "fcmeq", AArch64fcmeqz>;
   3346 defm FCMGE  : SIMDFPCmpTwoScalar<1, 1, 0b01100, "fcmge", AArch64fcmgez>;
   3347 defm FCMGT  : SIMDFPCmpTwoScalar<0, 1, 0b01100, "fcmgt", AArch64fcmgtz>;
   3348 defm FCMLE  : SIMDFPCmpTwoScalar<1, 1, 0b01101, "fcmle", AArch64fcmlez>;
   3349 defm FCMLT  : SIMDFPCmpTwoScalar<0, 1, 0b01110, "fcmlt", AArch64fcmltz>;
   3350 defm FCVTAS : SIMDFPTwoScalar<   0, 0, 0b11100, "fcvtas">;
   3351 defm FCVTAU : SIMDFPTwoScalar<   1, 0, 0b11100, "fcvtau">;
   3352 defm FCVTMS : SIMDFPTwoScalar<   0, 0, 0b11011, "fcvtms">;
   3353 defm FCVTMU : SIMDFPTwoScalar<   1, 0, 0b11011, "fcvtmu">;
   3354 defm FCVTNS : SIMDFPTwoScalar<   0, 0, 0b11010, "fcvtns">;
   3355 defm FCVTNU : SIMDFPTwoScalar<   1, 0, 0b11010, "fcvtnu">;
   3356 defm FCVTPS : SIMDFPTwoScalar<   0, 1, 0b11010, "fcvtps">;
   3357 defm FCVTPU : SIMDFPTwoScalar<   1, 1, 0b11010, "fcvtpu">;
   3358 def  FCVTXNv1i64 : SIMDInexactCvtTwoScalar<0b10110, "fcvtxn">;
   3359 defm FCVTZS : SIMDFPTwoScalar<   0, 1, 0b11011, "fcvtzs">;
   3360 defm FCVTZU : SIMDFPTwoScalar<   1, 1, 0b11011, "fcvtzu">;
   3361 defm FRECPE : SIMDFPTwoScalar<   0, 1, 0b11101, "frecpe">;
   3362 defm FRECPX : SIMDFPTwoScalar<   0, 1, 0b11111, "frecpx">;
   3363 defm FRSQRTE : SIMDFPTwoScalar<  1, 1, 0b11101, "frsqrte">;
   3364 defm NEG    : SIMDTwoScalarD<    1, 0b01011, "neg",
   3365                                  UnOpFrag<(sub immAllZerosV, node:$LHS)> >;
   3366 defm SCVTF  : SIMDFPTwoScalarCVT<   0, 0, 0b11101, "scvtf", AArch64sitof>;
   3367 defm SQABS  : SIMDTwoScalarBHSD< 0, 0b00111, "sqabs", int_aarch64_neon_sqabs>;
   3368 defm SQNEG  : SIMDTwoScalarBHSD< 1, 0b00111, "sqneg", int_aarch64_neon_sqneg>;
   3369 defm SQXTN  : SIMDTwoScalarMixedBHS< 0, 0b10100, "sqxtn", int_aarch64_neon_scalar_sqxtn>;
   3370 defm SQXTUN : SIMDTwoScalarMixedBHS< 1, 0b10010, "sqxtun", int_aarch64_neon_scalar_sqxtun>;
   3371 defm SUQADD : SIMDTwoScalarBHSDTied< 0, 0b00011, "suqadd",
   3372                                      int_aarch64_neon_suqadd>;
   3373 defm UCVTF  : SIMDFPTwoScalarCVT<   1, 0, 0b11101, "ucvtf", AArch64uitof>;
   3374 defm UQXTN  : SIMDTwoScalarMixedBHS<1, 0b10100, "uqxtn", int_aarch64_neon_scalar_uqxtn>;
   3375 defm USQADD : SIMDTwoScalarBHSDTied< 1, 0b00011, "usqadd",
   3376                                     int_aarch64_neon_usqadd>;
   3377 
   3378 def : Pat<(AArch64neg (v1i64 V64:$Rn)), (NEGv1i64 V64:$Rn)>;
   3379 
   3380 def : Pat<(v1i64 (int_aarch64_neon_fcvtas (v1f64 FPR64:$Rn))),
   3381           (FCVTASv1i64 FPR64:$Rn)>;
   3382 def : Pat<(v1i64 (int_aarch64_neon_fcvtau (v1f64 FPR64:$Rn))),
   3383           (FCVTAUv1i64 FPR64:$Rn)>;
   3384 def : Pat<(v1i64 (int_aarch64_neon_fcvtms (v1f64 FPR64:$Rn))),
   3385           (FCVTMSv1i64 FPR64:$Rn)>;
   3386 def : Pat<(v1i64 (int_aarch64_neon_fcvtmu (v1f64 FPR64:$Rn))),
   3387           (FCVTMUv1i64 FPR64:$Rn)>;
   3388 def : Pat<(v1i64 (int_aarch64_neon_fcvtns (v1f64 FPR64:$Rn))),
   3389           (FCVTNSv1i64 FPR64:$Rn)>;
   3390 def : Pat<(v1i64 (int_aarch64_neon_fcvtnu (v1f64 FPR64:$Rn))),
   3391           (FCVTNUv1i64 FPR64:$Rn)>;
   3392 def : Pat<(v1i64 (int_aarch64_neon_fcvtps (v1f64 FPR64:$Rn))),
   3393           (FCVTPSv1i64 FPR64:$Rn)>;
   3394 def : Pat<(v1i64 (int_aarch64_neon_fcvtpu (v1f64 FPR64:$Rn))),
   3395           (FCVTPUv1i64 FPR64:$Rn)>;
   3396 
   3397 def : Pat<(f32 (int_aarch64_neon_frecpe (f32 FPR32:$Rn))),
   3398           (FRECPEv1i32 FPR32:$Rn)>;
   3399 def : Pat<(f64 (int_aarch64_neon_frecpe (f64 FPR64:$Rn))),
   3400           (FRECPEv1i64 FPR64:$Rn)>;
   3401 def : Pat<(v1f64 (int_aarch64_neon_frecpe (v1f64 FPR64:$Rn))),
   3402           (FRECPEv1i64 FPR64:$Rn)>;
   3403 
   3404 def : Pat<(f32 (AArch64frecpe (f32 FPR32:$Rn))),
   3405           (FRECPEv1i32 FPR32:$Rn)>;
   3406 def : Pat<(v2f32 (AArch64frecpe (v2f32 V64:$Rn))),
   3407           (FRECPEv2f32 V64:$Rn)>;
   3408 def : Pat<(v4f32 (AArch64frecpe (v4f32 FPR128:$Rn))),
   3409           (FRECPEv4f32 FPR128:$Rn)>;
   3410 def : Pat<(f64 (AArch64frecpe (f64 FPR64:$Rn))),
   3411           (FRECPEv1i64 FPR64:$Rn)>;
   3412 def : Pat<(v1f64 (AArch64frecpe (v1f64 FPR64:$Rn))),
   3413           (FRECPEv1i64 FPR64:$Rn)>;
   3414 def : Pat<(v2f64 (AArch64frecpe (v2f64 FPR128:$Rn))),
   3415           (FRECPEv2f64 FPR128:$Rn)>;
   3416 
   3417 def : Pat<(f32 (int_aarch64_neon_frecpx (f32 FPR32:$Rn))),
   3418           (FRECPXv1i32 FPR32:$Rn)>;
   3419 def : Pat<(f64 (int_aarch64_neon_frecpx (f64 FPR64:$Rn))),
   3420           (FRECPXv1i64 FPR64:$Rn)>;
   3421 
   3422 def : Pat<(f32 (int_aarch64_neon_frsqrte (f32 FPR32:$Rn))),
   3423           (FRSQRTEv1i32 FPR32:$Rn)>;
   3424 def : Pat<(f64 (int_aarch64_neon_frsqrte (f64 FPR64:$Rn))),
   3425           (FRSQRTEv1i64 FPR64:$Rn)>;
   3426 def : Pat<(v1f64 (int_aarch64_neon_frsqrte (v1f64 FPR64:$Rn))),
   3427           (FRSQRTEv1i64 FPR64:$Rn)>;
   3428 
   3429 def : Pat<(f32 (AArch64frsqrte (f32 FPR32:$Rn))),
   3430           (FRSQRTEv1i32 FPR32:$Rn)>;
   3431 def : Pat<(v2f32 (AArch64frsqrte (v2f32 V64:$Rn))),
   3432           (FRSQRTEv2f32 V64:$Rn)>;
   3433 def : Pat<(v4f32 (AArch64frsqrte (v4f32 FPR128:$Rn))),
   3434           (FRSQRTEv4f32 FPR128:$Rn)>;
   3435 def : Pat<(f64 (AArch64frsqrte (f64 FPR64:$Rn))),
   3436           (FRSQRTEv1i64 FPR64:$Rn)>;
   3437 def : Pat<(v1f64 (AArch64frsqrte (v1f64 FPR64:$Rn))),
   3438           (FRSQRTEv1i64 FPR64:$Rn)>;
   3439 def : Pat<(v2f64 (AArch64frsqrte (v2f64 FPR128:$Rn))),
   3440           (FRSQRTEv2f64 FPR128:$Rn)>;
   3441 
   3442 // If an integer is about to be converted to a floating point value,
   3443 // just load it on the floating point unit.
   3444 // Here are the patterns for 8 and 16-bits to float.
   3445 // 8-bits -> float.
   3446 multiclass UIntToFPROLoadPat<ValueType DstTy, ValueType SrcTy,
   3447                              SDPatternOperator loadop, Instruction UCVTF,
   3448                              ROAddrMode ro, Instruction LDRW, Instruction LDRX,
   3449                              SubRegIndex sub> {
   3450   def : Pat<(DstTy (uint_to_fp (SrcTy
   3451                      (loadop (ro.Wpat GPR64sp:$Rn, GPR32:$Rm,
   3452                                       ro.Wext:$extend))))),
   3453            (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
   3454                                  (LDRW GPR64sp:$Rn, GPR32:$Rm, ro.Wext:$extend),
   3455                                  sub))>;
   3456 
   3457   def : Pat<(DstTy (uint_to_fp (SrcTy
   3458                      (loadop (ro.Xpat GPR64sp:$Rn, GPR64:$Rm,
   3459                                       ro.Wext:$extend))))),
   3460            (UCVTF (INSERT_SUBREG (DstTy (IMPLICIT_DEF)),
   3461                                  (LDRX GPR64sp:$Rn, GPR64:$Rm, ro.Xext:$extend),
   3462                                  sub))>;
   3463 }
   3464 
   3465 defm : UIntToFPROLoadPat<f32, i32, zextloadi8,
   3466                          UCVTFv1i32, ro8, LDRBroW, LDRBroX, bsub>;
   3467 def : Pat <(f32 (uint_to_fp (i32
   3468                (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
   3469            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
   3470                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
   3471 def : Pat <(f32 (uint_to_fp (i32
   3472                      (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
   3473            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
   3474                           (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
   3475 // 16-bits -> float.
   3476 defm : UIntToFPROLoadPat<f32, i32, zextloadi16,
   3477                          UCVTFv1i32, ro16, LDRHroW, LDRHroX, hsub>;
   3478 def : Pat <(f32 (uint_to_fp (i32
   3479                   (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
   3480            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
   3481                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
   3482 def : Pat <(f32 (uint_to_fp (i32
   3483                   (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
   3484            (UCVTFv1i32 (INSERT_SUBREG (f32 (IMPLICIT_DEF)),
   3485                           (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
   3486 // 32-bits are handled in target specific dag combine:
   3487 // performIntToFpCombine.
   3488 // 64-bits integer to 32-bits floating point, not possible with
   3489 // UCVTF on floating point registers (both source and destination
   3490 // must have the same size).
   3491 
   3492 // Here are the patterns for 8, 16, 32, and 64-bits to double.
   3493 // 8-bits -> double.
   3494 defm : UIntToFPROLoadPat<f64, i32, zextloadi8,
   3495                          UCVTFv1i64, ro8, LDRBroW, LDRBroX, bsub>;
   3496 def : Pat <(f64 (uint_to_fp (i32
   3497                     (zextloadi8 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset))))),
   3498            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3499                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset), bsub))>;
   3500 def : Pat <(f64 (uint_to_fp (i32
   3501                   (zextloadi8 (am_unscaled8 GPR64sp:$Rn, simm9:$offset))))),
   3502            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3503                           (LDURBi GPR64sp:$Rn, simm9:$offset), bsub))>;
   3504 // 16-bits -> double.
   3505 defm : UIntToFPROLoadPat<f64, i32, zextloadi16,
   3506                          UCVTFv1i64, ro16, LDRHroW, LDRHroX, hsub>;
   3507 def : Pat <(f64 (uint_to_fp (i32
   3508                   (zextloadi16 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset))))),
   3509            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3510                           (LDRHui GPR64sp:$Rn, uimm12s2:$offset), hsub))>;
   3511 def : Pat <(f64 (uint_to_fp (i32
   3512                   (zextloadi16 (am_unscaled16 GPR64sp:$Rn, simm9:$offset))))),
   3513            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3514                           (LDURHi GPR64sp:$Rn, simm9:$offset), hsub))>;
   3515 // 32-bits -> double.
   3516 defm : UIntToFPROLoadPat<f64, i32, load,
   3517                          UCVTFv1i64, ro32, LDRSroW, LDRSroX, ssub>;
   3518 def : Pat <(f64 (uint_to_fp (i32
   3519                   (load (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset))))),
   3520            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3521                           (LDRSui GPR64sp:$Rn, uimm12s4:$offset), ssub))>;
   3522 def : Pat <(f64 (uint_to_fp (i32
   3523                   (load (am_unscaled32 GPR64sp:$Rn, simm9:$offset))))),
   3524            (UCVTFv1i64 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   3525                           (LDURSi GPR64sp:$Rn, simm9:$offset), ssub))>;
   3526 // 64-bits -> double are handled in target specific dag combine:
   3527 // performIntToFpCombine.
   3528 
   3529 //===----------------------------------------------------------------------===//
   3530 // Advanced SIMD three different-sized vector instructions.
   3531 //===----------------------------------------------------------------------===//
   3532 
   3533 defm ADDHN  : SIMDNarrowThreeVectorBHS<0,0b0100,"addhn", int_aarch64_neon_addhn>;
   3534 defm SUBHN  : SIMDNarrowThreeVectorBHS<0,0b0110,"subhn", int_aarch64_neon_subhn>;
   3535 defm RADDHN : SIMDNarrowThreeVectorBHS<1,0b0100,"raddhn",int_aarch64_neon_raddhn>;
   3536 defm RSUBHN : SIMDNarrowThreeVectorBHS<1,0b0110,"rsubhn",int_aarch64_neon_rsubhn>;
   3537 defm PMULL  : SIMDDifferentThreeVectorBD<0,0b1110,"pmull",int_aarch64_neon_pmull>;
   3538 defm SABAL  : SIMDLongThreeVectorTiedBHSabal<0,0b0101,"sabal",
   3539                                              int_aarch64_neon_sabd>;
   3540 defm SABDL   : SIMDLongThreeVectorBHSabdl<0, 0b0111, "sabdl",
   3541                                           int_aarch64_neon_sabd>;
   3542 defm SADDL   : SIMDLongThreeVectorBHS<   0, 0b0000, "saddl",
   3543             BinOpFrag<(add (sext node:$LHS), (sext node:$RHS))>>;
   3544 defm SADDW   : SIMDWideThreeVectorBHS<   0, 0b0001, "saddw",
   3545                  BinOpFrag<(add node:$LHS, (sext node:$RHS))>>;
   3546 defm SMLAL   : SIMDLongThreeVectorTiedBHS<0, 0b1000, "smlal",
   3547     TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
   3548 defm SMLSL   : SIMDLongThreeVectorTiedBHS<0, 0b1010, "smlsl",
   3549     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
   3550 defm SMULL   : SIMDLongThreeVectorBHS<0, 0b1100, "smull", int_aarch64_neon_smull>;
   3551 defm SQDMLAL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1001, "sqdmlal",
   3552                                                int_aarch64_neon_sqadd>;
   3553 defm SQDMLSL : SIMDLongThreeVectorSQDMLXTiedHS<0, 0b1011, "sqdmlsl",
   3554                                                int_aarch64_neon_sqsub>;
   3555 defm SQDMULL : SIMDLongThreeVectorHS<0, 0b1101, "sqdmull",
   3556                                      int_aarch64_neon_sqdmull>;
   3557 defm SSUBL   : SIMDLongThreeVectorBHS<0, 0b0010, "ssubl",
   3558                  BinOpFrag<(sub (sext node:$LHS), (sext node:$RHS))>>;
   3559 defm SSUBW   : SIMDWideThreeVectorBHS<0, 0b0011, "ssubw",
   3560                  BinOpFrag<(sub node:$LHS, (sext node:$RHS))>>;
   3561 defm UABAL   : SIMDLongThreeVectorTiedBHSabal<1, 0b0101, "uabal",
   3562                                               int_aarch64_neon_uabd>;
   3563 defm UADDL   : SIMDLongThreeVectorBHS<1, 0b0000, "uaddl",
   3564                  BinOpFrag<(add (zext node:$LHS), (zext node:$RHS))>>;
   3565 defm UADDW   : SIMDWideThreeVectorBHS<1, 0b0001, "uaddw",
   3566                  BinOpFrag<(add node:$LHS, (zext node:$RHS))>>;
   3567 defm UMLAL   : SIMDLongThreeVectorTiedBHS<1, 0b1000, "umlal",
   3568     TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
   3569 defm UMLSL   : SIMDLongThreeVectorTiedBHS<1, 0b1010, "umlsl",
   3570     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
   3571 defm UMULL   : SIMDLongThreeVectorBHS<1, 0b1100, "umull", int_aarch64_neon_umull>;
   3572 defm USUBL   : SIMDLongThreeVectorBHS<1, 0b0010, "usubl",
   3573                  BinOpFrag<(sub (zext node:$LHS), (zext node:$RHS))>>;
   3574 defm USUBW   : SIMDWideThreeVectorBHS<   1, 0b0011, "usubw",
   3575                  BinOpFrag<(sub node:$LHS, (zext node:$RHS))>>;
   3576 
   3577 // Additional patterns for SMULL and UMULL
   3578 multiclass Neon_mul_widen_patterns<SDPatternOperator opnode,
   3579   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
   3580   def : Pat<(v8i16 (opnode (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
   3581             (INST8B V64:$Rn, V64:$Rm)>;
   3582   def : Pat<(v4i32 (opnode (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
   3583             (INST4H V64:$Rn, V64:$Rm)>;
   3584   def : Pat<(v2i64 (opnode (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
   3585             (INST2S V64:$Rn, V64:$Rm)>;
   3586 }
   3587 
   3588 defm : Neon_mul_widen_patterns<AArch64smull, SMULLv8i8_v8i16,
   3589   SMULLv4i16_v4i32, SMULLv2i32_v2i64>;
   3590 defm : Neon_mul_widen_patterns<AArch64umull, UMULLv8i8_v8i16,
   3591   UMULLv4i16_v4i32, UMULLv2i32_v2i64>;
   3592 
   3593 // Additional patterns for SMLAL/SMLSL and UMLAL/UMLSL
   3594 multiclass Neon_mulacc_widen_patterns<SDPatternOperator opnode,
   3595   Instruction INST8B, Instruction INST4H, Instruction INST2S> {
   3596   def : Pat<(v8i16 (opnode (v8i16 V128:$Rd), (v8i8 V64:$Rn), (v8i8 V64:$Rm))),
   3597             (INST8B V128:$Rd, V64:$Rn, V64:$Rm)>;
   3598   def : Pat<(v4i32 (opnode (v4i32 V128:$Rd), (v4i16 V64:$Rn), (v4i16 V64:$Rm))),
   3599             (INST4H V128:$Rd, V64:$Rn, V64:$Rm)>;
   3600   def : Pat<(v2i64 (opnode (v2i64 V128:$Rd), (v2i32 V64:$Rn), (v2i32 V64:$Rm))),
   3601             (INST2S  V128:$Rd, V64:$Rn, V64:$Rm)>;
   3602 }
   3603 
   3604 defm : Neon_mulacc_widen_patterns<
   3605   TriOpFrag<(add node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
   3606   SMLALv8i8_v8i16, SMLALv4i16_v4i32, SMLALv2i32_v2i64>;
   3607 defm : Neon_mulacc_widen_patterns<
   3608   TriOpFrag<(add node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
   3609   UMLALv8i8_v8i16, UMLALv4i16_v4i32, UMLALv2i32_v2i64>;
   3610 defm : Neon_mulacc_widen_patterns<
   3611   TriOpFrag<(sub node:$LHS, (AArch64smull node:$MHS, node:$RHS))>,
   3612   SMLSLv8i8_v8i16, SMLSLv4i16_v4i32, SMLSLv2i32_v2i64>;
   3613 defm : Neon_mulacc_widen_patterns<
   3614   TriOpFrag<(sub node:$LHS, (AArch64umull node:$MHS, node:$RHS))>,
   3615   UMLSLv8i8_v8i16, UMLSLv4i16_v4i32, UMLSLv2i32_v2i64>;
   3616 
   3617 // Patterns for 64-bit pmull
   3618 def : Pat<(int_aarch64_neon_pmull64 V64:$Rn, V64:$Rm),
   3619           (PMULLv1i64 V64:$Rn, V64:$Rm)>;
   3620 def : Pat<(int_aarch64_neon_pmull64 (extractelt (v2i64 V128:$Rn), (i64 1)),
   3621                                     (extractelt (v2i64 V128:$Rm), (i64 1))),
   3622           (PMULLv2i64 V128:$Rn, V128:$Rm)>;
   3623 
   3624 // CodeGen patterns for addhn and subhn instructions, which can actually be
   3625 // written in LLVM IR without too much difficulty.
   3626 
   3627 // ADDHN
   3628 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm), (i32 8))))),
   3629           (ADDHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
   3630 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3631                                            (i32 16))))),
   3632           (ADDHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
   3633 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3634                                            (i32 32))))),
   3635           (ADDHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
   3636 def : Pat<(concat_vectors (v8i8 V64:$Rd),
   3637                           (trunc (v8i16 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3638                                                     (i32 8))))),
   3639           (ADDHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3640                             V128:$Rn, V128:$Rm)>;
   3641 def : Pat<(concat_vectors (v4i16 V64:$Rd),
   3642                           (trunc (v4i32 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3643                                                     (i32 16))))),
   3644           (ADDHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3645                             V128:$Rn, V128:$Rm)>;
   3646 def : Pat<(concat_vectors (v2i32 V64:$Rd),
   3647                           (trunc (v2i64 (AArch64vlshr (add V128:$Rn, V128:$Rm),
   3648                                                     (i32 32))))),
   3649           (ADDHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3650                             V128:$Rn, V128:$Rm)>;
   3651 
   3652 // SUBHN
   3653 def : Pat<(v8i8 (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm), (i32 8))))),
   3654           (SUBHNv8i16_v8i8 V128:$Rn, V128:$Rm)>;
   3655 def : Pat<(v4i16 (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3656                                            (i32 16))))),
   3657           (SUBHNv4i32_v4i16 V128:$Rn, V128:$Rm)>;
   3658 def : Pat<(v2i32 (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3659                                            (i32 32))))),
   3660           (SUBHNv2i64_v2i32 V128:$Rn, V128:$Rm)>;
   3661 def : Pat<(concat_vectors (v8i8 V64:$Rd),
   3662                           (trunc (v8i16 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3663                                                     (i32 8))))),
   3664           (SUBHNv8i16_v16i8 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3665                             V128:$Rn, V128:$Rm)>;
   3666 def : Pat<(concat_vectors (v4i16 V64:$Rd),
   3667                           (trunc (v4i32 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3668                                                     (i32 16))))),
   3669           (SUBHNv4i32_v8i16 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3670                             V128:$Rn, V128:$Rm)>;
   3671 def : Pat<(concat_vectors (v2i32 V64:$Rd),
   3672                           (trunc (v2i64 (AArch64vlshr (sub V128:$Rn, V128:$Rm),
   3673                                                     (i32 32))))),
   3674           (SUBHNv2i64_v4i32 (SUBREG_TO_REG (i32 0), V64:$Rd, dsub),
   3675                             V128:$Rn, V128:$Rm)>;
   3676 
   3677 //----------------------------------------------------------------------------
   3678 // AdvSIMD bitwise extract from vector instruction.
   3679 //----------------------------------------------------------------------------
   3680 
   3681 defm EXT : SIMDBitwiseExtract<"ext">;
   3682 
   3683 def : Pat<(v4i16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
   3684           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
   3685 def : Pat<(v8i16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   3686           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   3687 def : Pat<(v2i32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
   3688           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
   3689 def : Pat<(v2f32 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
   3690           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
   3691 def : Pat<(v4i32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   3692           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   3693 def : Pat<(v4f32 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   3694           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   3695 def : Pat<(v2i64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   3696           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   3697 def : Pat<(v2f64 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   3698           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   3699 def : Pat<(v4f16 (AArch64ext V64:$Rn, V64:$Rm, (i32 imm:$imm))),
   3700           (EXTv8i8 V64:$Rn, V64:$Rm, imm:$imm)>;
   3701 def : Pat<(v8f16 (AArch64ext V128:$Rn, V128:$Rm, (i32 imm:$imm))),
   3702           (EXTv16i8 V128:$Rn, V128:$Rm, imm:$imm)>;
   3703 
   3704 // We use EXT to handle extract_subvector to copy the upper 64-bits of a
   3705 // 128-bit vector.
   3706 def : Pat<(v8i8  (extract_subvector V128:$Rn, (i64 8))),
   3707           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   3708 def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 4))),
   3709           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   3710 def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 2))),
   3711           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   3712 def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 1))),
   3713           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   3714 def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 4))),
   3715           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   3716 def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 2))),
   3717           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   3718 def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 1))),
   3719           (EXTRACT_SUBREG (EXTv16i8 V128:$Rn, V128:$Rn, 8), dsub)>;
   3720 
   3721 
   3722 //----------------------------------------------------------------------------
   3723 // AdvSIMD zip vector
   3724 //----------------------------------------------------------------------------
   3725 
   3726 defm TRN1 : SIMDZipVector<0b010, "trn1", AArch64trn1>;
   3727 defm TRN2 : SIMDZipVector<0b110, "trn2", AArch64trn2>;
   3728 defm UZP1 : SIMDZipVector<0b001, "uzp1", AArch64uzp1>;
   3729 defm UZP2 : SIMDZipVector<0b101, "uzp2", AArch64uzp2>;
   3730 defm ZIP1 : SIMDZipVector<0b011, "zip1", AArch64zip1>;
   3731 defm ZIP2 : SIMDZipVector<0b111, "zip2", AArch64zip2>;
   3732 
   3733 //----------------------------------------------------------------------------
   3734 // AdvSIMD TBL/TBX instructions
   3735 //----------------------------------------------------------------------------
   3736 
   3737 defm TBL : SIMDTableLookup<    0, "tbl">;
   3738 defm TBX : SIMDTableLookupTied<1, "tbx">;
   3739 
   3740 def : Pat<(v8i8 (int_aarch64_neon_tbl1 (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
   3741           (TBLv8i8One VecListOne128:$Rn, V64:$Ri)>;
   3742 def : Pat<(v16i8 (int_aarch64_neon_tbl1 (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
   3743           (TBLv16i8One V128:$Ri, V128:$Rn)>;
   3744 
   3745 def : Pat<(v8i8 (int_aarch64_neon_tbx1 (v8i8 V64:$Rd),
   3746                   (v16i8 VecListOne128:$Rn), (v8i8 V64:$Ri))),
   3747           (TBXv8i8One V64:$Rd, VecListOne128:$Rn, V64:$Ri)>;
   3748 def : Pat<(v16i8 (int_aarch64_neon_tbx1 (v16i8 V128:$Rd),
   3749                    (v16i8 V128:$Ri), (v16i8 V128:$Rn))),
   3750           (TBXv16i8One V128:$Rd, V128:$Ri, V128:$Rn)>;
   3751 
   3752 
   3753 //----------------------------------------------------------------------------
   3754 // AdvSIMD scalar CPY instruction
   3755 //----------------------------------------------------------------------------
   3756 
   3757 defm CPY : SIMDScalarCPY<"cpy">;
   3758 
   3759 //----------------------------------------------------------------------------
   3760 // AdvSIMD scalar pairwise instructions
   3761 //----------------------------------------------------------------------------
   3762 
   3763 defm ADDP    : SIMDPairwiseScalarD<0, 0b11011, "addp">;
   3764 defm FADDP   : SIMDFPPairwiseScalar<0, 0b01101, "faddp">;
   3765 defm FMAXNMP : SIMDFPPairwiseScalar<0, 0b01100, "fmaxnmp">;
   3766 defm FMAXP   : SIMDFPPairwiseScalar<0, 0b01111, "fmaxp">;
   3767 defm FMINNMP : SIMDFPPairwiseScalar<1, 0b01100, "fminnmp">;
   3768 defm FMINP   : SIMDFPPairwiseScalar<1, 0b01111, "fminp">;
   3769 def : Pat<(v2i64 (AArch64saddv V128:$Rn)),
   3770           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
   3771 def : Pat<(v2i64 (AArch64uaddv V128:$Rn)),
   3772           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), (ADDPv2i64p V128:$Rn), dsub)>;
   3773 def : Pat<(f32 (int_aarch64_neon_faddv (v2f32 V64:$Rn))),
   3774           (FADDPv2i32p V64:$Rn)>;
   3775 def : Pat<(f32 (int_aarch64_neon_faddv (v4f32 V128:$Rn))),
   3776           (FADDPv2i32p (EXTRACT_SUBREG (FADDPv4f32 V128:$Rn, V128:$Rn), dsub))>;
   3777 def : Pat<(f64 (int_aarch64_neon_faddv (v2f64 V128:$Rn))),
   3778           (FADDPv2i64p V128:$Rn)>;
   3779 def : Pat<(f32 (int_aarch64_neon_fmaxnmv (v2f32 V64:$Rn))),
   3780           (FMAXNMPv2i32p V64:$Rn)>;
   3781 def : Pat<(f64 (int_aarch64_neon_fmaxnmv (v2f64 V128:$Rn))),
   3782           (FMAXNMPv2i64p V128:$Rn)>;
   3783 def : Pat<(f32 (int_aarch64_neon_fmaxv (v2f32 V64:$Rn))),
   3784           (FMAXPv2i32p V64:$Rn)>;
   3785 def : Pat<(f64 (int_aarch64_neon_fmaxv (v2f64 V128:$Rn))),
   3786           (FMAXPv2i64p V128:$Rn)>;
   3787 def : Pat<(f32 (int_aarch64_neon_fminnmv (v2f32 V64:$Rn))),
   3788           (FMINNMPv2i32p V64:$Rn)>;
   3789 def : Pat<(f64 (int_aarch64_neon_fminnmv (v2f64 V128:$Rn))),
   3790           (FMINNMPv2i64p V128:$Rn)>;
   3791 def : Pat<(f32 (int_aarch64_neon_fminv (v2f32 V64:$Rn))),
   3792           (FMINPv2i32p V64:$Rn)>;
   3793 def : Pat<(f64 (int_aarch64_neon_fminv (v2f64 V128:$Rn))),
   3794           (FMINPv2i64p V128:$Rn)>;
   3795 
   3796 //----------------------------------------------------------------------------
   3797 // AdvSIMD INS/DUP instructions
   3798 //----------------------------------------------------------------------------
   3799 
   3800 def DUPv8i8gpr  : SIMDDupFromMain<0, {?,?,?,?,1}, ".8b", v8i8, V64, GPR32>;
   3801 def DUPv16i8gpr : SIMDDupFromMain<1, {?,?,?,?,1}, ".16b", v16i8, V128, GPR32>;
   3802 def DUPv4i16gpr : SIMDDupFromMain<0, {?,?,?,1,0}, ".4h", v4i16, V64, GPR32>;
   3803 def DUPv8i16gpr : SIMDDupFromMain<1, {?,?,?,1,0}, ".8h", v8i16, V128, GPR32>;
   3804 def DUPv2i32gpr : SIMDDupFromMain<0, {?,?,1,0,0}, ".2s", v2i32, V64, GPR32>;
   3805 def DUPv4i32gpr : SIMDDupFromMain<1, {?,?,1,0,0}, ".4s", v4i32, V128, GPR32>;
   3806 def DUPv2i64gpr : SIMDDupFromMain<1, {?,1,0,0,0}, ".2d", v2i64, V128, GPR64>;
   3807 
   3808 def DUPv2i64lane : SIMDDup64FromElement;
   3809 def DUPv2i32lane : SIMDDup32FromElement<0, ".2s", v2i32, V64>;
   3810 def DUPv4i32lane : SIMDDup32FromElement<1, ".4s", v4i32, V128>;
   3811 def DUPv4i16lane : SIMDDup16FromElement<0, ".4h", v4i16, V64>;
   3812 def DUPv8i16lane : SIMDDup16FromElement<1, ".8h", v8i16, V128>;
   3813 def DUPv8i8lane  : SIMDDup8FromElement <0, ".8b", v8i8, V64>;
   3814 def DUPv16i8lane : SIMDDup8FromElement <1, ".16b", v16i8, V128>;
   3815 
   3816 def : Pat<(v2f32 (AArch64dup (f32 FPR32:$Rn))),
   3817           (v2f32 (DUPv2i32lane
   3818             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
   3819             (i64 0)))>;
   3820 def : Pat<(v4f32 (AArch64dup (f32 FPR32:$Rn))),
   3821           (v4f32 (DUPv4i32lane
   3822             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rn, ssub),
   3823             (i64 0)))>;
   3824 def : Pat<(v2f64 (AArch64dup (f64 FPR64:$Rn))),
   3825           (v2f64 (DUPv2i64lane
   3826             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rn, dsub),
   3827             (i64 0)))>;
   3828 def : Pat<(v4f16 (AArch64dup (f16 FPR16:$Rn))),
   3829           (v4f16 (DUPv4i16lane
   3830             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
   3831             (i64 0)))>;
   3832 def : Pat<(v8f16 (AArch64dup (f16 FPR16:$Rn))),
   3833           (v8f16 (DUPv8i16lane
   3834             (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR16:$Rn, hsub),
   3835             (i64 0)))>;
   3836 
   3837 def : Pat<(v4f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
   3838           (DUPv4i16lane V128:$Rn, VectorIndexH:$imm)>;
   3839 def : Pat<(v8f16 (AArch64duplane16 (v8f16 V128:$Rn), VectorIndexH:$imm)),
   3840           (DUPv8i16lane V128:$Rn, VectorIndexH:$imm)>;
   3841 
   3842 def : Pat<(v2f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
   3843           (DUPv2i32lane V128:$Rn, VectorIndexS:$imm)>;
   3844 def : Pat<(v4f32 (AArch64duplane32 (v4f32 V128:$Rn), VectorIndexS:$imm)),
   3845          (DUPv4i32lane V128:$Rn, VectorIndexS:$imm)>;
   3846 def : Pat<(v2f64 (AArch64duplane64 (v2f64 V128:$Rn), VectorIndexD:$imm)),
   3847           (DUPv2i64lane V128:$Rn, VectorIndexD:$imm)>;
   3848 
   3849 // If there's an (AArch64dup (vector_extract ...) ...), we can use a duplane
   3850 // instruction even if the types don't match: we just have to remap the lane
   3851 // carefully. N.b. this trick only applies to truncations.
   3852 def VecIndex_x2 : SDNodeXForm<imm, [{
   3853   return CurDAG->getTargetConstant(2 * N->getZExtValue(), SDLoc(N), MVT::i64);
   3854 }]>;
   3855 def VecIndex_x4 : SDNodeXForm<imm, [{
   3856   return CurDAG->getTargetConstant(4 * N->getZExtValue(), SDLoc(N), MVT::i64);
   3857 }]>;
   3858 def VecIndex_x8 : SDNodeXForm<imm, [{
   3859   return CurDAG->getTargetConstant(8 * N->getZExtValue(), SDLoc(N), MVT::i64);
   3860 }]>;
   3861 
   3862 multiclass DUPWithTruncPats<ValueType ResVT, ValueType Src64VT,
   3863                             ValueType Src128VT, ValueType ScalVT,
   3864                             Instruction DUP, SDNodeXForm IdxXFORM> {
   3865   def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src128VT V128:$Rn),
   3866                                                      imm:$idx)))),
   3867             (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
   3868 
   3869   def : Pat<(ResVT (AArch64dup (ScalVT (vector_extract (Src64VT V64:$Rn),
   3870                                                      imm:$idx)))),
   3871             (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
   3872 }
   3873 
   3874 defm : DUPWithTruncPats<v8i8,   v4i16, v8i16, i32, DUPv8i8lane,  VecIndex_x2>;
   3875 defm : DUPWithTruncPats<v8i8,   v2i32, v4i32, i32, DUPv8i8lane,  VecIndex_x4>;
   3876 defm : DUPWithTruncPats<v4i16,  v2i32, v4i32, i32, DUPv4i16lane, VecIndex_x2>;
   3877 
   3878 defm : DUPWithTruncPats<v16i8,  v4i16, v8i16, i32, DUPv16i8lane, VecIndex_x2>;
   3879 defm : DUPWithTruncPats<v16i8,  v2i32, v4i32, i32, DUPv16i8lane, VecIndex_x4>;
   3880 defm : DUPWithTruncPats<v8i16,  v2i32, v4i32, i32, DUPv8i16lane, VecIndex_x2>;
   3881 
   3882 multiclass DUPWithTrunci64Pats<ValueType ResVT, Instruction DUP,
   3883                                SDNodeXForm IdxXFORM> {
   3884   def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v2i64 V128:$Rn),
   3885                                                          imm:$idx))))),
   3886             (DUP V128:$Rn, (IdxXFORM imm:$idx))>;
   3887 
   3888   def : Pat<(ResVT (AArch64dup (i32 (trunc (extractelt (v1i64 V64:$Rn),
   3889                                                        imm:$idx))))),
   3890             (DUP (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), (IdxXFORM imm:$idx))>;
   3891 }
   3892 
   3893 defm : DUPWithTrunci64Pats<v8i8,  DUPv8i8lane,   VecIndex_x8>;
   3894 defm : DUPWithTrunci64Pats<v4i16, DUPv4i16lane,  VecIndex_x4>;
   3895 defm : DUPWithTrunci64Pats<v2i32, DUPv2i32lane,  VecIndex_x2>;
   3896 
   3897 defm : DUPWithTrunci64Pats<v16i8, DUPv16i8lane, VecIndex_x8>;
   3898 defm : DUPWithTrunci64Pats<v8i16, DUPv8i16lane, VecIndex_x4>;
   3899 defm : DUPWithTrunci64Pats<v4i32, DUPv4i32lane, VecIndex_x2>;
   3900 
   3901 // SMOV and UMOV definitions, with some extra patterns for convenience
   3902 defm SMOV : SMov;
   3903 defm UMOV : UMov;
   3904 
   3905 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
   3906           (i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
   3907 def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
   3908           (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
   3909 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
   3910           (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
   3911 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
   3912           (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
   3913 def : Pat<(sext_inreg (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),i16),
   3914           (i32 (SMOVvi16to32 V128:$Rn, VectorIndexH:$idx))>;
   3915 def : Pat<(sext (i32 (vector_extract (v4i32 V128:$Rn), VectorIndexS:$idx))),
   3916           (i64 (SMOVvi32to64 V128:$Rn, VectorIndexS:$idx))>;
   3917 
   3918 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v16i8 V128:$Rn),
   3919             VectorIndexB:$idx)))), i8),
   3920           (i64 (SMOVvi8to64 V128:$Rn, VectorIndexB:$idx))>;
   3921 def : Pat<(sext_inreg (i64 (anyext (i32 (vector_extract (v8i16 V128:$Rn),
   3922             VectorIndexH:$idx)))), i16),
   3923           (i64 (SMOVvi16to64 V128:$Rn, VectorIndexH:$idx))>;
   3924 
   3925 // Extracting i8 or i16 elements will have the zero-extend transformed to
   3926 // an 'and' mask by type legalization since neither i8 nor i16 are legal types
   3927 // for AArch64. Match these patterns here since UMOV already zeroes out the high
   3928 // bits of the destination register.
   3929 def : Pat<(and (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx),
   3930                (i32 0xff)),
   3931           (i32 (UMOVvi8 V128:$Rn, VectorIndexB:$idx))>;
   3932 def : Pat<(and (vector_extract (v8i16 V128:$Rn), VectorIndexH:$idx),
   3933                (i32 0xffff)),
   3934           (i32 (UMOVvi16 V128:$Rn, VectorIndexH:$idx))>;
   3935 
   3936 defm INS : SIMDIns;
   3937 
   3938 def : Pat<(v16i8 (scalar_to_vector GPR32:$Rn)),
   3939           (SUBREG_TO_REG (i32 0),
   3940                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
   3941 def : Pat<(v8i8 (scalar_to_vector GPR32:$Rn)),
   3942           (SUBREG_TO_REG (i32 0),
   3943                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
   3944 
   3945 def : Pat<(v8i16 (scalar_to_vector GPR32:$Rn)),
   3946           (SUBREG_TO_REG (i32 0),
   3947                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
   3948 def : Pat<(v4i16 (scalar_to_vector GPR32:$Rn)),
   3949           (SUBREG_TO_REG (i32 0),
   3950                          (f32 (COPY_TO_REGCLASS GPR32:$Rn, FPR32)), ssub)>;
   3951 
   3952 def : Pat<(v2i32 (scalar_to_vector (i32 FPR32:$Rn))),
   3953             (v2i32 (INSERT_SUBREG (v2i32 (IMPLICIT_DEF)),
   3954                                   (i32 FPR32:$Rn), ssub))>;
   3955 def : Pat<(v4i32 (scalar_to_vector (i32 FPR32:$Rn))),
   3956             (v4i32 (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
   3957                                   (i32 FPR32:$Rn), ssub))>;
   3958 def : Pat<(v2i64 (scalar_to_vector (i64 FPR64:$Rn))),
   3959             (v2i64 (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)),
   3960                                   (i64 FPR64:$Rn), dsub))>;
   3961 
   3962 def : Pat<(v4f16 (scalar_to_vector (f16 FPR16:$Rn))),
   3963           (INSERT_SUBREG (v4f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
   3964 def : Pat<(v8f16 (scalar_to_vector (f16 FPR16:$Rn))),
   3965           (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rn, hsub)>;
   3966 
   3967 def : Pat<(v4f32 (scalar_to_vector (f32 FPR32:$Rn))),
   3968           (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
   3969 def : Pat<(v2f32 (scalar_to_vector (f32 FPR32:$Rn))),
   3970           (INSERT_SUBREG (v2f32 (IMPLICIT_DEF)), FPR32:$Rn, ssub)>;
   3971 def : Pat<(v2f64 (scalar_to_vector (f64 FPR64:$Rn))),
   3972           (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rn, dsub)>;
   3973 
   3974 def : Pat<(v4f16 (vector_insert (v4f16 V64:$Rn),
   3975             (f16 FPR16:$Rm), (i64 VectorIndexS:$imm))),
   3976           (EXTRACT_SUBREG
   3977             (INSvi16lane
   3978               (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), V64:$Rn, dsub)),
   3979               VectorIndexS:$imm,
   3980               (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
   3981               (i64 0)),
   3982             dsub)>;
   3983 
   3984 def : Pat<(v8f16 (vector_insert (v8f16 V128:$Rn),
   3985             (f16 FPR16:$Rm), (i64 VectorIndexH:$imm))),
   3986           (INSvi16lane
   3987             V128:$Rn, VectorIndexH:$imm,
   3988             (v8f16 (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR16:$Rm, hsub)),
   3989             (i64 0))>;
   3990 
   3991 def : Pat<(v2f32 (vector_insert (v2f32 V64:$Rn),
   3992             (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
   3993           (EXTRACT_SUBREG
   3994             (INSvi32lane
   3995               (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), V64:$Rn, dsub)),
   3996               VectorIndexS:$imm,
   3997               (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
   3998               (i64 0)),
   3999             dsub)>;
   4000 def : Pat<(v4f32 (vector_insert (v4f32 V128:$Rn),
   4001             (f32 FPR32:$Rm), (i64 VectorIndexS:$imm))),
   4002           (INSvi32lane
   4003             V128:$Rn, VectorIndexS:$imm,
   4004             (v4f32 (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR32:$Rm, ssub)),
   4005             (i64 0))>;
   4006 def : Pat<(v2f64 (vector_insert (v2f64 V128:$Rn),
   4007             (f64 FPR64:$Rm), (i64 VectorIndexD:$imm))),
   4008           (INSvi64lane
   4009             V128:$Rn, VectorIndexD:$imm,
   4010             (v2f64 (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$Rm, dsub)),
   4011             (i64 0))>;
   4012 
   4013 // Copy an element at a constant index in one vector into a constant indexed
   4014 // element of another.
   4015 // FIXME refactor to a shared class/dev parameterized on vector type, vector
   4016 // index type and INS extension
   4017 def : Pat<(v16i8 (int_aarch64_neon_vcopy_lane
   4018                    (v16i8 V128:$Vd), VectorIndexB:$idx, (v16i8 V128:$Vs),
   4019                    VectorIndexB:$idx2)),
   4020           (v16i8 (INSvi8lane
   4021                    V128:$Vd, VectorIndexB:$idx, V128:$Vs, VectorIndexB:$idx2)
   4022           )>;
   4023 def : Pat<(v8i16 (int_aarch64_neon_vcopy_lane
   4024                    (v8i16 V128:$Vd), VectorIndexH:$idx, (v8i16 V128:$Vs),
   4025                    VectorIndexH:$idx2)),
   4026           (v8i16 (INSvi16lane
   4027                    V128:$Vd, VectorIndexH:$idx, V128:$Vs, VectorIndexH:$idx2)
   4028           )>;
   4029 def : Pat<(v4i32 (int_aarch64_neon_vcopy_lane
   4030                    (v4i32 V128:$Vd), VectorIndexS:$idx, (v4i32 V128:$Vs),
   4031                    VectorIndexS:$idx2)),
   4032           (v4i32 (INSvi32lane
   4033                    V128:$Vd, VectorIndexS:$idx, V128:$Vs, VectorIndexS:$idx2)
   4034           )>;
   4035 def : Pat<(v2i64 (int_aarch64_neon_vcopy_lane
   4036                    (v2i64 V128:$Vd), VectorIndexD:$idx, (v2i64 V128:$Vs),
   4037                    VectorIndexD:$idx2)),
   4038           (v2i64 (INSvi64lane
   4039                    V128:$Vd, VectorIndexD:$idx, V128:$Vs, VectorIndexD:$idx2)
   4040           )>;
   4041 
   4042 multiclass Neon_INS_elt_pattern<ValueType VT128, ValueType VT64,
   4043                                 ValueType VTScal, Instruction INS> {
   4044   def : Pat<(VT128 (vector_insert V128:$src,
   4045                         (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
   4046                         imm:$Immd)),
   4047             (INS V128:$src, imm:$Immd, V128:$Rn, imm:$Immn)>;
   4048 
   4049   def : Pat<(VT128 (vector_insert V128:$src,
   4050                         (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
   4051                         imm:$Immd)),
   4052             (INS V128:$src, imm:$Immd,
   4053                  (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn)>;
   4054 
   4055   def : Pat<(VT64 (vector_insert V64:$src,
   4056                         (VTScal (vector_extract (VT128 V128:$Rn), imm:$Immn)),
   4057                         imm:$Immd)),
   4058             (EXTRACT_SUBREG (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub),
   4059                                  imm:$Immd, V128:$Rn, imm:$Immn),
   4060                             dsub)>;
   4061 
   4062   def : Pat<(VT64 (vector_insert V64:$src,
   4063                         (VTScal (vector_extract (VT64 V64:$Rn), imm:$Immn)),
   4064                         imm:$Immd)),
   4065             (EXTRACT_SUBREG
   4066                 (INS (SUBREG_TO_REG (i64 0), V64:$src, dsub), imm:$Immd,
   4067                      (SUBREG_TO_REG (i64 0), V64:$Rn, dsub), imm:$Immn),
   4068                 dsub)>;
   4069 }
   4070 
   4071 defm : Neon_INS_elt_pattern<v8f16, v4f16, f16, INSvi16lane>;
   4072 defm : Neon_INS_elt_pattern<v4f32, v2f32, f32, INSvi32lane>;
   4073 defm : Neon_INS_elt_pattern<v2f64, v1f64, f64, INSvi64lane>;
   4074 
   4075 
   4076 // Floating point vector extractions are codegen'd as either a sequence of
   4077 // subregister extractions, or a MOV (aka CPY here, alias for DUP) if
   4078 // the lane number is anything other than zero.
   4079 def : Pat<(vector_extract (v2f64 V128:$Rn), 0),
   4080           (f64 (EXTRACT_SUBREG V128:$Rn, dsub))>;
   4081 def : Pat<(vector_extract (v4f32 V128:$Rn), 0),
   4082           (f32 (EXTRACT_SUBREG V128:$Rn, ssub))>;
   4083 def : Pat<(vector_extract (v8f16 V128:$Rn), 0),
   4084           (f16 (EXTRACT_SUBREG V128:$Rn, hsub))>;
   4085 
   4086 def : Pat<(vector_extract (v2f64 V128:$Rn), VectorIndexD:$idx),
   4087           (f64 (CPYi64 V128:$Rn, VectorIndexD:$idx))>;
   4088 def : Pat<(vector_extract (v4f32 V128:$Rn), VectorIndexS:$idx),
   4089           (f32 (CPYi32 V128:$Rn, VectorIndexS:$idx))>;
   4090 def : Pat<(vector_extract (v8f16 V128:$Rn), VectorIndexH:$idx),
   4091           (f16 (CPYi16 V128:$Rn, VectorIndexH:$idx))>;
   4092 
   4093 // All concat_vectors operations are canonicalised to act on i64 vectors for
   4094 // AArch64. In the general case we need an instruction, which had just as well be
   4095 // INS.
   4096 class ConcatPat<ValueType DstTy, ValueType SrcTy>
   4097   : Pat<(DstTy (concat_vectors (SrcTy V64:$Rd), V64:$Rn)),
   4098         (INSvi64lane (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub), 1,
   4099                      (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub), 0)>;
   4100 
   4101 def : ConcatPat<v2i64, v1i64>;
   4102 def : ConcatPat<v2f64, v1f64>;
   4103 def : ConcatPat<v4i32, v2i32>;
   4104 def : ConcatPat<v4f32, v2f32>;
   4105 def : ConcatPat<v8i16, v4i16>;
   4106 def : ConcatPat<v8f16, v4f16>;
   4107 def : ConcatPat<v16i8, v8i8>;
   4108 
   4109 // If the high lanes are undef, though, we can just ignore them:
   4110 class ConcatUndefPat<ValueType DstTy, ValueType SrcTy>
   4111   : Pat<(DstTy (concat_vectors (SrcTy V64:$Rn), undef)),
   4112         (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rn, dsub)>;
   4113 
   4114 def : ConcatUndefPat<v2i64, v1i64>;
   4115 def : ConcatUndefPat<v2f64, v1f64>;
   4116 def : ConcatUndefPat<v4i32, v2i32>;
   4117 def : ConcatUndefPat<v4f32, v2f32>;
   4118 def : ConcatUndefPat<v8i16, v4i16>;
   4119 def : ConcatUndefPat<v16i8, v8i8>;
   4120 
   4121 //----------------------------------------------------------------------------
   4122 // AdvSIMD across lanes instructions
   4123 //----------------------------------------------------------------------------
   4124 
   4125 defm ADDV    : SIMDAcrossLanesBHS<0, 0b11011, "addv">;
   4126 defm SMAXV   : SIMDAcrossLanesBHS<0, 0b01010, "smaxv">;
   4127 defm SMINV   : SIMDAcrossLanesBHS<0, 0b11010, "sminv">;
   4128 defm UMAXV   : SIMDAcrossLanesBHS<1, 0b01010, "umaxv">;
   4129 defm UMINV   : SIMDAcrossLanesBHS<1, 0b11010, "uminv">;
   4130 defm SADDLV  : SIMDAcrossLanesHSD<0, 0b00011, "saddlv">;
   4131 defm UADDLV  : SIMDAcrossLanesHSD<1, 0b00011, "uaddlv">;
   4132 defm FMAXNMV : SIMDFPAcrossLanes<0b01100, 0, "fmaxnmv", int_aarch64_neon_fmaxnmv>;
   4133 defm FMAXV   : SIMDFPAcrossLanes<0b01111, 0, "fmaxv", int_aarch64_neon_fmaxv>;
   4134 defm FMINNMV : SIMDFPAcrossLanes<0b01100, 1, "fminnmv", int_aarch64_neon_fminnmv>;
   4135 defm FMINV   : SIMDFPAcrossLanes<0b01111, 1, "fminv", int_aarch64_neon_fminv>;
   4136 
   4137 // Patterns for across-vector intrinsics, that have a node equivalent, that
   4138 // returns a vector (with only the low lane defined) instead of a scalar.
   4139 // In effect, opNode is the same as (scalar_to_vector (IntNode)).
   4140 multiclass SIMDAcrossLanesIntrinsic<string baseOpc,
   4141                                     SDPatternOperator opNode> {
   4142 // If a lane instruction caught the vector_extract around opNode, we can
   4143 // directly match the latter to the instruction.
   4144 def : Pat<(v8i8 (opNode V64:$Rn)),
   4145           (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
   4146            (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub)>;
   4147 def : Pat<(v16i8 (opNode V128:$Rn)),
   4148           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4149            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub)>;
   4150 def : Pat<(v4i16 (opNode V64:$Rn)),
   4151           (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
   4152            (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub)>;
   4153 def : Pat<(v8i16 (opNode V128:$Rn)),
   4154           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
   4155            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub)>;
   4156 def : Pat<(v4i32 (opNode V128:$Rn)),
   4157           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
   4158            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), ssub)>;
   4159 
   4160 
   4161 // If none did, fallback to the explicit patterns, consuming the vector_extract.
   4162 def : Pat<(i32 (vector_extract (insert_subvector undef, (v8i8 (opNode V64:$Rn)),
   4163             (i32 0)), (i64 0))),
   4164           (EXTRACT_SUBREG (INSERT_SUBREG (v8i8 (IMPLICIT_DEF)),
   4165             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn),
   4166             bsub), ssub)>;
   4167 def : Pat<(i32 (vector_extract (v16i8 (opNode V128:$Rn)), (i64 0))),
   4168           (EXTRACT_SUBREG (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4169             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn),
   4170             bsub), ssub)>;
   4171 def : Pat<(i32 (vector_extract (insert_subvector undef,
   4172             (v4i16 (opNode V64:$Rn)), (i32 0)), (i64 0))),
   4173           (EXTRACT_SUBREG (INSERT_SUBREG (v4i16 (IMPLICIT_DEF)),
   4174             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn),
   4175             hsub), ssub)>;
   4176 def : Pat<(i32 (vector_extract (v8i16 (opNode V128:$Rn)), (i64 0))),
   4177           (EXTRACT_SUBREG (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)),
   4178             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn),
   4179             hsub), ssub)>;
   4180 def : Pat<(i32 (vector_extract (v4i32 (opNode V128:$Rn)), (i64 0))),
   4181           (EXTRACT_SUBREG (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)),
   4182             (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn),
   4183             ssub), ssub)>;
   4184 
   4185 }
   4186 
   4187 multiclass SIMDAcrossLanesSignedIntrinsic<string baseOpc,
   4188                                           SDPatternOperator opNode>
   4189     : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
   4190 // If there is a sign extension after this intrinsic, consume it as smov already
   4191 // performed it
   4192 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
   4193             (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), i8)),
   4194           (i32 (SMOVvi8to32
   4195             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4196               (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
   4197             (i64 0)))>;
   4198 def : Pat<(i32 (sext_inreg (i32 (vector_extract
   4199             (opNode (v16i8 V128:$Rn)), (i64 0))), i8)),
   4200           (i32 (SMOVvi8to32
   4201             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4202              (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
   4203             (i64 0)))>;
   4204 def : Pat<(i32 (sext_inreg (i32 (vector_extract (insert_subvector undef,
   4205             (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), i16)),
   4206           (i32 (SMOVvi16to32
   4207            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4208             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
   4209            (i64 0)))>;
   4210 def : Pat<(i32 (sext_inreg (i32 (vector_extract
   4211             (opNode (v8i16 V128:$Rn)), (i64 0))), i16)),
   4212           (i32 (SMOVvi16to32
   4213             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4214              (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
   4215             (i64 0)))>;
   4216 }
   4217 
   4218 multiclass SIMDAcrossLanesUnsignedIntrinsic<string baseOpc,
   4219                                             SDPatternOperator opNode>
   4220     : SIMDAcrossLanesIntrinsic<baseOpc, opNode> {
   4221 // If there is a masking operation keeping only what has been actually
   4222 // generated, consume it.
   4223 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
   4224             (opNode (v8i8 V64:$Rn)), (i32 0)), (i64 0))), maski8_or_more)),
   4225       (i32 (EXTRACT_SUBREG
   4226         (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4227           (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), bsub),
   4228         ssub))>;
   4229 def : Pat<(i32 (and (i32 (vector_extract (opNode (v16i8 V128:$Rn)), (i64 0))),
   4230             maski8_or_more)),
   4231         (i32 (EXTRACT_SUBREG
   4232           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4233             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), bsub),
   4234           ssub))>;
   4235 def : Pat<(i32 (and (i32 (vector_extract (insert_subvector undef,
   4236             (opNode (v4i16 V64:$Rn)), (i32 0)), (i64 0))), maski16_or_more)),
   4237           (i32 (EXTRACT_SUBREG
   4238             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4239               (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), hsub),
   4240             ssub))>;
   4241 def : Pat<(i32 (and (i32 (vector_extract (opNode (v8i16 V128:$Rn)), (i64 0))),
   4242             maski16_or_more)),
   4243         (i32 (EXTRACT_SUBREG
   4244           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4245             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), hsub),
   4246           ssub))>;
   4247 }
   4248 
   4249 defm : SIMDAcrossLanesSignedIntrinsic<"ADDV",  AArch64saddv>;
   4250 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
   4251 def : Pat<(v2i32 (AArch64saddv (v2i32 V64:$Rn))),
   4252           (ADDPv2i32 V64:$Rn, V64:$Rn)>;
   4253 
   4254 defm : SIMDAcrossLanesUnsignedIntrinsic<"ADDV", AArch64uaddv>;
   4255 // vaddv_[su]32 is special; -> ADDP Vd.2S,Vn.2S,Vm.2S; return Vd.s[0];Vn==Vm
   4256 def : Pat<(v2i32 (AArch64uaddv (v2i32 V64:$Rn))),
   4257           (ADDPv2i32 V64:$Rn, V64:$Rn)>;
   4258 
   4259 defm : SIMDAcrossLanesSignedIntrinsic<"SMAXV", AArch64smaxv>;
   4260 def : Pat<(v2i32 (AArch64smaxv (v2i32 V64:$Rn))),
   4261           (SMAXPv2i32 V64:$Rn, V64:$Rn)>;
   4262 
   4263 defm : SIMDAcrossLanesSignedIntrinsic<"SMINV", AArch64sminv>;
   4264 def : Pat<(v2i32 (AArch64sminv (v2i32 V64:$Rn))),
   4265           (SMINPv2i32 V64:$Rn, V64:$Rn)>;
   4266 
   4267 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMAXV", AArch64umaxv>;
   4268 def : Pat<(v2i32 (AArch64umaxv (v2i32 V64:$Rn))),
   4269           (UMAXPv2i32 V64:$Rn, V64:$Rn)>;
   4270 
   4271 defm : SIMDAcrossLanesUnsignedIntrinsic<"UMINV", AArch64uminv>;
   4272 def : Pat<(v2i32 (AArch64uminv (v2i32 V64:$Rn))),
   4273           (UMINPv2i32 V64:$Rn, V64:$Rn)>;
   4274 
   4275 multiclass SIMDAcrossLanesSignedLongIntrinsic<string baseOpc, Intrinsic intOp> {
   4276   def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
   4277         (i32 (SMOVvi16to32
   4278           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4279             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
   4280           (i64 0)))>;
   4281 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
   4282         (i32 (SMOVvi16to32
   4283           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4284            (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
   4285           (i64 0)))>;
   4286 
   4287 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
   4288           (i32 (EXTRACT_SUBREG
   4289            (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4290             (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
   4291            ssub))>;
   4292 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
   4293         (i32 (EXTRACT_SUBREG
   4294           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4295            (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
   4296           ssub))>;
   4297 
   4298 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
   4299         (i64 (EXTRACT_SUBREG
   4300           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4301            (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
   4302           dsub))>;
   4303 }
   4304 
   4305 multiclass SIMDAcrossLanesUnsignedLongIntrinsic<string baseOpc,
   4306                                                 Intrinsic intOp> {
   4307   def : Pat<(i32 (intOp (v8i8 V64:$Rn))),
   4308         (i32 (EXTRACT_SUBREG
   4309           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4310             (!cast<Instruction>(!strconcat(baseOpc, "v8i8v")) V64:$Rn), hsub),
   4311           ssub))>;
   4312 def : Pat<(i32 (intOp (v16i8 V128:$Rn))),
   4313         (i32 (EXTRACT_SUBREG
   4314           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4315             (!cast<Instruction>(!strconcat(baseOpc, "v16i8v")) V128:$Rn), hsub),
   4316           ssub))>;
   4317 
   4318 def : Pat<(i32 (intOp (v4i16 V64:$Rn))),
   4319           (i32 (EXTRACT_SUBREG
   4320             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4321               (!cast<Instruction>(!strconcat(baseOpc, "v4i16v")) V64:$Rn), ssub),
   4322             ssub))>;
   4323 def : Pat<(i32 (intOp (v8i16 V128:$Rn))),
   4324         (i32 (EXTRACT_SUBREG
   4325           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4326             (!cast<Instruction>(!strconcat(baseOpc, "v8i16v")) V128:$Rn), ssub),
   4327           ssub))>;
   4328 
   4329 def : Pat<(i64 (intOp (v4i32 V128:$Rn))),
   4330         (i64 (EXTRACT_SUBREG
   4331           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4332             (!cast<Instruction>(!strconcat(baseOpc, "v4i32v")) V128:$Rn), dsub),
   4333           dsub))>;
   4334 }
   4335 
   4336 defm : SIMDAcrossLanesSignedLongIntrinsic<"SADDLV", int_aarch64_neon_saddlv>;
   4337 defm : SIMDAcrossLanesUnsignedLongIntrinsic<"UADDLV", int_aarch64_neon_uaddlv>;
   4338 
   4339 // The vaddlv_s32 intrinsic gets mapped to SADDLP.
   4340 def : Pat<(i64 (int_aarch64_neon_saddlv (v2i32 V64:$Rn))),
   4341           (i64 (EXTRACT_SUBREG
   4342             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4343               (SADDLPv2i32_v1i64 V64:$Rn), dsub),
   4344             dsub))>;
   4345 // The vaddlv_u32 intrinsic gets mapped to UADDLP.
   4346 def : Pat<(i64 (int_aarch64_neon_uaddlv (v2i32 V64:$Rn))),
   4347           (i64 (EXTRACT_SUBREG
   4348             (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)),
   4349               (UADDLPv2i32_v1i64 V64:$Rn), dsub),
   4350             dsub))>;
   4351 
   4352 //------------------------------------------------------------------------------
   4353 // AdvSIMD modified immediate instructions
   4354 //------------------------------------------------------------------------------
   4355 
   4356 // AdvSIMD BIC
   4357 defm BIC : SIMDModifiedImmVectorShiftTied<1, 0b11, 0b01, "bic", AArch64bici>;
   4358 // AdvSIMD ORR
   4359 defm ORR : SIMDModifiedImmVectorShiftTied<0, 0b11, 0b01, "orr", AArch64orri>;
   4360 
   4361 def : InstAlias<"bic $Vd.4h, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
   4362 def : InstAlias<"bic $Vd.8h, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0)>;
   4363 def : InstAlias<"bic $Vd.2s, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
   4364 def : InstAlias<"bic $Vd.4s, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0)>;
   4365 
   4366 def : InstAlias<"bic.4h $Vd, $imm", (BICv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4367 def : InstAlias<"bic.8h $Vd, $imm", (BICv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4368 def : InstAlias<"bic.2s $Vd, $imm", (BICv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4369 def : InstAlias<"bic.4s $Vd, $imm", (BICv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4370 
   4371 def : InstAlias<"orr $Vd.4h, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0)>;
   4372 def : InstAlias<"orr $Vd.8h, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0)>;
   4373 def : InstAlias<"orr $Vd.2s, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0)>;
   4374 def : InstAlias<"orr $Vd.4s, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0)>;
   4375 
   4376 def : InstAlias<"orr.4h $Vd, $imm", (ORRv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4377 def : InstAlias<"orr.8h $Vd, $imm", (ORRv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4378 def : InstAlias<"orr.2s $Vd, $imm", (ORRv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4379 def : InstAlias<"orr.4s $Vd, $imm", (ORRv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4380 
   4381 // AdvSIMD FMOV
   4382 def FMOVv2f64_ns : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1111, V128, fpimm8,
   4383                                               "fmov", ".2d",
   4384                        [(set (v2f64 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4385 def FMOVv2f32_ns : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1111, V64,  fpimm8,
   4386                                               "fmov", ".2s",
   4387                        [(set (v2f32 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4388 def FMOVv4f32_ns : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1111, V128, fpimm8,
   4389                                               "fmov", ".4s",
   4390                        [(set (v4f32 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4391 let Predicates = [HasNEON, HasFullFP16] in {
   4392 def FMOVv4f16_ns : SIMDModifiedImmVectorNoShift<0, 0, 1, 0b1111, V64,  fpimm8,
   4393                                               "fmov", ".4h",
   4394                        [(set (v4f16 V64:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4395 def FMOVv8f16_ns : SIMDModifiedImmVectorNoShift<1, 0, 1, 0b1111, V128, fpimm8,
   4396                                               "fmov", ".8h",
   4397                        [(set (v8f16 V128:$Rd), (AArch64fmov imm0_255:$imm8))]>;
   4398 } // Predicates = [HasNEON, HasFullFP16]
   4399 
   4400 // AdvSIMD MOVI
   4401 
   4402 // EDIT byte mask: scalar
   4403 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
   4404 def MOVID      : SIMDModifiedImmScalarNoShift<0, 1, 0b1110, "movi",
   4405                     [(set FPR64:$Rd, simdimmtype10:$imm8)]>;
   4406 // The movi_edit node has the immediate value already encoded, so we use
   4407 // a plain imm0_255 here.
   4408 def : Pat<(f64 (AArch64movi_edit imm0_255:$shift)),
   4409           (MOVID imm0_255:$shift)>;
   4410 
   4411 def : Pat<(v1i64 immAllZerosV), (MOVID (i32 0))>;
   4412 def : Pat<(v2i32 immAllZerosV), (MOVID (i32 0))>;
   4413 def : Pat<(v4i16 immAllZerosV), (MOVID (i32 0))>;
   4414 def : Pat<(v8i8  immAllZerosV), (MOVID (i32 0))>;
   4415 
   4416 def : Pat<(v1i64 immAllOnesV), (MOVID (i32 255))>;
   4417 def : Pat<(v2i32 immAllOnesV), (MOVID (i32 255))>;
   4418 def : Pat<(v4i16 immAllOnesV), (MOVID (i32 255))>;
   4419 def : Pat<(v8i8  immAllOnesV), (MOVID (i32 255))>;
   4420 
   4421 // EDIT byte mask: 2d
   4422 
   4423 // The movi_edit node has the immediate value already encoded, so we use
   4424 // a plain imm0_255 in the pattern
   4425 let isReMaterializable = 1, isAsCheapAsAMove = 1 in
   4426 def MOVIv2d_ns   : SIMDModifiedImmVectorNoShift<1, 1, 0, 0b1110, V128,
   4427                                                 simdimmtype10,
   4428                                                 "movi", ".2d",
   4429                    [(set (v2i64 V128:$Rd), (AArch64movi_edit imm0_255:$imm8))]>;
   4430 
   4431 def : Pat<(v2i64 immAllZerosV), (MOVIv2d_ns (i32 0))>;
   4432 def : Pat<(v4i32 immAllZerosV), (MOVIv2d_ns (i32 0))>;
   4433 def : Pat<(v8i16 immAllZerosV), (MOVIv2d_ns (i32 0))>;
   4434 def : Pat<(v16i8 immAllZerosV), (MOVIv2d_ns (i32 0))>;
   4435 
   4436 def : Pat<(v2i64 immAllOnesV), (MOVIv2d_ns (i32 255))>;
   4437 def : Pat<(v4i32 immAllOnesV), (MOVIv2d_ns (i32 255))>;
   4438 def : Pat<(v8i16 immAllOnesV), (MOVIv2d_ns (i32 255))>;
   4439 def : Pat<(v16i8 immAllOnesV), (MOVIv2d_ns (i32 255))>;
   4440 
   4441 def : Pat<(v2f64 (AArch64dup (f64 fpimm0))), (MOVIv2d_ns (i32 0))>;
   4442 def : Pat<(v4f32 (AArch64dup (f32 fpimm0))), (MOVIv2d_ns (i32 0))>;
   4443 
   4444 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
   4445 defm MOVI      : SIMDModifiedImmVectorShift<0, 0b10, 0b00, "movi">;
   4446 
   4447 def : InstAlias<"movi $Vd.4h, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4448 def : InstAlias<"movi $Vd.8h, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4449 def : InstAlias<"movi $Vd.2s, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4450 def : InstAlias<"movi $Vd.4s, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4451 
   4452 def : InstAlias<"movi.4h $Vd, $imm", (MOVIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4453 def : InstAlias<"movi.8h $Vd, $imm", (MOVIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4454 def : InstAlias<"movi.2s $Vd, $imm", (MOVIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4455 def : InstAlias<"movi.4s $Vd, $imm", (MOVIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4456 
   4457 def : Pat<(v2i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
   4458           (MOVIv2i32 imm0_255:$imm8, imm:$shift)>;
   4459 def : Pat<(v4i32 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
   4460           (MOVIv4i32 imm0_255:$imm8, imm:$shift)>;
   4461 def : Pat<(v4i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
   4462           (MOVIv4i16 imm0_255:$imm8, imm:$shift)>;
   4463 def : Pat<(v8i16 (AArch64movi_shift imm0_255:$imm8, (i32 imm:$shift))),
   4464           (MOVIv8i16 imm0_255:$imm8, imm:$shift)>;
   4465 
   4466 // EDIT per word: 2s & 4s with MSL shifter
   4467 def MOVIv2s_msl  : SIMDModifiedImmMoveMSL<0, 0, {1,1,0,?}, V64, "movi", ".2s",
   4468                       [(set (v2i32 V64:$Rd),
   4469                             (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
   4470 def MOVIv4s_msl  : SIMDModifiedImmMoveMSL<1, 0, {1,1,0,?}, V128, "movi", ".4s",
   4471                       [(set (v4i32 V128:$Rd),
   4472                             (AArch64movi_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
   4473 
   4474 // Per byte: 8b & 16b
   4475 def MOVIv8b_ns   : SIMDModifiedImmVectorNoShift<0, 0, 0, 0b1110, V64,  imm0_255,
   4476                                                  "movi", ".8b",
   4477                        [(set (v8i8 V64:$Rd), (AArch64movi imm0_255:$imm8))]>;
   4478 def MOVIv16b_ns  : SIMDModifiedImmVectorNoShift<1, 0, 0, 0b1110, V128, imm0_255,
   4479                                                  "movi", ".16b",
   4480                        [(set (v16i8 V128:$Rd), (AArch64movi imm0_255:$imm8))]>;
   4481 
   4482 // AdvSIMD MVNI
   4483 
   4484 // EDIT per word & halfword: 2s, 4h, 4s, & 8h
   4485 defm MVNI      : SIMDModifiedImmVectorShift<1, 0b10, 0b00, "mvni">;
   4486 
   4487 def : InstAlias<"mvni $Vd.4h, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4488 def : InstAlias<"mvni $Vd.8h, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4489 def : InstAlias<"mvni $Vd.2s, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4490 def : InstAlias<"mvni $Vd.4s, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4491 
   4492 def : InstAlias<"mvni.4h $Vd, $imm", (MVNIv4i16 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4493 def : InstAlias<"mvni.8h $Vd, $imm", (MVNIv8i16 V128:$Vd, imm0_255:$imm, 0), 0>;
   4494 def : InstAlias<"mvni.2s $Vd, $imm", (MVNIv2i32 V64:$Vd,  imm0_255:$imm, 0), 0>;
   4495 def : InstAlias<"mvni.4s $Vd, $imm", (MVNIv4i32 V128:$Vd, imm0_255:$imm, 0), 0>;
   4496 
   4497 def : Pat<(v2i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
   4498           (MVNIv2i32 imm0_255:$imm8, imm:$shift)>;
   4499 def : Pat<(v4i32 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
   4500           (MVNIv4i32 imm0_255:$imm8, imm:$shift)>;
   4501 def : Pat<(v4i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
   4502           (MVNIv4i16 imm0_255:$imm8, imm:$shift)>;
   4503 def : Pat<(v8i16 (AArch64mvni_shift imm0_255:$imm8, (i32 imm:$shift))),
   4504           (MVNIv8i16 imm0_255:$imm8, imm:$shift)>;
   4505 
   4506 // EDIT per word: 2s & 4s with MSL shifter
   4507 def MVNIv2s_msl   : SIMDModifiedImmMoveMSL<0, 1, {1,1,0,?}, V64, "mvni", ".2s",
   4508                       [(set (v2i32 V64:$Rd),
   4509                             (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
   4510 def MVNIv4s_msl   : SIMDModifiedImmMoveMSL<1, 1, {1,1,0,?}, V128, "mvni", ".4s",
   4511                       [(set (v4i32 V128:$Rd),
   4512                             (AArch64mvni_msl imm0_255:$imm8, (i32 imm:$shift)))]>;
   4513 
   4514 //----------------------------------------------------------------------------
   4515 // AdvSIMD indexed element
   4516 //----------------------------------------------------------------------------
   4517 
   4518 let hasSideEffects = 0 in {
   4519   defm FMLA  : SIMDFPIndexedTied<0, 0b0001, "fmla">;
   4520   defm FMLS  : SIMDFPIndexedTied<0, 0b0101, "fmls">;
   4521 }
   4522 
   4523 // NOTE: Operands are reordered in the FMLA/FMLS PatFrags because the
   4524 // instruction expects the addend first, while the intrinsic expects it last.
   4525 
   4526 // On the other hand, there are quite a few valid combinatorial options due to
   4527 // the commutativity of multiplication and the fact that (-x) * y = x * (-y).
   4528 defm : SIMDFPIndexedTiedPatterns<"FMLA",
   4529            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)>>;
   4530 defm : SIMDFPIndexedTiedPatterns<"FMLA",
   4531            TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)>>;
   4532 
   4533 defm : SIMDFPIndexedTiedPatterns<"FMLS",
   4534            TriOpFrag<(fma node:$MHS, (fneg node:$RHS), node:$LHS)> >;
   4535 defm : SIMDFPIndexedTiedPatterns<"FMLS",
   4536            TriOpFrag<(fma node:$RHS, (fneg node:$MHS), node:$LHS)> >;
   4537 defm : SIMDFPIndexedTiedPatterns<"FMLS",
   4538            TriOpFrag<(fma (fneg node:$RHS), node:$MHS, node:$LHS)> >;
   4539 defm : SIMDFPIndexedTiedPatterns<"FMLS",
   4540            TriOpFrag<(fma (fneg node:$MHS), node:$RHS, node:$LHS)> >;
   4541 
   4542 multiclass FMLSIndexedAfterNegPatterns<SDPatternOperator OpNode> {
   4543   // 3 variants for the .2s version: DUPLANE from 128-bit, DUPLANE from 64-bit
   4544   // and DUP scalar.
   4545   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
   4546                            (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
   4547                                            VectorIndexS:$idx))),
   4548             (FMLSv2i32_indexed V64:$Rd, V64:$Rn, V128:$Rm, VectorIndexS:$idx)>;
   4549   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
   4550                            (v2f32 (AArch64duplane32
   4551                                       (v4f32 (insert_subvector undef,
   4552                                                  (v2f32 (fneg V64:$Rm)),
   4553                                                  (i32 0))),
   4554                                       VectorIndexS:$idx)))),
   4555             (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
   4556                                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
   4557                                VectorIndexS:$idx)>;
   4558   def : Pat<(v2f32 (OpNode (v2f32 V64:$Rd), (v2f32 V64:$Rn),
   4559                            (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
   4560             (FMLSv2i32_indexed V64:$Rd, V64:$Rn,
   4561                 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
   4562 
   4563   // 3 variants for the .4s version: DUPLANE from 128-bit, DUPLANE from 64-bit
   4564   // and DUP scalar.
   4565   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
   4566                            (AArch64duplane32 (v4f32 (fneg V128:$Rm)),
   4567                                            VectorIndexS:$idx))),
   4568             (FMLSv4i32_indexed V128:$Rd, V128:$Rn, V128:$Rm,
   4569                                VectorIndexS:$idx)>;
   4570   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
   4571                            (v4f32 (AArch64duplane32
   4572                                       (v4f32 (insert_subvector undef,
   4573                                                  (v2f32 (fneg V64:$Rm)),
   4574                                                  (i32 0))),
   4575                                       VectorIndexS:$idx)))),
   4576             (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
   4577                                (SUBREG_TO_REG (i32 0), V64:$Rm, dsub),
   4578                                VectorIndexS:$idx)>;
   4579   def : Pat<(v4f32 (OpNode (v4f32 V128:$Rd), (v4f32 V128:$Rn),
   4580                            (AArch64dup (f32 (fneg FPR32Op:$Rm))))),
   4581             (FMLSv4i32_indexed V128:$Rd, V128:$Rn,
   4582                 (SUBREG_TO_REG (i32 0), FPR32Op:$Rm, ssub), (i64 0))>;
   4583 
   4584   // 2 variants for the .2d version: DUPLANE from 128-bit, and DUP scalar
   4585   // (DUPLANE from 64-bit would be trivial).
   4586   def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
   4587                            (AArch64duplane64 (v2f64 (fneg V128:$Rm)),
   4588                                            VectorIndexD:$idx))),
   4589             (FMLSv2i64_indexed
   4590                 V128:$Rd, V128:$Rn, V128:$Rm, VectorIndexS:$idx)>;
   4591   def : Pat<(v2f64 (OpNode (v2f64 V128:$Rd), (v2f64 V128:$Rn),
   4592                            (AArch64dup (f64 (fneg FPR64Op:$Rm))))),
   4593             (FMLSv2i64_indexed V128:$Rd, V128:$Rn,
   4594                 (SUBREG_TO_REG (i32 0), FPR64Op:$Rm, dsub), (i64 0))>;
   4595 
   4596   // 2 variants for 32-bit scalar version: extract from .2s or from .4s
   4597   def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
   4598                          (vector_extract (v4f32 (fneg V128:$Rm)),
   4599                                          VectorIndexS:$idx))),
   4600             (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
   4601                 V128:$Rm, VectorIndexS:$idx)>;
   4602   def : Pat<(f32 (OpNode (f32 FPR32:$Rd), (f32 FPR32:$Rn),
   4603                          (vector_extract (v4f32 (insert_subvector undef,
   4604                                                     (v2f32 (fneg V64:$Rm)),
   4605                                                     (i32 0))),
   4606                                          VectorIndexS:$idx))),
   4607             (FMLSv1i32_indexed FPR32:$Rd, FPR32:$Rn,
   4608                 (SUBREG_TO_REG (i32 0), V64:$Rm, dsub), VectorIndexS:$idx)>;
   4609 
   4610   // 1 variant for 64-bit scalar version: extract from .1d or from .2d
   4611   def : Pat<(f64 (OpNode (f64 FPR64:$Rd), (f64 FPR64:$Rn),
   4612                          (vector_extract (v2f64 (fneg V128:$Rm)),
   4613                                          VectorIndexS:$idx))),
   4614             (FMLSv1i64_indexed FPR64:$Rd, FPR64:$Rn,
   4615                 V128:$Rm, VectorIndexS:$idx)>;
   4616 }
   4617 
   4618 defm : FMLSIndexedAfterNegPatterns<
   4619            TriOpFrag<(fma node:$RHS, node:$MHS, node:$LHS)> >;
   4620 defm : FMLSIndexedAfterNegPatterns<
   4621            TriOpFrag<(fma node:$MHS, node:$RHS, node:$LHS)> >;
   4622 
   4623 defm FMULX : SIMDFPIndexed<1, 0b1001, "fmulx", int_aarch64_neon_fmulx>;
   4624 defm FMUL  : SIMDFPIndexed<0, 0b1001, "fmul", fmul>;
   4625 
   4626 def : Pat<(v2f32 (fmul V64:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
   4627           (FMULv2i32_indexed V64:$Rn,
   4628             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
   4629             (i64 0))>;
   4630 def : Pat<(v4f32 (fmul V128:$Rn, (AArch64dup (f32 FPR32:$Rm)))),
   4631           (FMULv4i32_indexed V128:$Rn,
   4632             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR32:$Rm, ssub),
   4633             (i64 0))>;
   4634 def : Pat<(v2f64 (fmul V128:$Rn, (AArch64dup (f64 FPR64:$Rm)))),
   4635           (FMULv2i64_indexed V128:$Rn,
   4636             (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$Rm, dsub),
   4637             (i64 0))>;
   4638 
   4639 defm SQDMULH : SIMDIndexedHS<0, 0b1100, "sqdmulh", int_aarch64_neon_sqdmulh>;
   4640 defm SQRDMULH : SIMDIndexedHS<0, 0b1101, "sqrdmulh", int_aarch64_neon_sqrdmulh>;
   4641 defm MLA   : SIMDVectorIndexedHSTied<1, 0b0000, "mla",
   4642               TriOpFrag<(add node:$LHS, (mul node:$MHS, node:$RHS))>>;
   4643 defm MLS   : SIMDVectorIndexedHSTied<1, 0b0100, "mls",
   4644               TriOpFrag<(sub node:$LHS, (mul node:$MHS, node:$RHS))>>;
   4645 defm MUL   : SIMDVectorIndexedHS<0, 0b1000, "mul", mul>;
   4646 defm SMLAL : SIMDVectorIndexedLongSDTied<0, 0b0010, "smlal",
   4647     TriOpFrag<(add node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
   4648 defm SMLSL : SIMDVectorIndexedLongSDTied<0, 0b0110, "smlsl",
   4649     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_smull node:$MHS, node:$RHS))>>;
   4650 defm SMULL : SIMDVectorIndexedLongSD<0, 0b1010, "smull",
   4651                 int_aarch64_neon_smull>;
   4652 defm SQDMLAL : SIMDIndexedLongSQDMLXSDTied<0, 0b0011, "sqdmlal",
   4653                                            int_aarch64_neon_sqadd>;
   4654 defm SQDMLSL : SIMDIndexedLongSQDMLXSDTied<0, 0b0111, "sqdmlsl",
   4655                                            int_aarch64_neon_sqsub>;
   4656 defm SQRDMLAH : SIMDIndexedSQRDMLxHSDTied<1, 0b1101, "sqrdmlah",
   4657                                           int_aarch64_neon_sqadd>;
   4658 defm SQRDMLSH : SIMDIndexedSQRDMLxHSDTied<1, 0b1111, "sqrdmlsh",
   4659                                           int_aarch64_neon_sqsub>;
   4660 defm SQDMULL : SIMDIndexedLongSD<0, 0b1011, "sqdmull", int_aarch64_neon_sqdmull>;
   4661 defm UMLAL   : SIMDVectorIndexedLongSDTied<1, 0b0010, "umlal",
   4662     TriOpFrag<(add node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
   4663 defm UMLSL   : SIMDVectorIndexedLongSDTied<1, 0b0110, "umlsl",
   4664     TriOpFrag<(sub node:$LHS, (int_aarch64_neon_umull node:$MHS, node:$RHS))>>;
   4665 defm UMULL   : SIMDVectorIndexedLongSD<1, 0b1010, "umull",
   4666                 int_aarch64_neon_umull>;
   4667 
   4668 // A scalar sqdmull with the second operand being a vector lane can be
   4669 // handled directly with the indexed instruction encoding.
   4670 def : Pat<(int_aarch64_neon_sqdmulls_scalar (i32 FPR32:$Rn),
   4671                                           (vector_extract (v4i32 V128:$Vm),
   4672                                                            VectorIndexS:$idx)),
   4673           (SQDMULLv1i64_indexed FPR32:$Rn, V128:$Vm, VectorIndexS:$idx)>;
   4674 
   4675 //----------------------------------------------------------------------------
   4676 // AdvSIMD scalar shift instructions
   4677 //----------------------------------------------------------------------------
   4678 defm FCVTZS : SIMDFPScalarRShift<0, 0b11111, "fcvtzs">;
   4679 defm FCVTZU : SIMDFPScalarRShift<1, 0b11111, "fcvtzu">;
   4680 defm SCVTF  : SIMDFPScalarRShift<0, 0b11100, "scvtf">;
   4681 defm UCVTF  : SIMDFPScalarRShift<1, 0b11100, "ucvtf">;
   4682 // Codegen patterns for the above. We don't put these directly on the
   4683 // instructions because TableGen's type inference can't handle the truth.
   4684 // Having the same base pattern for fp <--> int totally freaks it out.
   4685 def : Pat<(int_aarch64_neon_vcvtfp2fxs FPR32:$Rn, vecshiftR32:$imm),
   4686           (FCVTZSs FPR32:$Rn, vecshiftR32:$imm)>;
   4687 def : Pat<(int_aarch64_neon_vcvtfp2fxu FPR32:$Rn, vecshiftR32:$imm),
   4688           (FCVTZUs FPR32:$Rn, vecshiftR32:$imm)>;
   4689 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxs (f64 FPR64:$Rn), vecshiftR64:$imm)),
   4690           (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
   4691 def : Pat<(i64 (int_aarch64_neon_vcvtfp2fxu (f64 FPR64:$Rn), vecshiftR64:$imm)),
   4692           (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
   4693 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxs (v1f64 FPR64:$Rn),
   4694                                             vecshiftR64:$imm)),
   4695           (FCVTZSd FPR64:$Rn, vecshiftR64:$imm)>;
   4696 def : Pat<(v1i64 (int_aarch64_neon_vcvtfp2fxu (v1f64 FPR64:$Rn),
   4697                                             vecshiftR64:$imm)),
   4698           (FCVTZUd FPR64:$Rn, vecshiftR64:$imm)>;
   4699 def : Pat<(int_aarch64_neon_vcvtfxs2fp FPR32:$Rn, vecshiftR32:$imm),
   4700           (SCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
   4701 def : Pat<(int_aarch64_neon_vcvtfxu2fp FPR32:$Rn, vecshiftR32:$imm),
   4702           (UCVTFs FPR32:$Rn, vecshiftR32:$imm)>;
   4703 def : Pat<(f64 (int_aarch64_neon_vcvtfxs2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
   4704           (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
   4705 def : Pat<(f64 (int_aarch64_neon_vcvtfxu2fp (i64 FPR64:$Rn), vecshiftR64:$imm)),
   4706           (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
   4707 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxs2fp (v1i64 FPR64:$Rn),
   4708                                             vecshiftR64:$imm)),
   4709           (SCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
   4710 def : Pat<(v1f64 (int_aarch64_neon_vcvtfxu2fp (v1i64 FPR64:$Rn),
   4711                                             vecshiftR64:$imm)),
   4712           (UCVTFd FPR64:$Rn, vecshiftR64:$imm)>;
   4713 
   4714 defm SHL      : SIMDScalarLShiftD<   0, 0b01010, "shl", AArch64vshl>;
   4715 defm SLI      : SIMDScalarLShiftDTied<1, 0b01010, "sli">;
   4716 defm SQRSHRN  : SIMDScalarRShiftBHS< 0, 0b10011, "sqrshrn",
   4717                                      int_aarch64_neon_sqrshrn>;
   4718 defm SQRSHRUN : SIMDScalarRShiftBHS< 1, 0b10001, "sqrshrun",
   4719                                      int_aarch64_neon_sqrshrun>;
   4720 defm SQSHLU   : SIMDScalarLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
   4721 defm SQSHL    : SIMDScalarLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
   4722 defm SQSHRN   : SIMDScalarRShiftBHS< 0, 0b10010, "sqshrn",
   4723                                      int_aarch64_neon_sqshrn>;
   4724 defm SQSHRUN  : SIMDScalarRShiftBHS< 1, 0b10000, "sqshrun",
   4725                                      int_aarch64_neon_sqshrun>;
   4726 defm SRI      : SIMDScalarRShiftDTied<   1, 0b01000, "sri">;
   4727 defm SRSHR    : SIMDScalarRShiftD<   0, 0b00100, "srshr", AArch64srshri>;
   4728 defm SRSRA    : SIMDScalarRShiftDTied<   0, 0b00110, "srsra",
   4729     TriOpFrag<(add node:$LHS,
   4730                    (AArch64srshri node:$MHS, node:$RHS))>>;
   4731 defm SSHR     : SIMDScalarRShiftD<   0, 0b00000, "sshr", AArch64vashr>;
   4732 defm SSRA     : SIMDScalarRShiftDTied<   0, 0b00010, "ssra",
   4733     TriOpFrag<(add node:$LHS,
   4734                    (AArch64vashr node:$MHS, node:$RHS))>>;
   4735 defm UQRSHRN  : SIMDScalarRShiftBHS< 1, 0b10011, "uqrshrn",
   4736                                      int_aarch64_neon_uqrshrn>;
   4737 defm UQSHL    : SIMDScalarLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
   4738 defm UQSHRN   : SIMDScalarRShiftBHS< 1, 0b10010, "uqshrn",
   4739                                      int_aarch64_neon_uqshrn>;
   4740 defm URSHR    : SIMDScalarRShiftD<   1, 0b00100, "urshr", AArch64urshri>;
   4741 defm URSRA    : SIMDScalarRShiftDTied<   1, 0b00110, "ursra",
   4742     TriOpFrag<(add node:$LHS,
   4743                    (AArch64urshri node:$MHS, node:$RHS))>>;
   4744 defm USHR     : SIMDScalarRShiftD<   1, 0b00000, "ushr", AArch64vlshr>;
   4745 defm USRA     : SIMDScalarRShiftDTied<   1, 0b00010, "usra",
   4746     TriOpFrag<(add node:$LHS,
   4747                    (AArch64vlshr node:$MHS, node:$RHS))>>;
   4748 
   4749 //----------------------------------------------------------------------------
   4750 // AdvSIMD vector shift instructions
   4751 //----------------------------------------------------------------------------
   4752 defm FCVTZS:SIMDVectorRShiftSD<0, 0b11111, "fcvtzs", int_aarch64_neon_vcvtfp2fxs>;
   4753 defm FCVTZU:SIMDVectorRShiftSD<1, 0b11111, "fcvtzu", int_aarch64_neon_vcvtfp2fxu>;
   4754 defm SCVTF: SIMDVectorRShiftToFP<0, 0b11100, "scvtf",
   4755                                    int_aarch64_neon_vcvtfxs2fp>;
   4756 defm RSHRN   : SIMDVectorRShiftNarrowBHS<0, 0b10001, "rshrn",
   4757                                          int_aarch64_neon_rshrn>;
   4758 defm SHL     : SIMDVectorLShiftBHSD<0, 0b01010, "shl", AArch64vshl>;
   4759 defm SHRN    : SIMDVectorRShiftNarrowBHS<0, 0b10000, "shrn",
   4760                           BinOpFrag<(trunc (AArch64vashr node:$LHS, node:$RHS))>>;
   4761 defm SLI     : SIMDVectorLShiftBHSDTied<1, 0b01010, "sli", int_aarch64_neon_vsli>;
   4762 def : Pat<(v1i64 (int_aarch64_neon_vsli (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
   4763                                       (i32 vecshiftL64:$imm))),
   4764           (SLId FPR64:$Rd, FPR64:$Rn, vecshiftL64:$imm)>;
   4765 defm SQRSHRN : SIMDVectorRShiftNarrowBHS<0, 0b10011, "sqrshrn",
   4766                                          int_aarch64_neon_sqrshrn>;
   4767 defm SQRSHRUN: SIMDVectorRShiftNarrowBHS<1, 0b10001, "sqrshrun",
   4768                                          int_aarch64_neon_sqrshrun>;
   4769 defm SQSHLU : SIMDVectorLShiftBHSD<1, 0b01100, "sqshlu", AArch64sqshlui>;
   4770 defm SQSHL  : SIMDVectorLShiftBHSD<0, 0b01110, "sqshl", AArch64sqshli>;
   4771 defm SQSHRN  : SIMDVectorRShiftNarrowBHS<0, 0b10010, "sqshrn",
   4772                                          int_aarch64_neon_sqshrn>;
   4773 defm SQSHRUN : SIMDVectorRShiftNarrowBHS<1, 0b10000, "sqshrun",
   4774                                          int_aarch64_neon_sqshrun>;
   4775 defm SRI     : SIMDVectorRShiftBHSDTied<1, 0b01000, "sri", int_aarch64_neon_vsri>;
   4776 def : Pat<(v1i64 (int_aarch64_neon_vsri (v1i64 FPR64:$Rd), (v1i64 FPR64:$Rn),
   4777                                       (i32 vecshiftR64:$imm))),
   4778           (SRId FPR64:$Rd, FPR64:$Rn, vecshiftR64:$imm)>;
   4779 defm SRSHR   : SIMDVectorRShiftBHSD<0, 0b00100, "srshr", AArch64srshri>;
   4780 defm SRSRA   : SIMDVectorRShiftBHSDTied<0, 0b00110, "srsra",
   4781                  TriOpFrag<(add node:$LHS,
   4782                                 (AArch64srshri node:$MHS, node:$RHS))> >;
   4783 defm SSHLL   : SIMDVectorLShiftLongBHSD<0, 0b10100, "sshll",
   4784                 BinOpFrag<(AArch64vshl (sext node:$LHS), node:$RHS)>>;
   4785 
   4786 defm SSHR    : SIMDVectorRShiftBHSD<0, 0b00000, "sshr", AArch64vashr>;
   4787 defm SSRA    : SIMDVectorRShiftBHSDTied<0, 0b00010, "ssra",
   4788                 TriOpFrag<(add node:$LHS, (AArch64vashr node:$MHS, node:$RHS))>>;
   4789 defm UCVTF   : SIMDVectorRShiftToFP<1, 0b11100, "ucvtf",
   4790                         int_aarch64_neon_vcvtfxu2fp>;
   4791 defm UQRSHRN : SIMDVectorRShiftNarrowBHS<1, 0b10011, "uqrshrn",
   4792                                          int_aarch64_neon_uqrshrn>;
   4793 defm UQSHL   : SIMDVectorLShiftBHSD<1, 0b01110, "uqshl", AArch64uqshli>;
   4794 defm UQSHRN  : SIMDVectorRShiftNarrowBHS<1, 0b10010, "uqshrn",
   4795                                          int_aarch64_neon_uqshrn>;
   4796 defm URSHR   : SIMDVectorRShiftBHSD<1, 0b00100, "urshr", AArch64urshri>;
   4797 defm URSRA   : SIMDVectorRShiftBHSDTied<1, 0b00110, "ursra",
   4798                 TriOpFrag<(add node:$LHS,
   4799                                (AArch64urshri node:$MHS, node:$RHS))> >;
   4800 defm USHLL   : SIMDVectorLShiftLongBHSD<1, 0b10100, "ushll",
   4801                 BinOpFrag<(AArch64vshl (zext node:$LHS), node:$RHS)>>;
   4802 defm USHR    : SIMDVectorRShiftBHSD<1, 0b00000, "ushr", AArch64vlshr>;
   4803 defm USRA    : SIMDVectorRShiftBHSDTied<1, 0b00010, "usra",
   4804                 TriOpFrag<(add node:$LHS, (AArch64vlshr node:$MHS, node:$RHS))> >;
   4805 
   4806 // SHRN patterns for when a logical right shift was used instead of arithmetic
   4807 // (the immediate guarantees no sign bits actually end up in the result so it
   4808 // doesn't matter).
   4809 def : Pat<(v8i8 (trunc (AArch64vlshr (v8i16 V128:$Rn), vecshiftR16Narrow:$imm))),
   4810           (SHRNv8i8_shift V128:$Rn, vecshiftR16Narrow:$imm)>;
   4811 def : Pat<(v4i16 (trunc (AArch64vlshr (v4i32 V128:$Rn), vecshiftR32Narrow:$imm))),
   4812           (SHRNv4i16_shift V128:$Rn, vecshiftR32Narrow:$imm)>;
   4813 def : Pat<(v2i32 (trunc (AArch64vlshr (v2i64 V128:$Rn), vecshiftR64Narrow:$imm))),
   4814           (SHRNv2i32_shift V128:$Rn, vecshiftR64Narrow:$imm)>;
   4815 
   4816 def : Pat<(v16i8 (concat_vectors (v8i8 V64:$Rd),
   4817                                  (trunc (AArch64vlshr (v8i16 V128:$Rn),
   4818                                                     vecshiftR16Narrow:$imm)))),
   4819           (SHRNv16i8_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
   4820                            V128:$Rn, vecshiftR16Narrow:$imm)>;
   4821 def : Pat<(v8i16 (concat_vectors (v4i16 V64:$Rd),
   4822                                  (trunc (AArch64vlshr (v4i32 V128:$Rn),
   4823                                                     vecshiftR32Narrow:$imm)))),
   4824           (SHRNv8i16_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
   4825                            V128:$Rn, vecshiftR32Narrow:$imm)>;
   4826 def : Pat<(v4i32 (concat_vectors (v2i32 V64:$Rd),
   4827                                  (trunc (AArch64vlshr (v2i64 V128:$Rn),
   4828                                                     vecshiftR64Narrow:$imm)))),
   4829           (SHRNv4i32_shift (INSERT_SUBREG (IMPLICIT_DEF), V64:$Rd, dsub),
   4830                            V128:$Rn, vecshiftR32Narrow:$imm)>;
   4831 
   4832 // Vector sign and zero extensions are implemented with SSHLL and USSHLL.
   4833 // Anyexts are implemented as zexts.
   4834 def : Pat<(v8i16 (sext   (v8i8 V64:$Rn))),  (SSHLLv8i8_shift  V64:$Rn, (i32 0))>;
   4835 def : Pat<(v8i16 (zext   (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
   4836 def : Pat<(v8i16 (anyext (v8i8 V64:$Rn))),  (USHLLv8i8_shift  V64:$Rn, (i32 0))>;
   4837 def : Pat<(v4i32 (sext   (v4i16 V64:$Rn))), (SSHLLv4i16_shift V64:$Rn, (i32 0))>;
   4838 def : Pat<(v4i32 (zext   (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
   4839 def : Pat<(v4i32 (anyext (v4i16 V64:$Rn))), (USHLLv4i16_shift V64:$Rn, (i32 0))>;
   4840 def : Pat<(v2i64 (sext   (v2i32 V64:$Rn))), (SSHLLv2i32_shift V64:$Rn, (i32 0))>;
   4841 def : Pat<(v2i64 (zext   (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
   4842 def : Pat<(v2i64 (anyext (v2i32 V64:$Rn))), (USHLLv2i32_shift V64:$Rn, (i32 0))>;
   4843 // Also match an extend from the upper half of a 128 bit source register.
   4844 def : Pat<(v8i16 (anyext (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
   4845           (USHLLv16i8_shift V128:$Rn, (i32 0))>;
   4846 def : Pat<(v8i16 (zext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
   4847           (USHLLv16i8_shift V128:$Rn, (i32 0))>;
   4848 def : Pat<(v8i16 (sext   (v8i8 (extract_subvector V128:$Rn, (i64 8)) ))),
   4849           (SSHLLv16i8_shift V128:$Rn, (i32 0))>;
   4850 def : Pat<(v4i32 (anyext (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
   4851           (USHLLv8i16_shift V128:$Rn, (i32 0))>;
   4852 def : Pat<(v4i32 (zext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
   4853           (USHLLv8i16_shift V128:$Rn, (i32 0))>;
   4854 def : Pat<(v4i32 (sext   (v4i16 (extract_subvector V128:$Rn, (i64 4)) ))),
   4855           (SSHLLv8i16_shift V128:$Rn, (i32 0))>;
   4856 def : Pat<(v2i64 (anyext (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
   4857           (USHLLv4i32_shift V128:$Rn, (i32 0))>;
   4858 def : Pat<(v2i64 (zext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
   4859           (USHLLv4i32_shift V128:$Rn, (i32 0))>;
   4860 def : Pat<(v2i64 (sext   (v2i32 (extract_subvector V128:$Rn, (i64 2)) ))),
   4861           (SSHLLv4i32_shift V128:$Rn, (i32 0))>;
   4862 
   4863 // Vector shift sxtl aliases
   4864 def : InstAlias<"sxtl.8h $dst, $src1",
   4865                 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
   4866 def : InstAlias<"sxtl $dst.8h, $src1.8b",
   4867                 (SSHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
   4868 def : InstAlias<"sxtl.4s $dst, $src1",
   4869                 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
   4870 def : InstAlias<"sxtl $dst.4s, $src1.4h",
   4871                 (SSHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
   4872 def : InstAlias<"sxtl.2d $dst, $src1",
   4873                 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
   4874 def : InstAlias<"sxtl $dst.2d, $src1.2s",
   4875                 (SSHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
   4876 
   4877 // Vector shift sxtl2 aliases
   4878 def : InstAlias<"sxtl2.8h $dst, $src1",
   4879                 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
   4880 def : InstAlias<"sxtl2 $dst.8h, $src1.16b",
   4881                 (SSHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
   4882 def : InstAlias<"sxtl2.4s $dst, $src1",
   4883                 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
   4884 def : InstAlias<"sxtl2 $dst.4s, $src1.8h",
   4885                 (SSHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
   4886 def : InstAlias<"sxtl2.2d $dst, $src1",
   4887                 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
   4888 def : InstAlias<"sxtl2 $dst.2d, $src1.4s",
   4889                 (SSHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
   4890 
   4891 // Vector shift uxtl aliases
   4892 def : InstAlias<"uxtl.8h $dst, $src1",
   4893                 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
   4894 def : InstAlias<"uxtl $dst.8h, $src1.8b",
   4895                 (USHLLv8i8_shift V128:$dst, V64:$src1, 0)>;
   4896 def : InstAlias<"uxtl.4s $dst, $src1",
   4897                 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
   4898 def : InstAlias<"uxtl $dst.4s, $src1.4h",
   4899                 (USHLLv4i16_shift V128:$dst, V64:$src1, 0)>;
   4900 def : InstAlias<"uxtl.2d $dst, $src1",
   4901                 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
   4902 def : InstAlias<"uxtl $dst.2d, $src1.2s",
   4903                 (USHLLv2i32_shift V128:$dst, V64:$src1, 0)>;
   4904 
   4905 // Vector shift uxtl2 aliases
   4906 def : InstAlias<"uxtl2.8h $dst, $src1",
   4907                 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
   4908 def : InstAlias<"uxtl2 $dst.8h, $src1.16b",
   4909                 (USHLLv16i8_shift V128:$dst, V128:$src1, 0)>;
   4910 def : InstAlias<"uxtl2.4s $dst, $src1",
   4911                 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
   4912 def : InstAlias<"uxtl2 $dst.4s, $src1.8h",
   4913                 (USHLLv8i16_shift V128:$dst, V128:$src1, 0)>;
   4914 def : InstAlias<"uxtl2.2d $dst, $src1",
   4915                 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
   4916 def : InstAlias<"uxtl2 $dst.2d, $src1.4s",
   4917                 (USHLLv4i32_shift V128:$dst, V128:$src1, 0)>;
   4918 
   4919 // If an integer is about to be converted to a floating point value,
   4920 // just load it on the floating point unit.
   4921 // These patterns are more complex because floating point loads do not
   4922 // support sign extension.
   4923 // The sign extension has to be explicitly added and is only supported for
   4924 // one step: byte-to-half, half-to-word, word-to-doubleword.
   4925 // SCVTF GPR -> FPR is 9 cycles.
   4926 // SCVTF FPR -> FPR is 4 cyclces.
   4927 // (sign extension with lengthen) SXTL FPR -> FPR is 2 cycles.
   4928 // Therefore, we can do 2 sign extensions and one SCVTF FPR -> FPR
   4929 // and still being faster.
   4930 // However, this is not good for code size.
   4931 // 8-bits -> float. 2 sizes step-up.
   4932 class SExtLoadi8CVTf32Pat<dag addrmode, dag INST>
   4933   : Pat<(f32 (sint_to_fp (i32 (sextloadi8 addrmode)))),
   4934         (SCVTFv1i32 (f32 (EXTRACT_SUBREG
   4935                             (SSHLLv4i16_shift
   4936                               (f64
   4937                                 (EXTRACT_SUBREG
   4938                                   (SSHLLv8i8_shift
   4939                                     (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   4940                                         INST,
   4941                                         bsub),
   4942                                     0),
   4943                                   dsub)),
   4944                                0),
   4945                              ssub)))>,
   4946     Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
   4947 
   4948 def : SExtLoadi8CVTf32Pat<(ro8.Wpat GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext),
   4949                           (LDRBroW  GPR64sp:$Rn, GPR32:$Rm, ro8.Wext:$ext)>;
   4950 def : SExtLoadi8CVTf32Pat<(ro8.Xpat GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext),
   4951                           (LDRBroX  GPR64sp:$Rn, GPR64:$Rm, ro8.Xext:$ext)>;
   4952 def : SExtLoadi8CVTf32Pat<(am_indexed8 GPR64sp:$Rn, uimm12s1:$offset),
   4953                           (LDRBui GPR64sp:$Rn, uimm12s1:$offset)>;
   4954 def : SExtLoadi8CVTf32Pat<(am_unscaled8 GPR64sp:$Rn, simm9:$offset),
   4955                           (LDURBi GPR64sp:$Rn, simm9:$offset)>;
   4956 
   4957 // 16-bits -> float. 1 size step-up.
   4958 class SExtLoadi16CVTf32Pat<dag addrmode, dag INST>
   4959   : Pat<(f32 (sint_to_fp (i32 (sextloadi16 addrmode)))),
   4960         (SCVTFv1i32 (f32 (EXTRACT_SUBREG
   4961                             (SSHLLv4i16_shift
   4962                                 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   4963                                   INST,
   4964                                   hsub),
   4965                                 0),
   4966                             ssub)))>, Requires<[NotForCodeSize]>;
   4967 
   4968 def : SExtLoadi16CVTf32Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
   4969                            (LDRHroW   GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
   4970 def : SExtLoadi16CVTf32Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
   4971                            (LDRHroX   GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
   4972 def : SExtLoadi16CVTf32Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
   4973                            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
   4974 def : SExtLoadi16CVTf32Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
   4975                            (LDURHi GPR64sp:$Rn, simm9:$offset)>;
   4976 
   4977 // 32-bits to 32-bits are handled in target specific dag combine:
   4978 // performIntToFpCombine.
   4979 // 64-bits integer to 32-bits floating point, not possible with
   4980 // SCVTF on floating point registers (both source and destination
   4981 // must have the same size).
   4982 
   4983 // Here are the patterns for 8, 16, 32, and 64-bits to double.
   4984 // 8-bits -> double. 3 size step-up: give up.
   4985 // 16-bits -> double. 2 size step.
   4986 class SExtLoadi16CVTf64Pat<dag addrmode, dag INST>
   4987   : Pat <(f64 (sint_to_fp (i32 (sextloadi16 addrmode)))),
   4988            (SCVTFv1i64 (f64 (EXTRACT_SUBREG
   4989                               (SSHLLv2i32_shift
   4990                                  (f64
   4991                                   (EXTRACT_SUBREG
   4992                                     (SSHLLv4i16_shift
   4993                                       (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   4994                                         INST,
   4995                                         hsub),
   4996                                      0),
   4997                                    dsub)),
   4998                                0),
   4999                              dsub)))>,
   5000     Requires<[NotForCodeSize, UseAlternateSExtLoadCVTF32]>;
   5001  
   5002 def : SExtLoadi16CVTf64Pat<(ro16.Wpat GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext),
   5003                            (LDRHroW GPR64sp:$Rn, GPR32:$Rm, ro16.Wext:$ext)>;
   5004 def : SExtLoadi16CVTf64Pat<(ro16.Xpat GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext),
   5005                            (LDRHroX GPR64sp:$Rn, GPR64:$Rm, ro16.Xext:$ext)>;
   5006 def : SExtLoadi16CVTf64Pat<(am_indexed16 GPR64sp:$Rn, uimm12s2:$offset),
   5007                            (LDRHui GPR64sp:$Rn, uimm12s2:$offset)>;
   5008 def : SExtLoadi16CVTf64Pat<(am_unscaled16 GPR64sp:$Rn, simm9:$offset),
   5009                            (LDURHi GPR64sp:$Rn, simm9:$offset)>;
   5010 // 32-bits -> double. 1 size step-up.
   5011 class SExtLoadi32CVTf64Pat<dag addrmode, dag INST>
   5012   : Pat <(f64 (sint_to_fp (i32 (load addrmode)))),
   5013            (SCVTFv1i64 (f64 (EXTRACT_SUBREG
   5014                               (SSHLLv2i32_shift
   5015                                 (INSERT_SUBREG (f64 (IMPLICIT_DEF)),
   5016                                   INST,
   5017                                   ssub),
   5018                                0),
   5019                              dsub)))>, Requires<[NotForCodeSize]>;
   5020 
   5021 def : SExtLoadi32CVTf64Pat<(ro32.Wpat GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext),
   5022                            (LDRSroW GPR64sp:$Rn, GPR32:$Rm, ro32.Wext:$ext)>;
   5023 def : SExtLoadi32CVTf64Pat<(ro32.Xpat GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext),
   5024                            (LDRSroX GPR64sp:$Rn, GPR64:$Rm, ro32.Xext:$ext)>;
   5025 def : SExtLoadi32CVTf64Pat<(am_indexed32 GPR64sp:$Rn, uimm12s4:$offset),
   5026                            (LDRSui GPR64sp:$Rn, uimm12s4:$offset)>;
   5027 def : SExtLoadi32CVTf64Pat<(am_unscaled32 GPR64sp:$Rn, simm9:$offset),
   5028                            (LDURSi GPR64sp:$Rn, simm9:$offset)>;
   5029 
   5030 // 64-bits -> double are handled in target specific dag combine:
   5031 // performIntToFpCombine.
   5032 
   5033 
   5034 //----------------------------------------------------------------------------
   5035 // AdvSIMD Load-Store Structure
   5036 //----------------------------------------------------------------------------
   5037 defm LD1 : SIMDLd1Multiple<"ld1">;
   5038 defm LD2 : SIMDLd2Multiple<"ld2">;
   5039 defm LD3 : SIMDLd3Multiple<"ld3">;
   5040 defm LD4 : SIMDLd4Multiple<"ld4">;
   5041 
   5042 defm ST1 : SIMDSt1Multiple<"st1">;
   5043 defm ST2 : SIMDSt2Multiple<"st2">;
   5044 defm ST3 : SIMDSt3Multiple<"st3">;
   5045 defm ST4 : SIMDSt4Multiple<"st4">;
   5046 
   5047 class Ld1Pat<ValueType ty, Instruction INST>
   5048   : Pat<(ty (load GPR64sp:$Rn)), (INST GPR64sp:$Rn)>;
   5049 
   5050 def : Ld1Pat<v16i8, LD1Onev16b>;
   5051 def : Ld1Pat<v8i16, LD1Onev8h>;
   5052 def : Ld1Pat<v4i32, LD1Onev4s>;
   5053 def : Ld1Pat<v2i64, LD1Onev2d>;
   5054 def : Ld1Pat<v8i8,  LD1Onev8b>;
   5055 def : Ld1Pat<v4i16, LD1Onev4h>;
   5056 def : Ld1Pat<v2i32, LD1Onev2s>;
   5057 def : Ld1Pat<v1i64, LD1Onev1d>;
   5058 
   5059 class St1Pat<ValueType ty, Instruction INST>
   5060   : Pat<(store ty:$Vt, GPR64sp:$Rn),
   5061         (INST ty:$Vt, GPR64sp:$Rn)>;
   5062 
   5063 def : St1Pat<v16i8, ST1Onev16b>;
   5064 def : St1Pat<v8i16, ST1Onev8h>;
   5065 def : St1Pat<v4i32, ST1Onev4s>;
   5066 def : St1Pat<v2i64, ST1Onev2d>;
   5067 def : St1Pat<v8i8,  ST1Onev8b>;
   5068 def : St1Pat<v4i16, ST1Onev4h>;
   5069 def : St1Pat<v2i32, ST1Onev2s>;
   5070 def : St1Pat<v1i64, ST1Onev1d>;
   5071 
   5072 //---
   5073 // Single-element
   5074 //---
   5075 
   5076 defm LD1R          : SIMDLdR<0, 0b110, 0, "ld1r", "One", 1, 2, 4, 8>;
   5077 defm LD2R          : SIMDLdR<1, 0b110, 0, "ld2r", "Two", 2, 4, 8, 16>;
   5078 defm LD3R          : SIMDLdR<0, 0b111, 0, "ld3r", "Three", 3, 6, 12, 24>;
   5079 defm LD4R          : SIMDLdR<1, 0b111, 0, "ld4r", "Four", 4, 8, 16, 32>;
   5080 let mayLoad = 1, hasSideEffects = 0 in {
   5081 defm LD1 : SIMDLdSingleBTied<0, 0b000,       "ld1", VecListOneb,   GPR64pi1>;
   5082 defm LD1 : SIMDLdSingleHTied<0, 0b010, 0,    "ld1", VecListOneh,   GPR64pi2>;
   5083 defm LD1 : SIMDLdSingleSTied<0, 0b100, 0b00, "ld1", VecListOnes,   GPR64pi4>;
   5084 defm LD1 : SIMDLdSingleDTied<0, 0b100, 0b01, "ld1", VecListOned,   GPR64pi8>;
   5085 defm LD2 : SIMDLdSingleBTied<1, 0b000,       "ld2", VecListTwob,   GPR64pi2>;
   5086 defm LD2 : SIMDLdSingleHTied<1, 0b010, 0,    "ld2", VecListTwoh,   GPR64pi4>;
   5087 defm LD2 : SIMDLdSingleSTied<1, 0b100, 0b00, "ld2", VecListTwos,   GPR64pi8>;
   5088 defm LD2 : SIMDLdSingleDTied<1, 0b100, 0b01, "ld2", VecListTwod,   GPR64pi16>;
   5089 defm LD3 : SIMDLdSingleBTied<0, 0b001,       "ld3", VecListThreeb, GPR64pi3>;
   5090 defm LD3 : SIMDLdSingleHTied<0, 0b011, 0,    "ld3", VecListThreeh, GPR64pi6>;
   5091 defm LD3 : SIMDLdSingleSTied<0, 0b101, 0b00, "ld3", VecListThrees, GPR64pi12>;
   5092 defm LD3 : SIMDLdSingleDTied<0, 0b101, 0b01, "ld3", VecListThreed, GPR64pi24>;
   5093 defm LD4 : SIMDLdSingleBTied<1, 0b001,       "ld4", VecListFourb,  GPR64pi4>;
   5094 defm LD4 : SIMDLdSingleHTied<1, 0b011, 0,    "ld4", VecListFourh,  GPR64pi8>;
   5095 defm LD4 : SIMDLdSingleSTied<1, 0b101, 0b00, "ld4", VecListFours,  GPR64pi16>;
   5096 defm LD4 : SIMDLdSingleDTied<1, 0b101, 0b01, "ld4", VecListFourd,  GPR64pi32>;
   5097 }
   5098 
   5099 def : Pat<(v8i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
   5100           (LD1Rv8b GPR64sp:$Rn)>;
   5101 def : Pat<(v16i8 (AArch64dup (i32 (extloadi8 GPR64sp:$Rn)))),
   5102           (LD1Rv16b GPR64sp:$Rn)>;
   5103 def : Pat<(v4i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
   5104           (LD1Rv4h GPR64sp:$Rn)>;
   5105 def : Pat<(v8i16 (AArch64dup (i32 (extloadi16 GPR64sp:$Rn)))),
   5106           (LD1Rv8h GPR64sp:$Rn)>;
   5107 def : Pat<(v2i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
   5108           (LD1Rv2s GPR64sp:$Rn)>;
   5109 def : Pat<(v4i32 (AArch64dup (i32 (load GPR64sp:$Rn)))),
   5110           (LD1Rv4s GPR64sp:$Rn)>;
   5111 def : Pat<(v2i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
   5112           (LD1Rv2d GPR64sp:$Rn)>;
   5113 def : Pat<(v1i64 (AArch64dup (i64 (load GPR64sp:$Rn)))),
   5114           (LD1Rv1d GPR64sp:$Rn)>;
   5115 // Grab the floating point version too
   5116 def : Pat<(v2f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
   5117           (LD1Rv2s GPR64sp:$Rn)>;
   5118 def : Pat<(v4f32 (AArch64dup (f32 (load GPR64sp:$Rn)))),
   5119           (LD1Rv4s GPR64sp:$Rn)>;
   5120 def : Pat<(v2f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
   5121           (LD1Rv2d GPR64sp:$Rn)>;
   5122 def : Pat<(v1f64 (AArch64dup (f64 (load GPR64sp:$Rn)))),
   5123           (LD1Rv1d GPR64sp:$Rn)>;
   5124 def : Pat<(v4f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
   5125           (LD1Rv4h GPR64sp:$Rn)>;
   5126 def : Pat<(v8f16 (AArch64dup (f16 (load GPR64sp:$Rn)))),
   5127           (LD1Rv8h GPR64sp:$Rn)>;
   5128 
   5129 class Ld1Lane128Pat<SDPatternOperator scalar_load, Operand VecIndex,
   5130                     ValueType VTy, ValueType STy, Instruction LD1>
   5131   : Pat<(vector_insert (VTy VecListOne128:$Rd),
   5132            (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
   5133         (LD1 VecListOne128:$Rd, VecIndex:$idx, GPR64sp:$Rn)>;
   5134 
   5135 def : Ld1Lane128Pat<extloadi8,  VectorIndexB, v16i8, i32, LD1i8>;
   5136 def : Ld1Lane128Pat<extloadi16, VectorIndexH, v8i16, i32, LD1i16>;
   5137 def : Ld1Lane128Pat<load,       VectorIndexS, v4i32, i32, LD1i32>;
   5138 def : Ld1Lane128Pat<load,       VectorIndexS, v4f32, f32, LD1i32>;
   5139 def : Ld1Lane128Pat<load,       VectorIndexD, v2i64, i64, LD1i64>;
   5140 def : Ld1Lane128Pat<load,       VectorIndexD, v2f64, f64, LD1i64>;
   5141 def : Ld1Lane128Pat<load,       VectorIndexH, v8f16, f16, LD1i16>;
   5142 
   5143 class Ld1Lane64Pat<SDPatternOperator scalar_load, Operand VecIndex,
   5144                    ValueType VTy, ValueType STy, Instruction LD1>
   5145   : Pat<(vector_insert (VTy VecListOne64:$Rd),
   5146            (STy (scalar_load GPR64sp:$Rn)), VecIndex:$idx),
   5147         (EXTRACT_SUBREG
   5148             (LD1 (SUBREG_TO_REG (i32 0), VecListOne64:$Rd, dsub),
   5149                           VecIndex:$idx, GPR64sp:$Rn),
   5150             dsub)>;
   5151 
   5152 def : Ld1Lane64Pat<extloadi8,  VectorIndexB, v8i8,  i32, LD1i8>;
   5153 def : Ld1Lane64Pat<extloadi16, VectorIndexH, v4i16, i32, LD1i16>;
   5154 def : Ld1Lane64Pat<load,       VectorIndexS, v2i32, i32, LD1i32>;
   5155 def : Ld1Lane64Pat<load,       VectorIndexS, v2f32, f32, LD1i32>;
   5156 def : Ld1Lane64Pat<load,       VectorIndexH, v4f16, f16, LD1i16>;
   5157 
   5158 
   5159 defm LD1 : SIMDLdSt1SingleAliases<"ld1">;
   5160 defm LD2 : SIMDLdSt2SingleAliases<"ld2">;
   5161 defm LD3 : SIMDLdSt3SingleAliases<"ld3">;
   5162 defm LD4 : SIMDLdSt4SingleAliases<"ld4">;
   5163 
   5164 // Stores
   5165 defm ST1 : SIMDStSingleB<0, 0b000,       "st1", VecListOneb, GPR64pi1>;
   5166 defm ST1 : SIMDStSingleH<0, 0b010, 0,    "st1", VecListOneh, GPR64pi2>;
   5167 defm ST1 : SIMDStSingleS<0, 0b100, 0b00, "st1", VecListOnes, GPR64pi4>;
   5168 defm ST1 : SIMDStSingleD<0, 0b100, 0b01, "st1", VecListOned, GPR64pi8>;
   5169 
   5170 let AddedComplexity = 19 in
   5171 class St1Lane128Pat<SDPatternOperator scalar_store, Operand VecIndex,
   5172                     ValueType VTy, ValueType STy, Instruction ST1>
   5173   : Pat<(scalar_store
   5174              (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
   5175              GPR64sp:$Rn),
   5176         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn)>;
   5177 
   5178 def : St1Lane128Pat<truncstorei8,  VectorIndexB, v16i8, i32, ST1i8>;
   5179 def : St1Lane128Pat<truncstorei16, VectorIndexH, v8i16, i32, ST1i16>;
   5180 def : St1Lane128Pat<store,         VectorIndexS, v4i32, i32, ST1i32>;
   5181 def : St1Lane128Pat<store,         VectorIndexS, v4f32, f32, ST1i32>;
   5182 def : St1Lane128Pat<store,         VectorIndexD, v2i64, i64, ST1i64>;
   5183 def : St1Lane128Pat<store,         VectorIndexD, v2f64, f64, ST1i64>;
   5184 def : St1Lane128Pat<store,         VectorIndexH, v8f16, f16, ST1i16>;
   5185 
   5186 let AddedComplexity = 19 in
   5187 class St1Lane64Pat<SDPatternOperator scalar_store, Operand VecIndex,
   5188                    ValueType VTy, ValueType STy, Instruction ST1>
   5189   : Pat<(scalar_store
   5190              (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
   5191              GPR64sp:$Rn),
   5192         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
   5193              VecIndex:$idx, GPR64sp:$Rn)>;
   5194 
   5195 def : St1Lane64Pat<truncstorei8,  VectorIndexB, v8i8, i32, ST1i8>;
   5196 def : St1Lane64Pat<truncstorei16, VectorIndexH, v4i16, i32, ST1i16>;
   5197 def : St1Lane64Pat<store,         VectorIndexS, v2i32, i32, ST1i32>;
   5198 def : St1Lane64Pat<store,         VectorIndexS, v2f32, f32, ST1i32>;
   5199 def : St1Lane64Pat<store,         VectorIndexH, v4f16, f16, ST1i16>;
   5200 
   5201 multiclass St1LanePost64Pat<SDPatternOperator scalar_store, Operand VecIndex,
   5202                              ValueType VTy, ValueType STy, Instruction ST1,
   5203                              int offset> {
   5204   def : Pat<(scalar_store
   5205               (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
   5206               GPR64sp:$Rn, offset),
   5207         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
   5208              VecIndex:$idx, GPR64sp:$Rn, XZR)>;
   5209 
   5210   def : Pat<(scalar_store
   5211               (STy (vector_extract (VTy VecListOne64:$Vt), VecIndex:$idx)),
   5212               GPR64sp:$Rn, GPR64:$Rm),
   5213         (ST1 (SUBREG_TO_REG (i32 0), VecListOne64:$Vt, dsub),
   5214              VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
   5215 }
   5216 
   5217 defm : St1LanePost64Pat<post_truncsti8, VectorIndexB, v8i8, i32, ST1i8_POST, 1>;
   5218 defm : St1LanePost64Pat<post_truncsti16, VectorIndexH, v4i16, i32, ST1i16_POST,
   5219                         2>;
   5220 defm : St1LanePost64Pat<post_store, VectorIndexS, v2i32, i32, ST1i32_POST, 4>;
   5221 defm : St1LanePost64Pat<post_store, VectorIndexS, v2f32, f32, ST1i32_POST, 4>;
   5222 defm : St1LanePost64Pat<post_store, VectorIndexD, v1i64, i64, ST1i64_POST, 8>;
   5223 defm : St1LanePost64Pat<post_store, VectorIndexD, v1f64, f64, ST1i64_POST, 8>;
   5224 defm : St1LanePost64Pat<post_store, VectorIndexH, v4f16, f16, ST1i16_POST, 2>;
   5225 
   5226 multiclass St1LanePost128Pat<SDPatternOperator scalar_store, Operand VecIndex,
   5227                              ValueType VTy, ValueType STy, Instruction ST1,
   5228                              int offset> {
   5229   def : Pat<(scalar_store
   5230               (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
   5231               GPR64sp:$Rn, offset),
   5232         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, XZR)>;
   5233 
   5234   def : Pat<(scalar_store
   5235               (STy (vector_extract (VTy VecListOne128:$Vt), VecIndex:$idx)),
   5236               GPR64sp:$Rn, GPR64:$Rm),
   5237         (ST1 VecListOne128:$Vt, VecIndex:$idx, GPR64sp:$Rn, $Rm)>;
   5238 }
   5239 
   5240 defm : St1LanePost128Pat<post_truncsti8, VectorIndexB, v16i8, i32, ST1i8_POST,
   5241                          1>;
   5242 defm : St1LanePost128Pat<post_truncsti16, VectorIndexH, v8i16, i32, ST1i16_POST,
   5243                          2>;
   5244 defm : St1LanePost128Pat<post_store, VectorIndexS, v4i32, i32, ST1i32_POST, 4>;
   5245 defm : St1LanePost128Pat<post_store, VectorIndexS, v4f32, f32, ST1i32_POST, 4>;
   5246 defm : St1LanePost128Pat<post_store, VectorIndexD, v2i64, i64, ST1i64_POST, 8>;
   5247 defm : St1LanePost128Pat<post_store, VectorIndexD, v2f64, f64, ST1i64_POST, 8>;
   5248 defm : St1LanePost128Pat<post_store, VectorIndexH, v8f16, f16, ST1i16_POST, 2>;
   5249 
   5250 let mayStore = 1, hasSideEffects = 0 in {
   5251 defm ST2 : SIMDStSingleB<1, 0b000,       "st2", VecListTwob,   GPR64pi2>;
   5252 defm ST2 : SIMDStSingleH<1, 0b010, 0,    "st2", VecListTwoh,   GPR64pi4>;
   5253 defm ST2 : SIMDStSingleS<1, 0b100, 0b00, "st2", VecListTwos,   GPR64pi8>;
   5254 defm ST2 : SIMDStSingleD<1, 0b100, 0b01, "st2", VecListTwod,   GPR64pi16>;
   5255 defm ST3 : SIMDStSingleB<0, 0b001,       "st3", VecListThreeb, GPR64pi3>;
   5256 defm ST3 : SIMDStSingleH<0, 0b011, 0,    "st3", VecListThreeh, GPR64pi6>;
   5257 defm ST3 : SIMDStSingleS<0, 0b101, 0b00, "st3", VecListThrees, GPR64pi12>;
   5258 defm ST3 : SIMDStSingleD<0, 0b101, 0b01, "st3", VecListThreed, GPR64pi24>;
   5259 defm ST4 : SIMDStSingleB<1, 0b001,       "st4", VecListFourb,  GPR64pi4>;
   5260 defm ST4 : SIMDStSingleH<1, 0b011, 0,    "st4", VecListFourh,  GPR64pi8>;
   5261 defm ST4 : SIMDStSingleS<1, 0b101, 0b00, "st4", VecListFours,  GPR64pi16>;
   5262 defm ST4 : SIMDStSingleD<1, 0b101, 0b01, "st4", VecListFourd,  GPR64pi32>;
   5263 }
   5264 
   5265 defm ST1 : SIMDLdSt1SingleAliases<"st1">;
   5266 defm ST2 : SIMDLdSt2SingleAliases<"st2">;
   5267 defm ST3 : SIMDLdSt3SingleAliases<"st3">;
   5268 defm ST4 : SIMDLdSt4SingleAliases<"st4">;
   5269 
   5270 //----------------------------------------------------------------------------
   5271 // Crypto extensions
   5272 //----------------------------------------------------------------------------
   5273 
   5274 def AESErr   : AESTiedInst<0b0100, "aese",   int_aarch64_crypto_aese>;
   5275 def AESDrr   : AESTiedInst<0b0101, "aesd",   int_aarch64_crypto_aesd>;
   5276 def AESMCrr  : AESInst<    0b0110, "aesmc",  int_aarch64_crypto_aesmc>;
   5277 def AESIMCrr : AESInst<    0b0111, "aesimc", int_aarch64_crypto_aesimc>;
   5278 
   5279 def SHA1Crrr     : SHATiedInstQSV<0b000, "sha1c",   int_aarch64_crypto_sha1c>;
   5280 def SHA1Prrr     : SHATiedInstQSV<0b001, "sha1p",   int_aarch64_crypto_sha1p>;
   5281 def SHA1Mrrr     : SHATiedInstQSV<0b010, "sha1m",   int_aarch64_crypto_sha1m>;
   5282 def SHA1SU0rrr   : SHATiedInstVVV<0b011, "sha1su0", int_aarch64_crypto_sha1su0>;
   5283 def SHA256Hrrr   : SHATiedInstQQV<0b100, "sha256h", int_aarch64_crypto_sha256h>;
   5284 def SHA256H2rrr  : SHATiedInstQQV<0b101, "sha256h2",int_aarch64_crypto_sha256h2>;
   5285 def SHA256SU1rrr :SHATiedInstVVV<0b110, "sha256su1",int_aarch64_crypto_sha256su1>;
   5286 
   5287 def SHA1Hrr     : SHAInstSS<    0b0000, "sha1h",    int_aarch64_crypto_sha1h>;
   5288 def SHA1SU1rr   : SHATiedInstVV<0b0001, "sha1su1",  int_aarch64_crypto_sha1su1>;
   5289 def SHA256SU0rr : SHATiedInstVV<0b0010, "sha256su0",int_aarch64_crypto_sha256su0>;
   5290 
   5291 //----------------------------------------------------------------------------
   5292 // Compiler-pseudos
   5293 //----------------------------------------------------------------------------
   5294 // FIXME: Like for X86, these should go in their own separate .td file.
   5295 
   5296 // Any instruction that defines a 32-bit result leaves the high half of the
   5297 // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may
   5298 // be copying from a truncate. But any other 32-bit operation will zero-extend
   5299 // up to 64 bits.
   5300 // FIXME: X86 also checks for CMOV here. Do we need something similar?
   5301 def def32 : PatLeaf<(i32 GPR32:$src), [{
   5302   return N->getOpcode() != ISD::TRUNCATE &&
   5303          N->getOpcode() != TargetOpcode::EXTRACT_SUBREG &&
   5304          N->getOpcode() != ISD::CopyFromReg;
   5305 }]>;
   5306 
   5307 // In the case of a 32-bit def that is known to implicitly zero-extend,
   5308 // we can use a SUBREG_TO_REG.
   5309 def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GPR32:$src, sub_32)>;
   5310 
   5311 // For an anyext, we don't care what the high bits are, so we can perform an
   5312 // INSERT_SUBREF into an IMPLICIT_DEF.
   5313 def : Pat<(i64 (anyext GPR32:$src)),
   5314           (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
   5315 
   5316 // When we need to explicitly zero-extend, we use a 32-bit MOV instruction and
   5317 // then assert the extension has happened.
   5318 def : Pat<(i64 (zext GPR32:$src)),
   5319           (SUBREG_TO_REG (i32 0), (ORRWrs WZR, GPR32:$src, 0), sub_32)>;
   5320 
   5321 // To sign extend, we use a signed bitfield move instruction (SBFM) on the
   5322 // containing super-reg.
   5323 def : Pat<(i64 (sext GPR32:$src)),
   5324    (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32), 0, 31)>;
   5325 def : Pat<(i64 (sext_inreg GPR64:$src, i32)), (SBFMXri GPR64:$src, 0, 31)>;
   5326 def : Pat<(i64 (sext_inreg GPR64:$src, i16)), (SBFMXri GPR64:$src, 0, 15)>;
   5327 def : Pat<(i64 (sext_inreg GPR64:$src, i8)),  (SBFMXri GPR64:$src, 0, 7)>;
   5328 def : Pat<(i64 (sext_inreg GPR64:$src, i1)),  (SBFMXri GPR64:$src, 0, 0)>;
   5329 def : Pat<(i32 (sext_inreg GPR32:$src, i16)), (SBFMWri GPR32:$src, 0, 15)>;
   5330 def : Pat<(i32 (sext_inreg GPR32:$src, i8)),  (SBFMWri GPR32:$src, 0, 7)>;
   5331 def : Pat<(i32 (sext_inreg GPR32:$src, i1)),  (SBFMWri GPR32:$src, 0, 0)>;
   5332 
   5333 def : Pat<(shl (sext_inreg GPR32:$Rn, i8), (i64 imm0_31:$imm)),
   5334           (SBFMWri GPR32:$Rn, (i64 (i32shift_a       imm0_31:$imm)),
   5335                               (i64 (i32shift_sext_i8 imm0_31:$imm)))>;
   5336 def : Pat<(shl (sext_inreg GPR64:$Rn, i8), (i64 imm0_63:$imm)),
   5337           (SBFMXri GPR64:$Rn, (i64 (i64shift_a imm0_63:$imm)),
   5338                               (i64 (i64shift_sext_i8 imm0_63:$imm)))>;
   5339 
   5340 def : Pat<(shl (sext_inreg GPR32:$Rn, i16), (i64 imm0_31:$imm)),
   5341           (SBFMWri GPR32:$Rn, (i64 (i32shift_a        imm0_31:$imm)),
   5342                               (i64 (i32shift_sext_i16 imm0_31:$imm)))>;
   5343 def : Pat<(shl (sext_inreg GPR64:$Rn, i16), (i64 imm0_63:$imm)),
   5344           (SBFMXri GPR64:$Rn, (i64 (i64shift_a        imm0_63:$imm)),
   5345                               (i64 (i64shift_sext_i16 imm0_63:$imm)))>;
   5346 
   5347 def : Pat<(shl (i64 (sext GPR32:$Rn)), (i64 imm0_63:$imm)),
   5348           (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
   5349                    (i64 (i64shift_a        imm0_63:$imm)),
   5350                    (i64 (i64shift_sext_i32 imm0_63:$imm)))>;
   5351 
   5352 // sra patterns have an AddedComplexity of 10, so make sure we have a higher
   5353 // AddedComplexity for the following patterns since we want to match sext + sra
   5354 // patterns before we attempt to match a single sra node.
   5355 let AddedComplexity = 20 in {
   5356 // We support all sext + sra combinations which preserve at least one bit of the
   5357 // original value which is to be sign extended. E.g. we support shifts up to
   5358 // bitwidth-1 bits.
   5359 def : Pat<(sra (sext_inreg GPR32:$Rn, i8), (i64 imm0_7:$imm)),
   5360           (SBFMWri GPR32:$Rn, (i64 imm0_7:$imm), 7)>;
   5361 def : Pat<(sra (sext_inreg GPR64:$Rn, i8), (i64 imm0_7:$imm)),
   5362           (SBFMXri GPR64:$Rn, (i64 imm0_7:$imm), 7)>;
   5363 
   5364 def : Pat<(sra (sext_inreg GPR32:$Rn, i16), (i64 imm0_15:$imm)),
   5365           (SBFMWri GPR32:$Rn, (i64 imm0_15:$imm), 15)>;
   5366 def : Pat<(sra (sext_inreg GPR64:$Rn, i16), (i64 imm0_15:$imm)),
   5367           (SBFMXri GPR64:$Rn, (i64 imm0_15:$imm), 15)>;
   5368 
   5369 def : Pat<(sra (i64 (sext GPR32:$Rn)), (i64 imm0_31:$imm)),
   5370           (SBFMXri (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$Rn, sub_32),
   5371                    (i64 imm0_31:$imm), 31)>;
   5372 } // AddedComplexity = 20
   5373 
   5374 // To truncate, we can simply extract from a subregister.
   5375 def : Pat<(i32 (trunc GPR64sp:$src)),
   5376           (i32 (EXTRACT_SUBREG GPR64sp:$src, sub_32))>;
   5377 
   5378 // __builtin_trap() uses the BRK instruction on AArch64.
   5379 def : Pat<(trap), (BRK 1)>;
   5380 
   5381 // Conversions within AdvSIMD types in the same register size are free.
   5382 // But because we need a consistent lane ordering, in big endian many
   5383 // conversions require one or more REV instructions.
   5384 //
   5385 // Consider a simple memory load followed by a bitconvert then a store.
   5386 //   v0 = load v2i32
   5387 //   v1 = BITCAST v2i32 v0 to v4i16
   5388 //        store v4i16 v2
   5389 //
   5390 // In big endian mode every memory access has an implicit byte swap. LDR and
   5391 // STR do a 64-bit byte swap, whereas LD1/ST1 do a byte swap per lane - that
   5392 // is, they treat the vector as a sequence of elements to be byte-swapped.
   5393 // The two pairs of instructions are fundamentally incompatible. We've decided
   5394 // to use LD1/ST1 only to simplify compiler implementation.
   5395 //
   5396 // LD1/ST1 perform the equivalent of a sequence of LDR/STR + REV. This makes
   5397 // the original code sequence:
   5398 //   v0 = load v2i32
   5399 //   v1 = REV v2i32                  (implicit)
   5400 //   v2 = BITCAST v2i32 v1 to v4i16
   5401 //   v3 = REV v4i16 v2               (implicit)
   5402 //        store v4i16 v3
   5403 //
   5404 // But this is now broken - the value stored is different to the value loaded
   5405 // due to lane reordering. To fix this, on every BITCAST we must perform two
   5406 // other REVs:
   5407 //   v0 = load v2i32
   5408 //   v1 = REV v2i32                  (implicit)
   5409 //   v2 = REV v2i32
   5410 //   v3 = BITCAST v2i32 v2 to v4i16
   5411 //   v4 = REV v4i16
   5412 //   v5 = REV v4i16 v4               (implicit)
   5413 //        store v4i16 v5
   5414 //
   5415 // This means an extra two instructions, but actually in most cases the two REV
   5416 // instructions can be combined into one. For example:
   5417 //   (REV64_2s (REV64_4h X)) === (REV32_4h X)
   5418 //
   5419 // There is also no 128-bit REV instruction. This must be synthesized with an
   5420 // EXT instruction.
   5421 //
   5422 // Most bitconverts require some sort of conversion. The only exceptions are:
   5423 //   a) Identity conversions -  vNfX <-> vNiX
   5424 //   b) Single-lane-to-scalar - v1fX <-> fX or v1iX <-> iX
   5425 //
   5426 
   5427 // Natural vector casts (64 bit)
   5428 def : Pat<(v8i8 (AArch64NvCast (v2i32 FPR64:$src))), (v8i8 FPR64:$src)>;
   5429 def : Pat<(v4i16 (AArch64NvCast (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
   5430 def : Pat<(v4f16 (AArch64NvCast (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
   5431 def : Pat<(v2i32 (AArch64NvCast (v2i32 FPR64:$src))), (v2i32 FPR64:$src)>;
   5432 def : Pat<(v2f32 (AArch64NvCast (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
   5433 def : Pat<(v1i64 (AArch64NvCast (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
   5434 
   5435 def : Pat<(v8i8 (AArch64NvCast (v4i16 FPR64:$src))), (v8i8 FPR64:$src)>;
   5436 def : Pat<(v4i16 (AArch64NvCast (v4i16 FPR64:$src))), (v4i16 FPR64:$src)>;
   5437 def : Pat<(v4f16 (AArch64NvCast (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
   5438 def : Pat<(v2i32 (AArch64NvCast (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
   5439 def : Pat<(v1i64 (AArch64NvCast (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
   5440 
   5441 def : Pat<(v8i8 (AArch64NvCast (v8i8 FPR64:$src))), (v8i8 FPR64:$src)>;
   5442 def : Pat<(v4i16 (AArch64NvCast (v8i8 FPR64:$src))), (v4i16 FPR64:$src)>;
   5443 def : Pat<(v4f16 (AArch64NvCast (v8i8 FPR64:$src))), (v4f16 FPR64:$src)>;
   5444 def : Pat<(v2i32 (AArch64NvCast (v8i8 FPR64:$src))), (v2i32 FPR64:$src)>;
   5445 def : Pat<(v1i64 (AArch64NvCast (v8i8 FPR64:$src))), (v1i64 FPR64:$src)>;
   5446 
   5447 def : Pat<(v8i8 (AArch64NvCast (f64 FPR64:$src))), (v8i8 FPR64:$src)>;
   5448 def : Pat<(v4i16 (AArch64NvCast (f64 FPR64:$src))), (v4i16 FPR64:$src)>;
   5449 def : Pat<(v4f16 (AArch64NvCast (f64 FPR64:$src))), (v4f16 FPR64:$src)>;
   5450 def : Pat<(v2i32 (AArch64NvCast (f64 FPR64:$src))), (v2i32 FPR64:$src)>;
   5451 def : Pat<(v2f32 (AArch64NvCast (f64 FPR64:$src))), (v2f32 FPR64:$src)>;
   5452 def : Pat<(v1i64 (AArch64NvCast (f64 FPR64:$src))), (v1i64 FPR64:$src)>;
   5453 def : Pat<(v1f64 (AArch64NvCast (f64 FPR64:$src))), (v1f64 FPR64:$src)>;
   5454 
   5455 def : Pat<(v8i8 (AArch64NvCast (v2f32 FPR64:$src))), (v8i8 FPR64:$src)>;
   5456 def : Pat<(v4i16 (AArch64NvCast (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
   5457 def : Pat<(v2i32 (AArch64NvCast (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
   5458 def : Pat<(v2f32 (AArch64NvCast (v2f32 FPR64:$src))), (v2f32 FPR64:$src)>;
   5459 def : Pat<(v1i64 (AArch64NvCast (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
   5460 
   5461 // Natural vector casts (128 bit)
   5462 def : Pat<(v16i8 (AArch64NvCast (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
   5463 def : Pat<(v8i16 (AArch64NvCast (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
   5464 def : Pat<(v8f16 (AArch64NvCast (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
   5465 def : Pat<(v4i32 (AArch64NvCast (v4i32 FPR128:$src))), (v4i32 FPR128:$src)>;
   5466 def : Pat<(v4f32 (AArch64NvCast (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
   5467 def : Pat<(v2i64 (AArch64NvCast (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
   5468 def : Pat<(v2f64 (AArch64NvCast (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
   5469 
   5470 def : Pat<(v16i8 (AArch64NvCast (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
   5471 def : Pat<(v8i16 (AArch64NvCast (v8i16 FPR128:$src))), (v8i16 FPR128:$src)>;
   5472 def : Pat<(v8f16 (AArch64NvCast (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
   5473 def : Pat<(v4i32 (AArch64NvCast (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
   5474 def : Pat<(v2i64 (AArch64NvCast (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
   5475 def : Pat<(v4f32 (AArch64NvCast (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
   5476 def : Pat<(v2f64 (AArch64NvCast (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
   5477 
   5478 def : Pat<(v16i8 (AArch64NvCast (v16i8 FPR128:$src))), (v16i8 FPR128:$src)>;
   5479 def : Pat<(v8i16 (AArch64NvCast (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
   5480 def : Pat<(v8f16 (AArch64NvCast (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
   5481 def : Pat<(v4i32 (AArch64NvCast (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
   5482 def : Pat<(v2i64 (AArch64NvCast (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
   5483 def : Pat<(v4f32 (AArch64NvCast (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
   5484 def : Pat<(v2f64 (AArch64NvCast (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
   5485 
   5486 def : Pat<(v16i8 (AArch64NvCast (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
   5487 def : Pat<(v8i16 (AArch64NvCast (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
   5488 def : Pat<(v8f16 (AArch64NvCast (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
   5489 def : Pat<(v4i32 (AArch64NvCast (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
   5490 def : Pat<(v2i64 (AArch64NvCast (v2i64 FPR128:$src))), (v2i64 FPR128:$src)>;
   5491 def : Pat<(v4f32 (AArch64NvCast (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
   5492 def : Pat<(v2f64 (AArch64NvCast (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
   5493 
   5494 def : Pat<(v16i8 (AArch64NvCast (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
   5495 def : Pat<(v8i16 (AArch64NvCast (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
   5496 def : Pat<(v4i32 (AArch64NvCast (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
   5497 def : Pat<(v4f32 (AArch64NvCast (v4f32 FPR128:$src))), (v4f32 FPR128:$src)>;
   5498 def : Pat<(v2i64 (AArch64NvCast (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
   5499 def : Pat<(v8f16 (AArch64NvCast (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
   5500 def : Pat<(v2f64 (AArch64NvCast (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
   5501 
   5502 def : Pat<(v16i8 (AArch64NvCast (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
   5503 def : Pat<(v8i16 (AArch64NvCast (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
   5504 def : Pat<(v4i32 (AArch64NvCast (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
   5505 def : Pat<(v2i64 (AArch64NvCast (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
   5506 def : Pat<(v2f64 (AArch64NvCast (v2f64 FPR128:$src))), (v2f64 FPR128:$src)>;
   5507 def : Pat<(v8f16 (AArch64NvCast (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
   5508 def : Pat<(v4f32 (AArch64NvCast (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
   5509 
   5510 let Predicates = [IsLE] in {
   5511 def : Pat<(v8i8  (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5512 def : Pat<(v4i16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5513 def : Pat<(v2i32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5514 def : Pat<(v4f16 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5515 def : Pat<(v2f32 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5516 
   5517 def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
   5518           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5519 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
   5520           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5521 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
   5522           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5523 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
   5524           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5525 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
   5526           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5527 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
   5528           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5529 }
   5530 let Predicates = [IsBE] in {
   5531 def : Pat<(v8i8  (bitconvert GPR64:$Xn)),
   5532                  (REV64v8i8 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5533 def : Pat<(v4i16 (bitconvert GPR64:$Xn)),
   5534                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5535 def : Pat<(v2i32 (bitconvert GPR64:$Xn)),
   5536                  (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5537 def : Pat<(v4f16 (bitconvert GPR64:$Xn)),
   5538                  (REV64v4i16 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5539 def : Pat<(v2f32 (bitconvert GPR64:$Xn)),
   5540                  (REV64v2i32 (COPY_TO_REGCLASS GPR64:$Xn, FPR64))>;
   5541 
   5542 def : Pat<(i64 (bitconvert (v8i8  V64:$Vn))),
   5543           (REV64v8i8 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5544 def : Pat<(i64 (bitconvert (v4i16 V64:$Vn))),
   5545           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5546 def : Pat<(i64 (bitconvert (v2i32 V64:$Vn))),
   5547           (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5548 def : Pat<(i64 (bitconvert (v4f16 V64:$Vn))),
   5549           (REV64v4i16 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5550 def : Pat<(i64 (bitconvert (v2f32 V64:$Vn))),
   5551           (REV64v2i32 (COPY_TO_REGCLASS V64:$Vn, GPR64))>;
   5552 }
   5553 def : Pat<(v1i64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5554 def : Pat<(v1f64 (bitconvert GPR64:$Xn)), (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5555 def : Pat<(i64 (bitconvert (v1i64 V64:$Vn))),
   5556           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5557 def : Pat<(v1i64 (scalar_to_vector GPR64:$Xn)),
   5558           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5559 def : Pat<(v1f64 (scalar_to_vector GPR64:$Xn)),
   5560           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5561 def : Pat<(v1f64 (scalar_to_vector (f64 FPR64:$Xn))), (v1f64 FPR64:$Xn)>;
   5562 
   5563 def : Pat<(f32 (bitconvert (i32 GPR32:$Xn))),
   5564           (COPY_TO_REGCLASS GPR32:$Xn, FPR32)>;
   5565 def : Pat<(i32 (bitconvert (f32 FPR32:$Xn))),
   5566           (COPY_TO_REGCLASS FPR32:$Xn, GPR32)>;
   5567 def : Pat<(f64 (bitconvert (i64 GPR64:$Xn))),
   5568           (COPY_TO_REGCLASS GPR64:$Xn, FPR64)>;
   5569 def : Pat<(i64 (bitconvert (f64 FPR64:$Xn))),
   5570           (COPY_TO_REGCLASS FPR64:$Xn, GPR64)>;
   5571 def : Pat<(i64 (bitconvert (v1f64 V64:$Vn))),
   5572           (COPY_TO_REGCLASS V64:$Vn, GPR64)>;
   5573 
   5574 let Predicates = [IsLE] in {
   5575 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))), (v1i64 FPR64:$src)>;
   5576 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))), (v1i64 FPR64:$src)>;
   5577 def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))), (v1i64 FPR64:$src)>;
   5578 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))), (v1i64 FPR64:$src)>;
   5579 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))), (v1i64 FPR64:$src)>;
   5580 }
   5581 let Predicates = [IsBE] in {
   5582 def : Pat<(v1i64 (bitconvert (v2i32 FPR64:$src))),
   5583                              (v1i64 (REV64v2i32 FPR64:$src))>;
   5584 def : Pat<(v1i64 (bitconvert (v4i16 FPR64:$src))),
   5585                              (v1i64 (REV64v4i16 FPR64:$src))>;
   5586 def : Pat<(v1i64 (bitconvert (v8i8  FPR64:$src))),
   5587                              (v1i64 (REV64v8i8 FPR64:$src))>;
   5588 def : Pat<(v1i64 (bitconvert (v4f16 FPR64:$src))),
   5589                              (v1i64 (REV64v4i16 FPR64:$src))>;
   5590 def : Pat<(v1i64 (bitconvert (v2f32 FPR64:$src))),
   5591                              (v1i64 (REV64v2i32 FPR64:$src))>;
   5592 }
   5593 def : Pat<(v1i64 (bitconvert (v1f64 FPR64:$src))), (v1i64 FPR64:$src)>;
   5594 def : Pat<(v1i64 (bitconvert (f64   FPR64:$src))), (v1i64 FPR64:$src)>;
   5595 
   5596 let Predicates = [IsLE] in {
   5597 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))), (v2i32 FPR64:$src)>;
   5598 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))), (v2i32 FPR64:$src)>;
   5599 def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))), (v2i32 FPR64:$src)>;
   5600 def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))), (v2i32 FPR64:$src)>;
   5601 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))), (v2i32 FPR64:$src)>;
   5602 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))), (v2i32 FPR64:$src)>;
   5603 }
   5604 let Predicates = [IsBE] in {
   5605 def : Pat<(v2i32 (bitconvert (v1i64 FPR64:$src))),
   5606                              (v2i32 (REV64v2i32 FPR64:$src))>;
   5607 def : Pat<(v2i32 (bitconvert (v4i16 FPR64:$src))),
   5608                              (v2i32 (REV32v4i16 FPR64:$src))>;
   5609 def : Pat<(v2i32 (bitconvert (v8i8  FPR64:$src))),
   5610                              (v2i32 (REV32v8i8 FPR64:$src))>;
   5611 def : Pat<(v2i32 (bitconvert (f64   FPR64:$src))),
   5612                              (v2i32 (REV64v2i32 FPR64:$src))>;
   5613 def : Pat<(v2i32 (bitconvert (v1f64 FPR64:$src))),
   5614                              (v2i32 (REV64v2i32 FPR64:$src))>;
   5615 def : Pat<(v2i32 (bitconvert (v4f16 FPR64:$src))),
   5616                              (v2i32 (REV64v4i16 FPR64:$src))>;
   5617 }
   5618 def : Pat<(v2i32 (bitconvert (v2f32 FPR64:$src))), (v2i32 FPR64:$src)>;
   5619 
   5620 let Predicates = [IsLE] in {
   5621 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))), (v4i16 FPR64:$src)>;
   5622 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))), (v4i16 FPR64:$src)>;
   5623 def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))), (v4i16 FPR64:$src)>;
   5624 def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))), (v4i16 FPR64:$src)>;
   5625 def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))), (v4i16 FPR64:$src)>;
   5626 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))), (v4i16 FPR64:$src)>;
   5627 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))), (v4i16 FPR64:$src)>;
   5628 }
   5629 let Predicates = [IsBE] in {
   5630 def : Pat<(v4i16 (bitconvert (v1i64 FPR64:$src))),
   5631                              (v4i16 (REV64v4i16 FPR64:$src))>;
   5632 def : Pat<(v4i16 (bitconvert (v2i32 FPR64:$src))),
   5633                              (v4i16 (REV32v4i16 FPR64:$src))>;
   5634 def : Pat<(v4i16 (bitconvert (v8i8  FPR64:$src))),
   5635                              (v4i16 (REV16v8i8 FPR64:$src))>;
   5636 def : Pat<(v4i16 (bitconvert (f64   FPR64:$src))),
   5637                              (v4i16 (REV64v4i16 FPR64:$src))>;
   5638 def : Pat<(v4i16 (bitconvert (v4f16 FPR64:$src))),
   5639                              (v4i16 (REV32v4i16 FPR64:$src))>;
   5640 def : Pat<(v4i16 (bitconvert (v2f32 FPR64:$src))),
   5641                              (v4i16 (REV32v4i16 FPR64:$src))>;
   5642 def : Pat<(v4i16 (bitconvert (v1f64 FPR64:$src))),
   5643                              (v4i16 (REV64v4i16 FPR64:$src))>;
   5644 }
   5645 
   5646 let Predicates = [IsLE] in {
   5647 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))), (v4f16 FPR64:$src)>;
   5648 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))), (v4f16 FPR64:$src)>;
   5649 def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))), (v4f16 FPR64:$src)>;
   5650 def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))), (v4f16 FPR64:$src)>;
   5651 def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))), (v4f16 FPR64:$src)>;
   5652 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))), (v4f16 FPR64:$src)>;
   5653 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))), (v4f16 FPR64:$src)>;
   5654 }
   5655 let Predicates = [IsBE] in {
   5656 def : Pat<(v4f16 (bitconvert (v1i64 FPR64:$src))),
   5657                              (v4f16 (REV64v4i16 FPR64:$src))>;
   5658 def : Pat<(v4f16 (bitconvert (v2i32 FPR64:$src))),
   5659                              (v4f16 (REV64v4i16 FPR64:$src))>;
   5660 def : Pat<(v4f16 (bitconvert (v4i16 FPR64:$src))),
   5661                              (v4f16 (REV64v4i16 FPR64:$src))>;
   5662 def : Pat<(v4f16 (bitconvert (v8i8  FPR64:$src))),
   5663                              (v4f16 (REV16v8i8 FPR64:$src))>;
   5664 def : Pat<(v4f16 (bitconvert (f64   FPR64:$src))),
   5665                              (v4f16 (REV64v4i16 FPR64:$src))>;
   5666 def : Pat<(v4f16 (bitconvert (v2f32 FPR64:$src))),
   5667                              (v4f16 (REV64v4i16 FPR64:$src))>;
   5668 def : Pat<(v4f16 (bitconvert (v1f64 FPR64:$src))),
   5669                              (v4f16 (REV64v4i16 FPR64:$src))>;
   5670 }
   5671 
   5672 
   5673 
   5674 let Predicates = [IsLE] in {
   5675 def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))), (v8i8  FPR64:$src)>;
   5676 def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))), (v8i8  FPR64:$src)>;
   5677 def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))), (v8i8  FPR64:$src)>;
   5678 def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))), (v8i8  FPR64:$src)>;
   5679 def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))), (v8i8  FPR64:$src)>;
   5680 def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))), (v8i8  FPR64:$src)>;
   5681 def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))), (v8i8  FPR64:$src)>;
   5682 }
   5683 let Predicates = [IsBE] in {
   5684 def : Pat<(v8i8  (bitconvert (v1i64 FPR64:$src))),
   5685                              (v8i8 (REV64v8i8 FPR64:$src))>;
   5686 def : Pat<(v8i8  (bitconvert (v2i32 FPR64:$src))),
   5687                              (v8i8 (REV32v8i8 FPR64:$src))>;
   5688 def : Pat<(v8i8  (bitconvert (v4i16 FPR64:$src))),
   5689                              (v8i8 (REV16v8i8 FPR64:$src))>;
   5690 def : Pat<(v8i8  (bitconvert (f64   FPR64:$src))),
   5691                              (v8i8 (REV64v8i8 FPR64:$src))>;
   5692 def : Pat<(v8i8  (bitconvert (v2f32 FPR64:$src))),
   5693                              (v8i8 (REV32v8i8 FPR64:$src))>;
   5694 def : Pat<(v8i8  (bitconvert (v1f64 FPR64:$src))),
   5695                              (v8i8 (REV64v8i8 FPR64:$src))>;
   5696 def : Pat<(v8i8  (bitconvert (v4f16 FPR64:$src))),
   5697                              (v8i8 (REV16v8i8 FPR64:$src))>;
   5698 }
   5699 
   5700 let Predicates = [IsLE] in {
   5701 def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))), (f64   FPR64:$src)>;
   5702 def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))), (f64   FPR64:$src)>;
   5703 def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))), (f64   FPR64:$src)>;
   5704 def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))), (f64   FPR64:$src)>;
   5705 def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))), (f64   FPR64:$src)>;
   5706 }
   5707 let Predicates = [IsBE] in {
   5708 def : Pat<(f64   (bitconvert (v2i32 FPR64:$src))),
   5709                              (f64 (REV64v2i32 FPR64:$src))>;
   5710 def : Pat<(f64   (bitconvert (v4i16 FPR64:$src))),
   5711                              (f64 (REV64v4i16 FPR64:$src))>;
   5712 def : Pat<(f64   (bitconvert (v2f32 FPR64:$src))),
   5713                              (f64 (REV64v2i32 FPR64:$src))>;
   5714 def : Pat<(f64   (bitconvert (v8i8  FPR64:$src))),
   5715                              (f64 (REV64v8i8 FPR64:$src))>;
   5716 def : Pat<(f64   (bitconvert (v4f16 FPR64:$src))),
   5717                              (f64 (REV64v4i16 FPR64:$src))>;
   5718 }
   5719 def : Pat<(f64   (bitconvert (v1i64 FPR64:$src))), (f64   FPR64:$src)>;
   5720 def : Pat<(f64   (bitconvert (v1f64 FPR64:$src))), (f64   FPR64:$src)>;
   5721 
   5722 let Predicates = [IsLE] in {
   5723 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))), (v1f64 FPR64:$src)>;
   5724 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))), (v1f64 FPR64:$src)>;
   5725 def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))), (v1f64 FPR64:$src)>;
   5726 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))), (v1f64 FPR64:$src)>;
   5727 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))), (v1f64 FPR64:$src)>;
   5728 }
   5729 let Predicates = [IsBE] in {
   5730 def : Pat<(v1f64 (bitconvert (v2i32 FPR64:$src))),
   5731                              (v1f64 (REV64v2i32 FPR64:$src))>;
   5732 def : Pat<(v1f64 (bitconvert (v4i16 FPR64:$src))),
   5733                              (v1f64 (REV64v4i16 FPR64:$src))>;
   5734 def : Pat<(v1f64 (bitconvert (v8i8  FPR64:$src))),
   5735                              (v1f64 (REV64v8i8 FPR64:$src))>;
   5736 def : Pat<(v1f64 (bitconvert (v2f32 FPR64:$src))),
   5737                              (v1f64 (REV64v2i32 FPR64:$src))>;
   5738 def : Pat<(v1f64 (bitconvert (v4f16 FPR64:$src))),
   5739                              (v1f64 (REV64v4i16 FPR64:$src))>;
   5740 }
   5741 def : Pat<(v1f64 (bitconvert (v1i64 FPR64:$src))), (v1f64 FPR64:$src)>;
   5742 def : Pat<(v1f64 (bitconvert (f64   FPR64:$src))), (v1f64 FPR64:$src)>;
   5743 
   5744 let Predicates = [IsLE] in {
   5745 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))), (v2f32 FPR64:$src)>;
   5746 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))), (v2f32 FPR64:$src)>;
   5747 def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))), (v2f32 FPR64:$src)>;
   5748 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))), (v2f32 FPR64:$src)>;
   5749 def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))), (v2f32 FPR64:$src)>;
   5750 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))), (v2f32 FPR64:$src)>;
   5751 }
   5752 let Predicates = [IsBE] in {
   5753 def : Pat<(v2f32 (bitconvert (v1i64 FPR64:$src))),
   5754                              (v2f32 (REV64v2i32 FPR64:$src))>;
   5755 def : Pat<(v2f32 (bitconvert (v4i16 FPR64:$src))),
   5756                              (v2f32 (REV32v4i16 FPR64:$src))>;
   5757 def : Pat<(v2f32 (bitconvert (v8i8  FPR64:$src))),
   5758                              (v2f32 (REV32v8i8 FPR64:$src))>;
   5759 def : Pat<(v2f32 (bitconvert (v1f64 FPR64:$src))),
   5760                              (v2f32 (REV64v2i32 FPR64:$src))>;
   5761 def : Pat<(v2f32 (bitconvert (f64   FPR64:$src))),
   5762                              (v2f32 (REV64v2i32 FPR64:$src))>;
   5763 def : Pat<(v2f32 (bitconvert (v4f16 FPR64:$src))),
   5764                              (v2f32 (REV64v4i16 FPR64:$src))>;
   5765 }
   5766 def : Pat<(v2f32 (bitconvert (v2i32 FPR64:$src))), (v2f32 FPR64:$src)>;
   5767 
   5768 let Predicates = [IsLE] in {
   5769 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))), (f128 FPR128:$src)>;
   5770 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))), (f128 FPR128:$src)>;
   5771 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))), (f128 FPR128:$src)>;
   5772 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))), (f128 FPR128:$src)>;
   5773 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))), (f128 FPR128:$src)>;
   5774 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))), (f128 FPR128:$src)>;
   5775 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))), (f128 FPR128:$src)>;
   5776 }
   5777 let Predicates = [IsBE] in {
   5778 def : Pat<(f128 (bitconvert (v2i64 FPR128:$src))),
   5779                             (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
   5780 def : Pat<(f128 (bitconvert (v4i32 FPR128:$src))),
   5781                             (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
   5782                                             (REV64v4i32 FPR128:$src), (i32 8)))>;
   5783 def : Pat<(f128 (bitconvert (v8i16 FPR128:$src))),
   5784                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
   5785                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
   5786 def : Pat<(f128 (bitconvert (v8f16 FPR128:$src))),
   5787                             (f128 (EXTv16i8 (REV64v8i16 FPR128:$src),
   5788                                             (REV64v8i16 FPR128:$src), (i32 8)))>;
   5789 def : Pat<(f128 (bitconvert (v2f64 FPR128:$src))),
   5790                             (f128 (EXTv16i8 FPR128:$src, FPR128:$src, (i32 8)))>;
   5791 def : Pat<(f128 (bitconvert (v4f32 FPR128:$src))),
   5792                             (f128 (EXTv16i8 (REV64v4i32 FPR128:$src),
   5793                                             (REV64v4i32 FPR128:$src), (i32 8)))>;
   5794 def : Pat<(f128 (bitconvert (v16i8 FPR128:$src))),
   5795                             (f128 (EXTv16i8 (REV64v16i8 FPR128:$src),
   5796                                             (REV64v16i8 FPR128:$src), (i32 8)))>;
   5797 }
   5798 
   5799 let Predicates = [IsLE] in {
   5800 def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))), (v2f64 FPR128:$src)>;
   5801 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))), (v2f64 FPR128:$src)>;
   5802 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))), (v2f64 FPR128:$src)>;
   5803 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))), (v2f64 FPR128:$src)>;
   5804 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))), (v2f64 FPR128:$src)>;
   5805 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))), (v2f64 FPR128:$src)>;
   5806 }
   5807 let Predicates = [IsBE] in {
   5808 def : Pat<(v2f64 (bitconvert (f128  FPR128:$src))),
   5809                              (v2f64 (EXTv16i8 FPR128:$src,
   5810                                               FPR128:$src, (i32 8)))>;
   5811 def : Pat<(v2f64 (bitconvert (v4i32 FPR128:$src))),
   5812                              (v2f64 (REV64v4i32 FPR128:$src))>;
   5813 def : Pat<(v2f64 (bitconvert (v8i16 FPR128:$src))),
   5814                              (v2f64 (REV64v8i16 FPR128:$src))>;
   5815 def : Pat<(v2f64 (bitconvert (v8f16 FPR128:$src))),
   5816                              (v2f64 (REV64v8i16 FPR128:$src))>;
   5817 def : Pat<(v2f64 (bitconvert (v16i8 FPR128:$src))),
   5818                              (v2f64 (REV64v16i8 FPR128:$src))>;
   5819 def : Pat<(v2f64 (bitconvert (v4f32 FPR128:$src))),
   5820                              (v2f64 (REV64v4i32 FPR128:$src))>;
   5821 }
   5822 def : Pat<(v2f64 (bitconvert (v2i64 FPR128:$src))), (v2f64 FPR128:$src)>;
   5823 
   5824 let Predicates = [IsLE] in {
   5825 def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))), (v4f32 FPR128:$src)>;
   5826 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))), (v4f32 FPR128:$src)>;
   5827 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))), (v4f32 FPR128:$src)>;
   5828 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))), (v4f32 FPR128:$src)>;
   5829 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))), (v4f32 FPR128:$src)>;
   5830 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))), (v4f32 FPR128:$src)>;
   5831 }
   5832 let Predicates = [IsBE] in {
   5833 def : Pat<(v4f32 (bitconvert (f128  FPR128:$src))),
   5834                              (v4f32 (EXTv16i8 (REV64v4i32 FPR128:$src),
   5835                                     (REV64v4i32 FPR128:$src), (i32 8)))>;
   5836 def : Pat<(v4f32 (bitconvert (v8i16 FPR128:$src))),
   5837                              (v4f32 (REV32v8i16 FPR128:$src))>;
   5838 def : Pat<(v4f32 (bitconvert (v8f16 FPR128:$src))),
   5839                              (v4f32 (REV32v8i16 FPR128:$src))>;
   5840 def : Pat<(v4f32 (bitconvert (v16i8 FPR128:$src))),
   5841                              (v4f32 (REV32v16i8 FPR128:$src))>;
   5842 def : Pat<(v4f32 (bitconvert (v2i64 FPR128:$src))),
   5843                              (v4f32 (REV64v4i32 FPR128:$src))>;
   5844 def : Pat<(v4f32 (bitconvert (v2f64 FPR128:$src))),
   5845                              (v4f32 (REV64v4i32 FPR128:$src))>;
   5846 }
   5847 def : Pat<(v4f32 (bitconvert (v4i32 FPR128:$src))), (v4f32 FPR128:$src)>;
   5848 
   5849 let Predicates = [IsLE] in {
   5850 def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))), (v2i64 FPR128:$src)>;
   5851 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))), (v2i64 FPR128:$src)>;
   5852 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))), (v2i64 FPR128:$src)>;
   5853 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))), (v2i64 FPR128:$src)>;
   5854 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))), (v2i64 FPR128:$src)>;
   5855 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))), (v2i64 FPR128:$src)>;
   5856 }
   5857 let Predicates = [IsBE] in {
   5858 def : Pat<(v2i64 (bitconvert (f128  FPR128:$src))),
   5859                              (v2i64 (EXTv16i8 FPR128:$src,
   5860                                               FPR128:$src, (i32 8)))>;
   5861 def : Pat<(v2i64 (bitconvert (v4i32 FPR128:$src))),
   5862                              (v2i64 (REV64v4i32 FPR128:$src))>;
   5863 def : Pat<(v2i64 (bitconvert (v8i16 FPR128:$src))),
   5864                              (v2i64 (REV64v8i16 FPR128:$src))>;
   5865 def : Pat<(v2i64 (bitconvert (v16i8 FPR128:$src))),
   5866                              (v2i64 (REV64v16i8 FPR128:$src))>;
   5867 def : Pat<(v2i64 (bitconvert (v4f32 FPR128:$src))),
   5868                              (v2i64 (REV64v4i32 FPR128:$src))>;
   5869 def : Pat<(v2i64 (bitconvert (v8f16 FPR128:$src))),
   5870                              (v2i64 (REV64v8i16 FPR128:$src))>;
   5871 }
   5872 def : Pat<(v2i64 (bitconvert (v2f64 FPR128:$src))), (v2i64 FPR128:$src)>;
   5873 
   5874 let Predicates = [IsLE] in {
   5875 def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))), (v4i32 FPR128:$src)>;
   5876 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))), (v4i32 FPR128:$src)>;
   5877 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))), (v4i32 FPR128:$src)>;
   5878 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))), (v4i32 FPR128:$src)>;
   5879 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))), (v4i32 FPR128:$src)>;
   5880 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))), (v4i32 FPR128:$src)>;
   5881 }
   5882 let Predicates = [IsBE] in {
   5883 def : Pat<(v4i32 (bitconvert (f128  FPR128:$src))),
   5884                              (v4i32 (EXTv16i8 (REV64v4i32 FPR128:$src),
   5885                                               (REV64v4i32 FPR128:$src),
   5886                                               (i32 8)))>;
   5887 def : Pat<(v4i32 (bitconvert (v2i64 FPR128:$src))),
   5888                              (v4i32 (REV64v4i32 FPR128:$src))>;
   5889 def : Pat<(v4i32 (bitconvert (v8i16 FPR128:$src))),
   5890                              (v4i32 (REV32v8i16 FPR128:$src))>;
   5891 def : Pat<(v4i32 (bitconvert (v16i8 FPR128:$src))),
   5892                              (v4i32 (REV32v16i8 FPR128:$src))>;
   5893 def : Pat<(v4i32 (bitconvert (v2f64 FPR128:$src))),
   5894                              (v4i32 (REV64v4i32 FPR128:$src))>;
   5895 def : Pat<(v4i32 (bitconvert (v8f16 FPR128:$src))),
   5896                              (v4i32 (REV32v8i16 FPR128:$src))>;
   5897 }
   5898 def : Pat<(v4i32 (bitconvert (v4f32 FPR128:$src))), (v4i32 FPR128:$src)>;
   5899 
   5900 let Predicates = [IsLE] in {
   5901 def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))), (v8i16 FPR128:$src)>;
   5902 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))), (v8i16 FPR128:$src)>;
   5903 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))), (v8i16 FPR128:$src)>;
   5904 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))), (v8i16 FPR128:$src)>;
   5905 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))), (v8i16 FPR128:$src)>;
   5906 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))), (v8i16 FPR128:$src)>;
   5907 def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))), (v8i16 FPR128:$src)>;
   5908 }
   5909 let Predicates = [IsBE] in {
   5910 def : Pat<(v8i16 (bitconvert (f128  FPR128:$src))),
   5911                              (v8i16 (EXTv16i8 (REV64v8i16 FPR128:$src),
   5912                                               (REV64v8i16 FPR128:$src),
   5913                                               (i32 8)))>;
   5914 def : Pat<(v8i16 (bitconvert (v2i64 FPR128:$src))),
   5915                              (v8i16 (REV64v8i16 FPR128:$src))>;
   5916 def : Pat<(v8i16 (bitconvert (v4i32 FPR128:$src))),
   5917                              (v8i16 (REV32v8i16 FPR128:$src))>;
   5918 def : Pat<(v8i16 (bitconvert (v16i8 FPR128:$src))),
   5919                              (v8i16 (REV16v16i8 FPR128:$src))>;
   5920 def : Pat<(v8i16 (bitconvert (v2f64 FPR128:$src))),
   5921                              (v8i16 (REV64v8i16 FPR128:$src))>;
   5922 def : Pat<(v8i16 (bitconvert (v4f32 FPR128:$src))),
   5923                              (v8i16 (REV32v8i16 FPR128:$src))>;
   5924 def : Pat<(v8i16 (bitconvert (v8f16 FPR128:$src))),
   5925                              (v8i16 (REV32v8i16 FPR128:$src))>;
   5926 }
   5927 
   5928 let Predicates = [IsLE] in {
   5929 def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))), (v8f16 FPR128:$src)>;
   5930 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))), (v8f16 FPR128:$src)>;
   5931 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))), (v8f16 FPR128:$src)>;
   5932 def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))), (v8f16 FPR128:$src)>;
   5933 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))), (v8f16 FPR128:$src)>;
   5934 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))), (v8f16 FPR128:$src)>;
   5935 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))), (v8f16 FPR128:$src)>;
   5936 }
   5937 let Predicates = [IsBE] in {
   5938 def : Pat<(v8f16 (bitconvert (f128  FPR128:$src))),
   5939                              (v8f16 (EXTv16i8 (REV64v8i16 FPR128:$src),
   5940                                               (REV64v8i16 FPR128:$src),
   5941                                               (i32 8)))>;
   5942 def : Pat<(v8f16 (bitconvert (v2i64 FPR128:$src))),
   5943                              (v8f16 (REV64v8i16 FPR128:$src))>;
   5944 def : Pat<(v8f16 (bitconvert (v4i32 FPR128:$src))),
   5945                              (v8f16 (REV32v8i16 FPR128:$src))>;
   5946 def : Pat<(v8f16 (bitconvert (v8i16 FPR128:$src))),
   5947                              (v8f16 (REV64v8i16 FPR128:$src))>;
   5948 def : Pat<(v8f16 (bitconvert (v16i8 FPR128:$src))),
   5949                              (v8f16 (REV16v16i8 FPR128:$src))>;
   5950 def : Pat<(v8f16 (bitconvert (v2f64 FPR128:$src))),
   5951                              (v8f16 (REV64v8i16 FPR128:$src))>;
   5952 def : Pat<(v8f16 (bitconvert (v4f32 FPR128:$src))),
   5953                              (v8f16 (REV32v8i16 FPR128:$src))>;
   5954 }
   5955 
   5956 let Predicates = [IsLE] in {
   5957 def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))), (v16i8 FPR128:$src)>;
   5958 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))), (v16i8 FPR128:$src)>;
   5959 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))), (v16i8 FPR128:$src)>;
   5960 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))), (v16i8 FPR128:$src)>;
   5961 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))), (v16i8 FPR128:$src)>;
   5962 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))), (v16i8 FPR128:$src)>;
   5963 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))), (v16i8 FPR128:$src)>;
   5964 }
   5965 let Predicates = [IsBE] in {
   5966 def : Pat<(v16i8 (bitconvert (f128  FPR128:$src))),
   5967                              (v16i8 (EXTv16i8 (REV64v16i8 FPR128:$src),
   5968                                               (REV64v16i8 FPR128:$src),
   5969                                               (i32 8)))>;
   5970 def : Pat<(v16i8 (bitconvert (v2i64 FPR128:$src))),
   5971                              (v16i8 (REV64v16i8 FPR128:$src))>;
   5972 def : Pat<(v16i8 (bitconvert (v4i32 FPR128:$src))),
   5973                              (v16i8 (REV32v16i8 FPR128:$src))>;
   5974 def : Pat<(v16i8 (bitconvert (v8i16 FPR128:$src))),
   5975                              (v16i8 (REV16v16i8 FPR128:$src))>;
   5976 def : Pat<(v16i8 (bitconvert (v2f64 FPR128:$src))),
   5977                              (v16i8 (REV64v16i8 FPR128:$src))>;
   5978 def : Pat<(v16i8 (bitconvert (v4f32 FPR128:$src))),
   5979                              (v16i8 (REV32v16i8 FPR128:$src))>;
   5980 def : Pat<(v16i8 (bitconvert (v8f16 FPR128:$src))),
   5981                              (v16i8 (REV16v16i8 FPR128:$src))>;
   5982 }
   5983 
   5984 def : Pat<(v4i16 (extract_subvector V128:$Rn, (i64 0))),
   5985            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   5986 def : Pat<(v8i8 (extract_subvector V128:$Rn, (i64 0))),
   5987            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   5988 def : Pat<(v2f32 (extract_subvector V128:$Rn, (i64 0))),
   5989            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   5990 def : Pat<(v4f16 (extract_subvector V128:$Rn, (i64 0))),
   5991            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   5992 def : Pat<(v2i32 (extract_subvector V128:$Rn, (i64 0))),
   5993            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   5994 def : Pat<(v1i64 (extract_subvector V128:$Rn, (i64 0))),
   5995            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   5996 def : Pat<(v1f64 (extract_subvector V128:$Rn, (i64 0))),
   5997            (EXTRACT_SUBREG V128:$Rn, dsub)>;
   5998 
   5999 def : Pat<(v8i8 (extract_subvector (v16i8 FPR128:$Rn), (i64 1))),
   6000           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
   6001 def : Pat<(v4i16 (extract_subvector (v8i16 FPR128:$Rn), (i64 1))),
   6002           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
   6003 def : Pat<(v2i32 (extract_subvector (v4i32 FPR128:$Rn), (i64 1))),
   6004           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
   6005 def : Pat<(v1i64 (extract_subvector (v2i64 FPR128:$Rn), (i64 1))),
   6006           (EXTRACT_SUBREG (DUPv2i64lane FPR128:$Rn, 1), dsub)>;
   6007 
   6008 // A 64-bit subvector insert to the first 128-bit vector position
   6009 // is a subregister copy that needs no instruction.
   6010 def : Pat<(insert_subvector undef, (v1i64 FPR64:$src), (i32 0)),
   6011           (INSERT_SUBREG (v2i64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6012 def : Pat<(insert_subvector undef, (v1f64 FPR64:$src), (i32 0)),
   6013           (INSERT_SUBREG (v2f64 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6014 def : Pat<(insert_subvector undef, (v2i32 FPR64:$src), (i32 0)),
   6015           (INSERT_SUBREG (v4i32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6016 def : Pat<(insert_subvector undef, (v2f32 FPR64:$src), (i32 0)),
   6017           (INSERT_SUBREG (v4f32 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6018 def : Pat<(insert_subvector undef, (v4i16 FPR64:$src), (i32 0)),
   6019           (INSERT_SUBREG (v8i16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6020 def : Pat<(insert_subvector undef, (v4f16 FPR64:$src), (i32 0)),
   6021           (INSERT_SUBREG (v8f16 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6022 def : Pat<(insert_subvector undef, (v8i8 FPR64:$src), (i32 0)),
   6023           (INSERT_SUBREG (v16i8 (IMPLICIT_DEF)), FPR64:$src, dsub)>;
   6024 
   6025 // Use pair-wise add instructions when summing up the lanes for v2f64, v2i64
   6026 // or v2f32.
   6027 def : Pat<(i64 (add (vector_extract (v2i64 FPR128:$Rn), (i64 0)),
   6028                     (vector_extract (v2i64 FPR128:$Rn), (i64 1)))),
   6029            (i64 (ADDPv2i64p (v2i64 FPR128:$Rn)))>;
   6030 def : Pat<(f64 (fadd (vector_extract (v2f64 FPR128:$Rn), (i64 0)),
   6031                      (vector_extract (v2f64 FPR128:$Rn), (i64 1)))),
   6032            (f64 (FADDPv2i64p (v2f64 FPR128:$Rn)))>;
   6033     // vector_extract on 64-bit vectors gets promoted to a 128 bit vector,
   6034     // so we match on v4f32 here, not v2f32. This will also catch adding
   6035     // the low two lanes of a true v4f32 vector.
   6036 def : Pat<(fadd (vector_extract (v4f32 FPR128:$Rn), (i64 0)),
   6037                 (vector_extract (v4f32 FPR128:$Rn), (i64 1))),
   6038           (f32 (FADDPv2i32p (EXTRACT_SUBREG FPR128:$Rn, dsub)))>;
   6039 
   6040 // Scalar 64-bit shifts in FPR64 registers.
   6041 def : Pat<(i64 (int_aarch64_neon_sshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
   6042           (SSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
   6043 def : Pat<(i64 (int_aarch64_neon_ushl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
   6044           (USHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
   6045 def : Pat<(i64 (int_aarch64_neon_srshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
   6046           (SRSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
   6047 def : Pat<(i64 (int_aarch64_neon_urshl (i64 FPR64:$Rn), (i64 FPR64:$Rm))),
   6048           (URSHLv1i64 FPR64:$Rn, FPR64:$Rm)>;
   6049 
   6050 // Patterns for nontemporal/no-allocate stores.
   6051 // We have to resort to tricks to turn a single-input store into a store pair,
   6052 // because there is no single-input nontemporal store, only STNP.
   6053 let Predicates = [IsLE] in {
   6054 let AddedComplexity = 15 in {
   6055 class NTStore128Pat<ValueType VT> :
   6056   Pat<(nontemporalstore (VT FPR128:$Rt),
   6057         (am_indexed7s64 GPR64sp:$Rn, simm7s8:$offset)),
   6058       (STNPDi (EXTRACT_SUBREG FPR128:$Rt, dsub),
   6059               (CPYi64 FPR128:$Rt, (i64 1)),
   6060               GPR64sp:$Rn, simm7s8:$offset)>;
   6061 
   6062 def : NTStore128Pat<v2i64>;
   6063 def : NTStore128Pat<v4i32>;
   6064 def : NTStore128Pat<v8i16>;
   6065 def : NTStore128Pat<v16i8>;
   6066 
   6067 class NTStore64Pat<ValueType VT> :
   6068   Pat<(nontemporalstore (VT FPR64:$Rt),
   6069         (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
   6070       (STNPSi (EXTRACT_SUBREG FPR64:$Rt, ssub),
   6071               (CPYi32 (SUBREG_TO_REG (i64 0), FPR64:$Rt, dsub), (i64 1)),
   6072               GPR64sp:$Rn, simm7s4:$offset)>;
   6073 
   6074 // FIXME: Shouldn't v1f64 loads/stores be promoted to v1i64?
   6075 def : NTStore64Pat<v1f64>;
   6076 def : NTStore64Pat<v1i64>;
   6077 def : NTStore64Pat<v2i32>;
   6078 def : NTStore64Pat<v4i16>;
   6079 def : NTStore64Pat<v8i8>;
   6080 
   6081 def : Pat<(nontemporalstore GPR64:$Rt,
   6082             (am_indexed7s32 GPR64sp:$Rn, simm7s4:$offset)),
   6083           (STNPWi (EXTRACT_SUBREG GPR64:$Rt, sub_32),
   6084                   (EXTRACT_SUBREG (UBFMXri GPR64:$Rt, 32, 63), sub_32),
   6085                   GPR64sp:$Rn, simm7s4:$offset)>;
   6086 } // AddedComplexity=10
   6087 } // Predicates = [IsLE]
   6088 
   6089 // Tail call return handling. These are all compiler pseudo-instructions,
   6090 // so no encoding information or anything like that.
   6091 let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, Uses = [SP] in {
   6092   def TCRETURNdi : Pseudo<(outs), (ins i64imm:$dst, i32imm:$FPDiff), []>,
   6093                    Sched<[WriteBrReg]>;
   6094   def TCRETURNri : Pseudo<(outs), (ins tcGPR64:$dst, i32imm:$FPDiff), []>,
   6095                    Sched<[WriteBrReg]>;
   6096 }
   6097 
   6098 def : Pat<(AArch64tcret tcGPR64:$dst, (i32 timm:$FPDiff)),
   6099           (TCRETURNri tcGPR64:$dst, imm:$FPDiff)>;
   6100 def : Pat<(AArch64tcret tglobaladdr:$dst, (i32 timm:$FPDiff)),
   6101           (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
   6102 def : Pat<(AArch64tcret texternalsym:$dst, (i32 timm:$FPDiff)),
   6103           (TCRETURNdi texternalsym:$dst, imm:$FPDiff)>;
   6104 
   6105 include "AArch64InstrAtomics.td"
   6106