1 //===- HexagonInstrInfoVector.td - Hexagon Vector Patterns -*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file describes the Hexagon Vector instructions in TableGen format. 11 // 12 //===----------------------------------------------------------------------===// 13 14 def V2I1: PatLeaf<(v2i1 PredRegs:$R)>; 15 def V4I1: PatLeaf<(v4i1 PredRegs:$R)>; 16 def V8I1: PatLeaf<(v8i1 PredRegs:$R)>; 17 def V4I8: PatLeaf<(v4i8 IntRegs:$R)>; 18 def V2I16: PatLeaf<(v2i16 IntRegs:$R)>; 19 def V8I8: PatLeaf<(v8i8 DoubleRegs:$R)>; 20 def V4I16: PatLeaf<(v4i16 DoubleRegs:$R)>; 21 def V2I32: PatLeaf<(v2i32 DoubleRegs:$R)>; 22 23 24 multiclass bitconvert_32<ValueType a, ValueType b> { 25 def : Pat <(b (bitconvert (a IntRegs:$src))), 26 (b IntRegs:$src)>; 27 def : Pat <(a (bitconvert (b IntRegs:$src))), 28 (a IntRegs:$src)>; 29 } 30 31 multiclass bitconvert_64<ValueType a, ValueType b> { 32 def : Pat <(b (bitconvert (a DoubleRegs:$src))), 33 (b DoubleRegs:$src)>; 34 def : Pat <(a (bitconvert (b DoubleRegs:$src))), 35 (a DoubleRegs:$src)>; 36 } 37 38 // Bit convert vector types to integers. 39 defm : bitconvert_32<v4i8, i32>; 40 defm : bitconvert_32<v2i16, i32>; 41 defm : bitconvert_64<v8i8, i64>; 42 defm : bitconvert_64<v4i16, i64>; 43 defm : bitconvert_64<v2i32, i64>; 44 45 // Vector shift support. Vector shifting in Hexagon is rather different 46 // from internal representation of LLVM. 47 // LLVM assumes all shifts (in vector case) will have the form 48 // <VT> = SHL/SRA/SRL <VT> by <VT> 49 // while Hexagon has the following format: 50 // <VT> = SHL/SRA/SRL <VT> by <IT/i32> 51 // As a result, special care is needed to guarantee correctness and 52 // performance. 53 class vshift_v4i16<SDNode Op, string Str, bits<3>MajOp, bits<3>MinOp> 54 : S_2OpInstImm<Str, MajOp, MinOp, u4Imm, 55 [(set (v4i16 DoubleRegs:$dst), 56 (Op (v4i16 DoubleRegs:$src1), u4ImmPred:$src2))]> { 57 bits<4> src2; 58 let Inst{11-8} = src2; 59 } 60 61 class vshift_v2i32<SDNode Op, string Str, bits<3>MajOp, bits<3>MinOp> 62 : S_2OpInstImm<Str, MajOp, MinOp, u5Imm, 63 [(set (v2i32 DoubleRegs:$dst), 64 (Op (v2i32 DoubleRegs:$src1), u5ImmPred:$src2))]> { 65 bits<5> src2; 66 let Inst{12-8} = src2; 67 } 68 69 def : Pat<(v2i16 (add (v2i16 IntRegs:$src1), (v2i16 IntRegs:$src2))), 70 (A2_svaddh IntRegs:$src1, IntRegs:$src2)>; 71 72 def : Pat<(v2i16 (sub (v2i16 IntRegs:$src1), (v2i16 IntRegs:$src2))), 73 (A2_svsubh IntRegs:$src1, IntRegs:$src2)>; 74 75 def S2_asr_i_vw : vshift_v2i32<sra, "vasrw", 0b010, 0b000>; 76 def S2_lsr_i_vw : vshift_v2i32<srl, "vlsrw", 0b010, 0b001>; 77 def S2_asl_i_vw : vshift_v2i32<shl, "vaslw", 0b010, 0b010>; 78 79 def S2_asr_i_vh : vshift_v4i16<sra, "vasrh", 0b100, 0b000>; 80 def S2_lsr_i_vh : vshift_v4i16<srl, "vlsrh", 0b100, 0b001>; 81 def S2_asl_i_vh : vshift_v4i16<shl, "vaslh", 0b100, 0b010>; 82 83 84 def HexagonVSPLATB: SDNode<"HexagonISD::VSPLATB", SDTUnaryOp>; 85 def HexagonVSPLATH: SDNode<"HexagonISD::VSPLATH", SDTUnaryOp>; 86 87 // Replicate the low 8-bits from 32-bits input register into each of the 88 // four bytes of 32-bits destination register. 89 def: Pat<(v4i8 (HexagonVSPLATB I32:$Rs)), (S2_vsplatrb I32:$Rs)>; 90 91 // Replicate the low 16-bits from 32-bits input register into each of the 92 // four halfwords of 64-bits destination register. 93 def: Pat<(v4i16 (HexagonVSPLATH I32:$Rs)), (S2_vsplatrh I32:$Rs)>; 94 95 96 class VArith_pat <InstHexagon MI, SDNode Op, PatFrag Type> 97 : Pat <(Op Type:$Rss, Type:$Rtt), 98 (MI Type:$Rss, Type:$Rtt)>; 99 100 def: VArith_pat <A2_vaddub, add, V8I8>; 101 def: VArith_pat <A2_vaddh, add, V4I16>; 102 def: VArith_pat <A2_vaddw, add, V2I32>; 103 def: VArith_pat <A2_vsubub, sub, V8I8>; 104 def: VArith_pat <A2_vsubh, sub, V4I16>; 105 def: VArith_pat <A2_vsubw, sub, V2I32>; 106 107 def: VArith_pat <A2_and, and, V2I16>; 108 def: VArith_pat <A2_xor, xor, V2I16>; 109 def: VArith_pat <A2_or, or, V2I16>; 110 111 def: VArith_pat <A2_andp, and, V8I8>; 112 def: VArith_pat <A2_andp, and, V4I16>; 113 def: VArith_pat <A2_andp, and, V2I32>; 114 def: VArith_pat <A2_orp, or, V8I8>; 115 def: VArith_pat <A2_orp, or, V4I16>; 116 def: VArith_pat <A2_orp, or, V2I32>; 117 def: VArith_pat <A2_xorp, xor, V8I8>; 118 def: VArith_pat <A2_xorp, xor, V4I16>; 119 def: VArith_pat <A2_xorp, xor, V2I32>; 120 121 def: Pat<(v2i32 (sra V2I32:$b, (i64 (HexagonCOMBINE (i32 u5ImmPred:$c), 122 (i32 u5ImmPred:$c))))), 123 (S2_asr_i_vw V2I32:$b, imm:$c)>; 124 def: Pat<(v2i32 (srl V2I32:$b, (i64 (HexagonCOMBINE (i32 u5ImmPred:$c), 125 (i32 u5ImmPred:$c))))), 126 (S2_lsr_i_vw V2I32:$b, imm:$c)>; 127 def: Pat<(v2i32 (shl V2I32:$b, (i64 (HexagonCOMBINE (i32 u5ImmPred:$c), 128 (i32 u5ImmPred:$c))))), 129 (S2_asl_i_vw V2I32:$b, imm:$c)>; 130 131 def: Pat<(v4i16 (sra V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4ImmPred:$c)))))), 132 (S2_asr_i_vh V4I16:$b, imm:$c)>; 133 def: Pat<(v4i16 (srl V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4ImmPred:$c)))))), 134 (S2_lsr_i_vh V4I16:$b, imm:$c)>; 135 def: Pat<(v4i16 (shl V4I16:$b, (v4i16 (HexagonVSPLATH (i32 (u4ImmPred:$c)))))), 136 (S2_asl_i_vh V4I16:$b, imm:$c)>; 137 138 139 def SDTHexagon_v2i32_v2i32_i32 : SDTypeProfile<1, 2, 140 [SDTCisSameAs<0, 1>, SDTCisVT<0, v2i32>, SDTCisInt<2>]>; 141 def SDTHexagon_v4i16_v4i16_i32 : SDTypeProfile<1, 2, 142 [SDTCisSameAs<0, 1>, SDTCisVT<0, v4i16>, SDTCisInt<2>]>; 143 144 def HexagonVSRAW: SDNode<"HexagonISD::VSRAW", SDTHexagon_v2i32_v2i32_i32>; 145 def HexagonVSRAH: SDNode<"HexagonISD::VSRAH", SDTHexagon_v4i16_v4i16_i32>; 146 def HexagonVSRLW: SDNode<"HexagonISD::VSRLW", SDTHexagon_v2i32_v2i32_i32>; 147 def HexagonVSRLH: SDNode<"HexagonISD::VSRLH", SDTHexagon_v4i16_v4i16_i32>; 148 def HexagonVSHLW: SDNode<"HexagonISD::VSHLW", SDTHexagon_v2i32_v2i32_i32>; 149 def HexagonVSHLH: SDNode<"HexagonISD::VSHLH", SDTHexagon_v4i16_v4i16_i32>; 150 151 def: Pat<(v2i32 (HexagonVSRAW V2I32:$Rs, u5ImmPred:$u5)), 152 (S2_asr_i_vw V2I32:$Rs, imm:$u5)>; 153 def: Pat<(v4i16 (HexagonVSRAH V4I16:$Rs, u4ImmPred:$u4)), 154 (S2_asr_i_vh V4I16:$Rs, imm:$u4)>; 155 def: Pat<(v2i32 (HexagonVSRLW V2I32:$Rs, u5ImmPred:$u5)), 156 (S2_lsr_i_vw V2I32:$Rs, imm:$u5)>; 157 def: Pat<(v4i16 (HexagonVSRLH V4I16:$Rs, u4ImmPred:$u4)), 158 (S2_lsr_i_vh V4I16:$Rs, imm:$u4)>; 159 def: Pat<(v2i32 (HexagonVSHLW V2I32:$Rs, u5ImmPred:$u5)), 160 (S2_asl_i_vw V2I32:$Rs, imm:$u5)>; 161 def: Pat<(v4i16 (HexagonVSHLH V4I16:$Rs, u4ImmPred:$u4)), 162 (S2_asl_i_vh V4I16:$Rs, imm:$u4)>; 163 164 // Vector shift words by register 165 def S2_asr_r_vw : T_S3op_shiftVect < "vasrw", 0b00, 0b00>; 166 def S2_lsr_r_vw : T_S3op_shiftVect < "vlsrw", 0b00, 0b01>; 167 def S2_asl_r_vw : T_S3op_shiftVect < "vaslw", 0b00, 0b10>; 168 def S2_lsl_r_vw : T_S3op_shiftVect < "vlslw", 0b00, 0b11>; 169 170 // Vector shift halfwords by register 171 def S2_asr_r_vh : T_S3op_shiftVect < "vasrh", 0b01, 0b00>; 172 def S2_lsr_r_vh : T_S3op_shiftVect < "vlsrh", 0b01, 0b01>; 173 def S2_asl_r_vh : T_S3op_shiftVect < "vaslh", 0b01, 0b10>; 174 def S2_lsl_r_vh : T_S3op_shiftVect < "vlslh", 0b01, 0b11>; 175 176 class vshift_rr_pat<InstHexagon MI, SDNode Op, PatFrag Value> 177 : Pat <(Op Value:$Rs, I32:$Rt), 178 (MI Value:$Rs, I32:$Rt)>; 179 180 def: vshift_rr_pat <S2_asr_r_vw, HexagonVSRAW, V2I32>; 181 def: vshift_rr_pat <S2_asr_r_vh, HexagonVSRAH, V4I16>; 182 def: vshift_rr_pat <S2_lsr_r_vw, HexagonVSRLW, V2I32>; 183 def: vshift_rr_pat <S2_lsr_r_vh, HexagonVSRLH, V4I16>; 184 def: vshift_rr_pat <S2_asl_r_vw, HexagonVSHLW, V2I32>; 185 def: vshift_rr_pat <S2_asl_r_vh, HexagonVSHLH, V4I16>; 186 187 188 def SDTHexagonVecCompare_v8i8 : SDTypeProfile<1, 2, 189 [SDTCisSameAs<1, 2>, SDTCisVT<0, i1>, SDTCisVT<1, v8i8>]>; 190 def SDTHexagonVecCompare_v4i16 : SDTypeProfile<1, 2, 191 [SDTCisSameAs<1, 2>, SDTCisVT<0, i1>, SDTCisVT<1, v4i16>]>; 192 def SDTHexagonVecCompare_v2i32 : SDTypeProfile<1, 2, 193 [SDTCisSameAs<1, 2>, SDTCisVT<0, i1>, SDTCisVT<1, v2i32>]>; 194 195 def HexagonVCMPBEQ: SDNode<"HexagonISD::VCMPBEQ", SDTHexagonVecCompare_v8i8>; 196 def HexagonVCMPBGT: SDNode<"HexagonISD::VCMPBGT", SDTHexagonVecCompare_v8i8>; 197 def HexagonVCMPBGTU: SDNode<"HexagonISD::VCMPBGTU", SDTHexagonVecCompare_v8i8>; 198 def HexagonVCMPHEQ: SDNode<"HexagonISD::VCMPHEQ", SDTHexagonVecCompare_v4i16>; 199 def HexagonVCMPHGT: SDNode<"HexagonISD::VCMPHGT", SDTHexagonVecCompare_v4i16>; 200 def HexagonVCMPHGTU: SDNode<"HexagonISD::VCMPHGTU", SDTHexagonVecCompare_v4i16>; 201 def HexagonVCMPWEQ: SDNode<"HexagonISD::VCMPWEQ", SDTHexagonVecCompare_v2i32>; 202 def HexagonVCMPWGT: SDNode<"HexagonISD::VCMPWGT", SDTHexagonVecCompare_v2i32>; 203 def HexagonVCMPWGTU: SDNode<"HexagonISD::VCMPWGTU", SDTHexagonVecCompare_v2i32>; 204 205 206 class vcmp_i1_pat<InstHexagon MI, SDNode Op, PatFrag Value> 207 : Pat <(i1 (Op Value:$Rs, Value:$Rt)), 208 (MI Value:$Rs, Value:$Rt)>; 209 210 def: vcmp_i1_pat<A2_vcmpbeq, HexagonVCMPBEQ, V8I8>; 211 def: vcmp_i1_pat<A4_vcmpbgt, HexagonVCMPBGT, V8I8>; 212 def: vcmp_i1_pat<A2_vcmpbgtu, HexagonVCMPBGTU, V8I8>; 213 214 def: vcmp_i1_pat<A2_vcmpheq, HexagonVCMPHEQ, V4I16>; 215 def: vcmp_i1_pat<A2_vcmphgt, HexagonVCMPHGT, V4I16>; 216 def: vcmp_i1_pat<A2_vcmphgtu, HexagonVCMPHGTU, V4I16>; 217 218 def: vcmp_i1_pat<A2_vcmpweq, HexagonVCMPWEQ, V2I32>; 219 def: vcmp_i1_pat<A2_vcmpwgt, HexagonVCMPWGT, V2I32>; 220 def: vcmp_i1_pat<A2_vcmpwgtu, HexagonVCMPWGTU, V2I32>; 221 222 223 class vcmp_vi1_pat<InstHexagon MI, PatFrag Op, PatFrag InVal, ValueType OutTy> 224 : Pat <(OutTy (Op InVal:$Rs, InVal:$Rt)), 225 (MI InVal:$Rs, InVal:$Rt)>; 226 227 def: vcmp_vi1_pat<A2_vcmpweq, seteq, V2I32, v2i1>; 228 def: vcmp_vi1_pat<A2_vcmpwgt, setgt, V2I32, v2i1>; 229 def: vcmp_vi1_pat<A2_vcmpwgtu, setugt, V2I32, v2i1>; 230 231 def: vcmp_vi1_pat<A2_vcmpheq, seteq, V4I16, v4i1>; 232 def: vcmp_vi1_pat<A2_vcmphgt, setgt, V4I16, v4i1>; 233 def: vcmp_vi1_pat<A2_vcmphgtu, setugt, V4I16, v4i1>; 234 235 236 // Hexagon doesn't have a vector multiply with C semantics. 237 // Instead, generate a pseudo instruction that gets expaneded into two 238 // scalar MPYI instructions. 239 // This is expanded by ExpandPostRAPseudos. 240 let isPseudo = 1 in 241 def VMULW : PseudoM<(outs DoubleRegs:$Rd), 242 (ins DoubleRegs:$Rs, DoubleRegs:$Rt), 243 ".error \"Should never try to emit VMULW\"", 244 [(set V2I32:$Rd, (mul V2I32:$Rs, V2I32:$Rt))]>; 245 246 let isPseudo = 1 in 247 def VMULW_ACC : PseudoM<(outs DoubleRegs:$Rd), 248 (ins DoubleRegs:$Rx, DoubleRegs:$Rs, DoubleRegs:$Rt), 249 ".error \"Should never try to emit VMULW_ACC\"", 250 [(set V2I32:$Rd, (add V2I32:$Rx, (mul V2I32:$Rs, V2I32:$Rt)))], 251 "$Rd = $Rx">; 252 253 // Adds two v4i8: Hexagon does not have an insn for this one, so we 254 // use the double add v8i8, and use only the low part of the result. 255 def: Pat<(v4i8 (add (v4i8 IntRegs:$Rs), (v4i8 IntRegs:$Rt))), 256 (LoReg (A2_vaddub (Zext64 $Rs), (Zext64 $Rt)))>; 257 258 // Subtract two v4i8: Hexagon does not have an insn for this one, so we 259 // use the double sub v8i8, and use only the low part of the result. 260 def: Pat<(v4i8 (sub (v4i8 IntRegs:$Rs), (v4i8 IntRegs:$Rt))), 261 (LoReg (A2_vsubub (Zext64 $Rs), (Zext64 $Rt)))>; 262 263 // 264 // No 32 bit vector mux. 265 // 266 def: Pat<(v4i8 (select I1:$Pu, V4I8:$Rs, V4I8:$Rt)), 267 (LoReg (C2_vmux I1:$Pu, (Zext64 $Rs), (Zext64 $Rt)))>; 268 def: Pat<(v2i16 (select I1:$Pu, V2I16:$Rs, V2I16:$Rt)), 269 (LoReg (C2_vmux I1:$Pu, (Zext64 $Rs), (Zext64 $Rt)))>; 270 271 // 272 // 64-bit vector mux. 273 // 274 def: Pat<(v8i8 (vselect V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)), 275 (C2_vmux V8I1:$Pu, V8I8:$Rs, V8I8:$Rt)>; 276 def: Pat<(v4i16 (vselect V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)), 277 (C2_vmux V4I1:$Pu, V4I16:$Rs, V4I16:$Rt)>; 278 def: Pat<(v2i32 (vselect V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)), 279 (C2_vmux V2I1:$Pu, V2I32:$Rs, V2I32:$Rt)>; 280 281 // 282 // No 32 bit vector compare. 283 // 284 def: Pat<(i1 (seteq V4I8:$Rs, V4I8:$Rt)), 285 (A2_vcmpbeq (Zext64 $Rs), (Zext64 $Rt))>; 286 def: Pat<(i1 (setgt V4I8:$Rs, V4I8:$Rt)), 287 (A4_vcmpbgt (Zext64 $Rs), (Zext64 $Rt))>; 288 def: Pat<(i1 (setugt V4I8:$Rs, V4I8:$Rt)), 289 (A2_vcmpbgtu (Zext64 $Rs), (Zext64 $Rt))>; 290 291 def: Pat<(i1 (seteq V2I16:$Rs, V2I16:$Rt)), 292 (A2_vcmpheq (Zext64 $Rs), (Zext64 $Rt))>; 293 def: Pat<(i1 (setgt V2I16:$Rs, V2I16:$Rt)), 294 (A2_vcmphgt (Zext64 $Rs), (Zext64 $Rt))>; 295 def: Pat<(i1 (setugt V2I16:$Rs, V2I16:$Rt)), 296 (A2_vcmphgtu (Zext64 $Rs), (Zext64 $Rt))>; 297 298 299 class InvertCmp_pat<InstHexagon InvMI, PatFrag CmpOp, PatFrag Value, 300 ValueType CmpTy> 301 : Pat<(CmpTy (CmpOp Value:$Rs, Value:$Rt)), 302 (InvMI Value:$Rt, Value:$Rs)>; 303 304 // Map from a compare operation to the corresponding instruction with the 305 // order of operands reversed, e.g. x > y --> cmp.lt(y,x). 306 def: InvertCmp_pat<A4_vcmpbgt, setlt, V8I8, i1>; 307 def: InvertCmp_pat<A4_vcmpbgt, setlt, V8I8, v8i1>; 308 def: InvertCmp_pat<A2_vcmphgt, setlt, V4I16, i1>; 309 def: InvertCmp_pat<A2_vcmphgt, setlt, V4I16, v4i1>; 310 def: InvertCmp_pat<A2_vcmpwgt, setlt, V2I32, i1>; 311 def: InvertCmp_pat<A2_vcmpwgt, setlt, V2I32, v2i1>; 312 313 def: InvertCmp_pat<A2_vcmpbgtu, setult, V8I8, i1>; 314 def: InvertCmp_pat<A2_vcmpbgtu, setult, V8I8, v8i1>; 315 def: InvertCmp_pat<A2_vcmphgtu, setult, V4I16, i1>; 316 def: InvertCmp_pat<A2_vcmphgtu, setult, V4I16, v4i1>; 317 def: InvertCmp_pat<A2_vcmpwgtu, setult, V2I32, i1>; 318 def: InvertCmp_pat<A2_vcmpwgtu, setult, V2I32, v2i1>; 319 320 // Map from vcmpne(Rss) -> !vcmpew(Rss). 321 // rs != rt -> !(rs == rt). 322 def: Pat<(v2i1 (setne V2I32:$Rs, V2I32:$Rt)), 323 (C2_not (v2i1 (A2_vcmpbeq V2I32:$Rs, V2I32:$Rt)))>; 324 325 326 // Truncate: from vector B copy all 'E'ven 'B'yte elements: 327 // A[0] = B[0]; A[1] = B[2]; A[2] = B[4]; A[3] = B[6]; 328 def: Pat<(v4i8 (trunc V4I16:$Rs)), 329 (S2_vtrunehb V4I16:$Rs)>; 330 331 // Truncate: from vector B copy all 'O'dd 'B'yte elements: 332 // A[0] = B[1]; A[1] = B[3]; A[2] = B[5]; A[3] = B[7]; 333 // S2_vtrunohb 334 335 // Truncate: from vectors B and C copy all 'E'ven 'H'alf-word elements: 336 // A[0] = B[0]; A[1] = B[2]; A[2] = C[0]; A[3] = C[2]; 337 // S2_vtruneh 338 339 def: Pat<(v2i16 (trunc V2I32:$Rs)), 340 (LoReg (S2_packhl (HiReg $Rs), (LoReg $Rs)))>; 341 342 343 def HexagonVSXTBH : SDNode<"HexagonISD::VSXTBH", SDTUnaryOp>; 344 def HexagonVSXTBW : SDNode<"HexagonISD::VSXTBW", SDTUnaryOp>; 345 346 def: Pat<(i64 (HexagonVSXTBH I32:$Rs)), (S2_vsxtbh I32:$Rs)>; 347 def: Pat<(i64 (HexagonVSXTBW I32:$Rs)), (S2_vsxthw I32:$Rs)>; 348 349 def: Pat<(v4i16 (zext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>; 350 def: Pat<(v2i32 (zext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>; 351 def: Pat<(v4i16 (anyext V4I8:$Rs)), (S2_vzxtbh V4I8:$Rs)>; 352 def: Pat<(v2i32 (anyext V2I16:$Rs)), (S2_vzxthw V2I16:$Rs)>; 353 def: Pat<(v4i16 (sext V4I8:$Rs)), (S2_vsxtbh V4I8:$Rs)>; 354 def: Pat<(v2i32 (sext V2I16:$Rs)), (S2_vsxthw V2I16:$Rs)>; 355 356 // Sign extends a v2i8 into a v2i32. 357 def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i8)), 358 (A2_combinew (A2_sxtb (HiReg $Rs)), (A2_sxtb (LoReg $Rs)))>; 359 360 // Sign extends a v2i16 into a v2i32. 361 def: Pat<(v2i32 (sext_inreg V2I32:$Rs, v2i16)), 362 (A2_combinew (A2_sxth (HiReg $Rs)), (A2_sxth (LoReg $Rs)))>; 363 364 365 // Multiplies two v2i16 and returns a v2i32. We are using here the 366 // saturating multiply, as hexagon does not provide a non saturating 367 // vector multiply, and saturation does not impact the result that is 368 // in double precision of the operands. 369 370 // Multiplies two v2i16 vectors: as Hexagon does not have a multiply 371 // with the C semantics for this one, this pattern uses the half word 372 // multiply vmpyh that takes two v2i16 and returns a v2i32. This is 373 // then truncated to fit this back into a v2i16 and to simulate the 374 // wrap around semantics for unsigned in C. 375 def vmpyh: OutPatFrag<(ops node:$Rs, node:$Rt), 376 (M2_vmpy2s_s0 (i32 $Rs), (i32 $Rt))>; 377 378 def: Pat<(v2i16 (mul V2I16:$Rs, V2I16:$Rt)), 379 (LoReg (S2_vtrunewh (v2i32 (A2_combineii 0, 0)), 380 (v2i32 (vmpyh V2I16:$Rs, V2I16:$Rt))))>; 381 382 // Multiplies two v4i16 vectors. 383 def: Pat<(v4i16 (mul V4I16:$Rs, V4I16:$Rt)), 384 (S2_vtrunewh (vmpyh (HiReg $Rs), (HiReg $Rt)), 385 (vmpyh (LoReg $Rs), (LoReg $Rt)))>; 386 387 def VMPYB_no_V5: OutPatFrag<(ops node:$Rs, node:$Rt), 388 (S2_vtrunewh (vmpyh (HiReg (S2_vsxtbh $Rs)), (HiReg (S2_vsxtbh $Rt))), 389 (vmpyh (LoReg (S2_vsxtbh $Rs)), (LoReg (S2_vsxtbh $Rt))))>; 390 391 // Multiplies two v4i8 vectors. 392 def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)), 393 (S2_vtrunehb (M5_vmpybsu V4I8:$Rs, V4I8:$Rt))>, 394 Requires<[HasV5T]>; 395 396 def: Pat<(v4i8 (mul V4I8:$Rs, V4I8:$Rt)), 397 (S2_vtrunehb (VMPYB_no_V5 V4I8:$Rs, V4I8:$Rt))>; 398 399 // Multiplies two v8i8 vectors. 400 def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)), 401 (A2_combinew (S2_vtrunehb (M5_vmpybsu (HiReg $Rs), (HiReg $Rt))), 402 (S2_vtrunehb (M5_vmpybsu (LoReg $Rs), (LoReg $Rt))))>, 403 Requires<[HasV5T]>; 404 405 def: Pat<(v8i8 (mul V8I8:$Rs, V8I8:$Rt)), 406 (A2_combinew (S2_vtrunehb (VMPYB_no_V5 (HiReg $Rs), (HiReg $Rt))), 407 (S2_vtrunehb (VMPYB_no_V5 (LoReg $Rs), (LoReg $Rt))))>; 408 409 410 class shuffler<SDNode Op, string Str> 411 : SInst<(outs DoubleRegs:$a), (ins DoubleRegs:$b, DoubleRegs:$c), 412 "$a = " # Str # "($b, $c)", 413 [(set (i64 DoubleRegs:$a), 414 (i64 (Op (i64 DoubleRegs:$b), (i64 DoubleRegs:$c))))], 415 "", S_3op_tc_1_SLOT23>; 416 417 def SDTHexagonBinOp64 : SDTypeProfile<1, 2, 418 [SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisVT<0, i64>]>; 419 420 def HexagonSHUFFEB: SDNode<"HexagonISD::SHUFFEB", SDTHexagonBinOp64>; 421 def HexagonSHUFFEH: SDNode<"HexagonISD::SHUFFEH", SDTHexagonBinOp64>; 422 def HexagonSHUFFOB: SDNode<"HexagonISD::SHUFFOB", SDTHexagonBinOp64>; 423 def HexagonSHUFFOH: SDNode<"HexagonISD::SHUFFOH", SDTHexagonBinOp64>; 424 425 class ShufflePat<InstHexagon MI, SDNode Op> 426 : Pat<(i64 (Op DoubleRegs:$src1, DoubleRegs:$src2)), 427 (i64 (MI DoubleRegs:$src1, DoubleRegs:$src2))>; 428 429 // Shuffles even bytes for i=0..3: A[2*i].b = C[2*i].b; A[2*i+1].b = B[2*i].b 430 def: ShufflePat<S2_shuffeb, HexagonSHUFFEB>; 431 432 // Shuffles odd bytes for i=0..3: A[2*i].b = C[2*i+1].b; A[2*i+1].b = B[2*i+1].b 433 def: ShufflePat<S2_shuffob, HexagonSHUFFOB>; 434 435 // Shuffles even half for i=0,1: A[2*i].h = C[2*i].h; A[2*i+1].h = B[2*i].h 436 def: ShufflePat<S2_shuffeh, HexagonSHUFFEH>; 437 438 // Shuffles odd half for i=0,1: A[2*i].h = C[2*i+1].h; A[2*i+1].h = B[2*i+1].h 439 def: ShufflePat<S2_shuffoh, HexagonSHUFFOH>; 440 441 442 // Truncated store from v4i16 to v4i8. 443 def truncstorev4i8: PatFrag<(ops node:$val, node:$ptr), 444 (truncstore node:$val, node:$ptr), 445 [{ return cast<StoreSDNode>(N)->getMemoryVT() == MVT::v4i8; }]>; 446 447 // Truncated store from v2i32 to v2i16. 448 def truncstorev2i16: PatFrag<(ops node:$val, node:$ptr), 449 (truncstore node:$val, node:$ptr), 450 [{ return cast<StoreSDNode>(N)->getMemoryVT() == MVT::v2i16; }]>; 451 452 def: Pat<(truncstorev2i16 V2I32:$Rs, I32:$Rt), 453 (S2_storeri_io I32:$Rt, 0, (LoReg (S2_packhl (HiReg $Rs), 454 (LoReg $Rs))))>; 455 456 def: Pat<(truncstorev4i8 V4I16:$Rs, I32:$Rt), 457 (S2_storeri_io I32:$Rt, 0, (S2_vtrunehb V4I16:$Rs))>; 458 459 460 // Zero and sign extended load from v2i8 into v2i16. 461 def zextloadv2i8: PatFrag<(ops node:$ptr), (zextload node:$ptr), 462 [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; }]>; 463 464 def sextloadv2i8: PatFrag<(ops node:$ptr), (sextload node:$ptr), 465 [{ return cast<LoadSDNode>(N)->getMemoryVT() == MVT::v2i8; }]>; 466 467 def: Pat<(v2i16 (zextloadv2i8 I32:$Rs)), 468 (LoReg (v4i16 (S2_vzxtbh (L2_loadruh_io I32:$Rs, 0))))>; 469 470 def: Pat<(v2i16 (sextloadv2i8 I32:$Rs)), 471 (LoReg (v4i16 (S2_vsxtbh (L2_loadrh_io I32:$Rs, 0))))>; 472 473 def: Pat<(v2i32 (zextloadv2i8 I32:$Rs)), 474 (S2_vzxthw (LoReg (v4i16 (S2_vzxtbh (L2_loadruh_io I32:$Rs, 0)))))>; 475 476 def: Pat<(v2i32 (sextloadv2i8 I32:$Rs)), 477 (S2_vsxthw (LoReg (v4i16 (S2_vsxtbh (L2_loadrh_io I32:$Rs, 0)))))>; 478