Home | History | Annotate | Download | only in AArch64
      1 //==- AArch64SchedKryo.td - Qualcomm Kryo Scheduling Defs ---*- tablegen -*-==//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the machine model for Qualcomm Kryo to support
     11 // instruction scheduling and other instruction cost heuristics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 //===----------------------------------------------------------------------===//
     16 // The issue width is set to five, matching the five issue queues for expanded
     17 // uops. Now, the latency spreadsheet has information based on fragmented uops,
     18 // but these do not actually take up an issue queue.
     19 
     20 def KryoModel : SchedMachineModel {
     21   let IssueWidth        =   5; // 5-wide issue for expanded uops
     22   let MicroOpBufferSize = 128; // Out-of-order with temporary unified issue buffer
     23   let LoadLatency       =   4; // Optimistic load latency
     24   let MispredictPenalty =  14; // Fetch + Decode/Rename/Dispatch + Branch
     25 
     26   // Enable partial & runtime unrolling. The magic number is chosen based on
     27   // experiments and benchmarking data.
     28   let LoopMicroOpBufferSize = 16;
     29   let CompleteModel = 1;
     30 }
     31 
     32 //===----------------------------------------------------------------------===//
     33 // Define each kind of processor resource and number available on Kryo.
     34 
     35 let SchedModel = KryoModel in {
     36   def KryoUnitXA : ProcResource<1>;                   // Type X(A) micro-ops
     37   def KryoUnitXB : ProcResource<1>;                   // Type X(B) micro-ops
     38   def KryoUnitYA : ProcResource<1>;                   // Type Y(A) micro-ops
     39   def KryoUnitYB : ProcResource<1>;                   // Type Y(B) micro-ops
     40   def KryoUnitX : ProcResGroup<[KryoUnitXA,          // Type X micro-ops
     41                                 KryoUnitXB]>;
     42   def KryoUnitY : ProcResGroup<[KryoUnitYA,          // Type Y micro-ops
     43                                 KryoUnitYB]>;
     44   def KryoUnitXY : ProcResGroup<[KryoUnitXA,         // Type XY micro-ops
     45                                  KryoUnitXB,
     46                                  KryoUnitYA,
     47                                  KryoUnitYB]>;
     48   def KryoUnitLSA : ProcResource<1>;                  // Type LS(A) micro-ops
     49   def KryoUnitLSB : ProcResource<1>;                  // Type LS(B) micro-ops
     50   def KryoUnitLS : ProcResGroup<[KryoUnitLSA,        // Type LS micro-ops
     51                                  KryoUnitLSB]>;
     52 }
     53 
     54 let SchedModel = KryoModel in {
     55 
     56 //===----------------------------------------------------------------------===//
     57 // Map the target-defined scheduler read/write resources and latency for
     58 // Kryo.
     59 
     60 def : WriteRes<WriteImm,   [KryoUnitXY]> { let Latency = 1; }
     61 def : WriteRes<WriteI,     [KryoUnitXY]> { let Latency = 1; }
     62 def : WriteRes<WriteISReg, [KryoUnitXY, KryoUnitXY]>
     63       { let Latency = 2; let NumMicroOps = 2; }
     64 def : WriteRes<WriteIEReg, [KryoUnitXY, KryoUnitXY]>
     65       { let Latency = 2; let NumMicroOps = 2; }
     66 def : WriteRes<WriteExtr,  [KryoUnitXY, KryoUnitX]>
     67       { let Latency = 2; let NumMicroOps = 2; }
     68 def : WriteRes<WriteIS,    [KryoUnitXY]> { let Latency = 2; }
     69 def : WriteRes<WriteID32,  [KryoUnitXA, KryoUnitY]>
     70       { let Latency = 8; let NumMicroOps = 1; } // Fragent -1
     71 def : WriteRes<WriteID64,  [KryoUnitXA, KryoUnitY]>
     72       { let Latency = 8; let NumMicroOps = 1; } // Fragent -1
     73 def : WriteRes<WriteIM32,  [KryoUnitX]> { let Latency = 5; }
     74 def : WriteRes<WriteIM64,  [KryoUnitX]> { let Latency = 5; }
     75 def : WriteRes<WriteBr,    [KryoUnitXY]> { let Latency = 1; }
     76 def : WriteRes<WriteBrReg, [KryoUnitXY]> { let Latency = 1; }
     77 def : WriteRes<WriteLD,    [KryoUnitLS]> { let Latency = 4; }
     78 def : WriteRes<WriteST,    [KryoUnitLS]> { let Latency = 4; }
     79 def : WriteRes<WriteSTP,   [KryoUnitLS]> { let Latency = 4; }
     80 def : WriteRes<WriteAdr,   [KryoUnitXY]> { let Latency = 6; }
     81 def : WriteRes<WriteLDIdx, [KryoUnitLS]> { let Latency = 4; }
     82 def : WriteRes<WriteSTIdx, [KryoUnitLS]> { let Latency = 4; }
     83 def : WriteRes<WriteF,     [KryoUnitXY, KryoUnitXY]>
     84       { let Latency = 3; let NumMicroOps = 2; }
     85 def : WriteRes<WriteFCmp,  [KryoUnitXY]> { let Latency = 2; }
     86 def : WriteRes<WriteFCvt,  [KryoUnitX]> { let Latency = 4; }
     87 def : WriteRes<WriteFCopy, [KryoUnitXY]> { let Latency = 6; }
     88 def : WriteRes<WriteFImm,  [KryoUnitXY]> { let Latency = 6; }
     89 def : WriteRes<WriteFMul,  [KryoUnitX, KryoUnitX]>
     90       { let Latency = 6; let NumMicroOps = 2; }
     91 def : WriteRes<WriteFDiv,  [KryoUnitXA, KryoUnitY]>
     92       { let Latency = 12; let NumMicroOps = 2; } // Fragent -1 / NoRSV +1
     93 def : WriteRes<WriteV,     [KryoUnitXY]> { let Latency = 6; }
     94 def : WriteRes<WriteVLD,   [KryoUnitLS]> { let Latency = 4; }
     95 def : WriteRes<WriteVST,   [KryoUnitLS]> { let Latency = 4; }
     96 
     97 def : WriteRes<WriteSys,     []> { let Latency = 1; }
     98 def : WriteRes<WriteBarrier, []> { let Latency = 1; }
     99 def : WriteRes<WriteHint,    []> { let Latency = 1; }
    100 
    101 def : WriteRes<WriteLDHi,    []> { let Latency = 4; }
    102 
    103 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
    104 
    105 // No forwarding logic is modelled yet.
    106 def : ReadAdvance<ReadI,       0>;
    107 def : ReadAdvance<ReadISReg,   0>;
    108 def : ReadAdvance<ReadIEReg,   0>;
    109 def : ReadAdvance<ReadIM,      0>;
    110 def : ReadAdvance<ReadIMA,     0>;
    111 def : ReadAdvance<ReadID,      0>;
    112 def : ReadAdvance<ReadExtrHi,  0>;
    113 def : ReadAdvance<ReadAdrBase, 0>;
    114 def : ReadAdvance<ReadVLD,     0>;
    115 
    116 
    117 //===----------------------------------------------------------------------===//
    118 // Specialize the coarse model by associating instruction groups with the
    119 // subtarget-defined types. As the modeled is refined, this will override most
    120 // of the above SchedWriteRes and SchedAlias mappings.
    121 
    122 // Miscellaneous
    123 // -----------------------------------------------------------------------------
    124 
    125 def : InstRW<[WriteI], (instrs COPY)>;
    126 
    127 
    128 // Detailed Refinedments
    129 // -----------------------------------------------------------------------------
    130 include "AArch64SchedKryoDetails.td"
    131 
    132 
    133 } // SchedModel = KryoModel
    134