Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonStoreWidening.cpp------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 // Replace sequences of "narrow" stores to adjacent memory locations with
     10 // a fewer "wide" stores that have the same effect.
     11 // For example, replace:
     12 //   S4_storeirb_io  %vreg100, 0, 0   ; store-immediate-byte
     13 //   S4_storeirb_io  %vreg100, 1, 0   ; store-immediate-byte
     14 // with
     15 //   S4_storeirh_io  %vreg100, 0, 0   ; store-immediate-halfword
     16 // The above is the general idea.  The actual cases handled by the code
     17 // may be a bit more complex.
     18 // The purpose of this pass is to reduce the number of outstanding stores,
     19 // or as one could say, "reduce store queue pressure".  Also, wide stores
     20 // mean fewer stores, and since there are only two memory instructions allowed
     21 // per packet, it also means fewer packets, and ultimately fewer cycles.
     22 //===---------------------------------------------------------------------===//
     23 
     24 #define DEBUG_TYPE "hexagon-widen-stores"
     25 
     26 #include "HexagonTargetMachine.h"
     27 
     28 #include "llvm/PassSupport.h"
     29 #include "llvm/Analysis/AliasAnalysis.h"
     30 #include "llvm/CodeGen/Passes.h"
     31 #include "llvm/CodeGen/MachineFunction.h"
     32 #include "llvm/CodeGen/MachineFunctionPass.h"
     33 #include "llvm/CodeGen/MachineInstrBuilder.h"
     34 #include "llvm/CodeGen/MachineRegisterInfo.h"
     35 #include "llvm/MC/MCInstrDesc.h"
     36 #include "llvm/Support/Debug.h"
     37 #include "llvm/Support/raw_ostream.h"
     38 #include "llvm/Target/TargetMachine.h"
     39 #include "llvm/Target/TargetRegisterInfo.h"
     40 #include "llvm/Target/TargetInstrInfo.h"
     41 
     42 #include <algorithm>
     43 
     44 
     45 using namespace llvm;
     46 
     47 namespace llvm {
     48   FunctionPass *createHexagonStoreWidening();
     49   void initializeHexagonStoreWideningPass(PassRegistry&);
     50 }
     51 
     52 namespace {
     53   struct HexagonStoreWidening : public MachineFunctionPass {
     54     const HexagonInstrInfo      *TII;
     55     const HexagonRegisterInfo   *TRI;
     56     const MachineRegisterInfo   *MRI;
     57     AliasAnalysis               *AA;
     58     MachineFunction             *MF;
     59 
     60   public:
     61     static char ID;
     62     HexagonStoreWidening() : MachineFunctionPass(ID) {
     63       initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
     64     }
     65 
     66     bool runOnMachineFunction(MachineFunction &MF) override;
     67 
     68     const char *getPassName() const override {
     69       return "Hexagon Store Widening";
     70     }
     71 
     72     void getAnalysisUsage(AnalysisUsage &AU) const override {
     73       AU.addRequired<AAResultsWrapperPass>();
     74       AU.addPreserved<AAResultsWrapperPass>();
     75       MachineFunctionPass::getAnalysisUsage(AU);
     76     }
     77 
     78     static bool handledStoreType(const MachineInstr *MI);
     79 
     80   private:
     81     static const int MaxWideSize = 4;
     82 
     83     typedef std::vector<MachineInstr*> InstrGroup;
     84     typedef std::vector<InstrGroup> InstrGroupList;
     85 
     86     bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
     87     bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
     88     void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
     89         InstrGroup::iterator End, InstrGroup &Group);
     90     void createStoreGroups(MachineBasicBlock &MBB,
     91         InstrGroupList &StoreGroups);
     92     bool processBasicBlock(MachineBasicBlock &MBB);
     93     bool processStoreGroup(InstrGroup &Group);
     94     bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
     95         InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
     96     bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
     97     bool replaceStores(InstrGroup &OG, InstrGroup &NG);
     98     bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
     99   };
    100 
    101 } // namespace
    102 
    103 
    104 namespace {
    105 
    106 // Some local helper functions...
    107 unsigned getBaseAddressRegister(const MachineInstr *MI) {
    108   const MachineOperand &MO = MI->getOperand(0);
    109   assert(MO.isReg() && "Expecting register operand");
    110   return MO.getReg();
    111 }
    112 
    113 int64_t getStoreOffset(const MachineInstr *MI) {
    114   unsigned OpC = MI->getOpcode();
    115   assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");
    116 
    117   switch (OpC) {
    118     case Hexagon::S4_storeirb_io:
    119     case Hexagon::S4_storeirh_io:
    120     case Hexagon::S4_storeiri_io: {
    121       const MachineOperand &MO = MI->getOperand(1);
    122       assert(MO.isImm() && "Expecting immediate offset");
    123       return MO.getImm();
    124     }
    125   }
    126   dbgs() << *MI;
    127   llvm_unreachable("Store offset calculation missing for a handled opcode");
    128   return 0;
    129 }
    130 
    131 const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
    132   assert(!MI->memoperands_empty() && "Expecting memory operands");
    133   return **MI->memoperands_begin();
    134 }
    135 
    136 } // namespace
    137 
    138 
    139 char HexagonStoreWidening::ID = 0;
    140 
    141 INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
    142                 "Hexason Store Widening", false, false)
    143 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
    144 INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
    145                 "Hexagon Store Widening", false, false)
    146 
    147 
    148 // Filtering function: any stores whose opcodes are not "approved" of by
    149 // this function will not be subjected to widening.
    150 inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
    151   // For now, only handle stores of immediate values.
    152   // Also, reject stores to stack slots.
    153   unsigned Opc = MI->getOpcode();
    154   switch (Opc) {
    155     case Hexagon::S4_storeirb_io:
    156     case Hexagon::S4_storeirh_io:
    157     case Hexagon::S4_storeiri_io:
    158       // Base address must be a register. (Implement FI later.)
    159       return MI->getOperand(0).isReg();
    160     default:
    161       return false;
    162   }
    163 }
    164 
    165 
    166 // Check if the machine memory operand MMO is aliased with any of the
    167 // stores in the store group Stores.
    168 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
    169       const MachineMemOperand &MMO) {
    170   if (!MMO.getValue())
    171     return true;
    172 
    173   MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());
    174 
    175   for (auto SI : Stores) {
    176     const MachineMemOperand &SMO = getStoreTarget(SI);
    177     if (!SMO.getValue())
    178       return true;
    179 
    180     MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
    181     if (AA->alias(L, SL))
    182       return true;
    183   }
    184 
    185   return false;
    186 }
    187 
    188 
    189 // Check if the machine instruction MI accesses any storage aliased with
    190 // any store in the group Stores.
    191 bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
    192       const MachineInstr *MI) {
    193   for (auto &I : MI->memoperands())
    194     if (instrAliased(Stores, *I))
    195       return true;
    196   return false;
    197 }
    198 
    199 
    200 // Inspect a machine basic block, and generate store groups out of stores
    201 // encountered in the block.
    202 //
    203 // A store group is a group of stores that use the same base register,
    204 // and which can be reordered within that group without altering the
    205 // semantics of the program.  A single store group could be widened as
    206 // a whole, if there existed a single store instruction with the same
    207 // semantics as the entire group.  In many cases, a single store group
    208 // may need more than one wide store.
    209 void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
    210       InstrGroupList &StoreGroups) {
    211   InstrGroup AllInsns;
    212 
    213   // Copy all instruction pointers from the basic block to a temporary
    214   // list.  This will allow operating on the list, and modifying its
    215   // elements without affecting the basic block.
    216   for (auto &I : MBB)
    217     AllInsns.push_back(&I);
    218 
    219   // Traverse all instructions in the AllInsns list, and if we encounter
    220   // a store, then try to create a store group starting at that instruction
    221   // i.e. a sequence of independent stores that can be widened.
    222   for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
    223     MachineInstr *MI = *I;
    224     // Skip null pointers (processed instructions).
    225     if (!MI || !handledStoreType(MI))
    226       continue;
    227 
    228     // Found a store.  Try to create a store group.
    229     InstrGroup G;
    230     createStoreGroup(MI, I+1, E, G);
    231     if (G.size() > 1)
    232       StoreGroups.push_back(G);
    233   }
    234 }
    235 
    236 
    237 // Create a single store group.  The stores need to be independent between
    238 // themselves, and also there cannot be other instructions between them
    239 // that could read or modify storage being stored into.
    240 void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
    241       InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
    242   assert(handledStoreType(BaseStore) && "Unexpected instruction");
    243   unsigned BaseReg = getBaseAddressRegister(BaseStore);
    244   InstrGroup Other;
    245 
    246   Group.push_back(BaseStore);
    247 
    248   for (auto I = Begin; I != End; ++I) {
    249     MachineInstr *MI = *I;
    250     if (!MI)
    251       continue;
    252 
    253     if (handledStoreType(MI)) {
    254       // If this store instruction is aliased with anything already in the
    255       // group, terminate the group now.
    256       if (instrAliased(Group, getStoreTarget(MI)))
    257         return;
    258       // If this store is aliased to any of the memory instructions we have
    259       // seen so far (that are not a part of this group), terminate the group.
    260       if (instrAliased(Other, getStoreTarget(MI)))
    261         return;
    262 
    263       unsigned BR = getBaseAddressRegister(MI);
    264       if (BR == BaseReg) {
    265         Group.push_back(MI);
    266         *I = 0;
    267         continue;
    268       }
    269     }
    270 
    271     // Assume calls are aliased to everything.
    272     if (MI->isCall() || MI->hasUnmodeledSideEffects())
    273       return;
    274 
    275     if (MI->mayLoad() || MI->mayStore()) {
    276       if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
    277         return;
    278       Other.push_back(MI);
    279     }
    280   } // for
    281 }
    282 
    283 
    284 // Check if store instructions S1 and S2 are adjacent.  More precisely,
    285 // S2 has to access memory immediately following that accessed by S1.
    286 bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
    287       const MachineInstr *S2) {
    288   if (!handledStoreType(S1) || !handledStoreType(S2))
    289     return false;
    290 
    291   const MachineMemOperand &S1MO = getStoreTarget(S1);
    292 
    293   // Currently only handling immediate stores.
    294   int Off1 = S1->getOperand(1).getImm();
    295   int Off2 = S2->getOperand(1).getImm();
    296 
    297   return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
    298                      : int(Off1+S1MO.getSize()) == Off2;
    299 }
    300 
    301 
    302 /// Given a sequence of adjacent stores, and a maximum size of a single wide
    303 /// store, pick a group of stores that  can be replaced by a single store
    304 /// of size not exceeding MaxSize.  The selected sequence will be recorded
    305 /// in OG ("old group" of instructions).
    306 /// OG should be empty on entry, and should be left empty if the function
    307 /// fails.
    308 bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
    309       InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
    310       unsigned MaxSize) {
    311   assert(Begin != End && "No instructions to analyze");
    312   assert(OG.empty() && "Old group not empty on entry");
    313 
    314   if (std::distance(Begin, End) <= 1)
    315     return false;
    316 
    317   MachineInstr *FirstMI = *Begin;
    318   assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
    319   const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
    320   unsigned Alignment = FirstMMO.getAlignment();
    321   unsigned SizeAccum = FirstMMO.getSize();
    322   unsigned FirstOffset = getStoreOffset(FirstMI);
    323 
    324   // The initial value of SizeAccum should always be a power of 2.
    325   assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
    326 
    327   // If the size of the first store equals to or exceeds the limit, do nothing.
    328   if (SizeAccum >= MaxSize)
    329     return false;
    330 
    331   // If the size of the first store is greater than or equal to the address
    332   // stored to, then the store cannot be made any wider.
    333   if (SizeAccum >= Alignment)
    334     return false;
    335 
    336   // The offset of a store will put restrictions on how wide the store can be.
    337   // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
    338   // If the first store already exhausts the offset limits, quit.  Test this
    339   // by checking if the next wider size would exceed the limit.
    340   if ((2*SizeAccum-1) & FirstOffset)
    341     return false;
    342 
    343   OG.push_back(FirstMI);
    344   MachineInstr *S1 = FirstMI, *S2 = *(Begin+1);
    345   InstrGroup::iterator I = Begin+1;
    346 
    347   // Pow2Num will be the largest number of elements in OG such that the sum
    348   // of sizes of stores 0...Pow2Num-1 will be a power of 2.
    349   unsigned Pow2Num = 1;
    350   unsigned Pow2Size = SizeAccum;
    351 
    352   // Be greedy: keep accumulating stores as long as they are to adjacent
    353   // memory locations, and as long as the total number of bytes stored
    354   // does not exceed the limit (MaxSize).
    355   // Keep track of when the total size covered is a power of 2, since
    356   // this is a size a single store can cover.
    357   while (I != End) {
    358     S2 = *I;
    359     // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
    360     // any other store to fill the "hole".
    361     if (!storesAreAdjacent(S1, S2))
    362       break;
    363 
    364     unsigned S2Size = getStoreTarget(S2).getSize();
    365     if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
    366       break;
    367 
    368     OG.push_back(S2);
    369     SizeAccum += S2Size;
    370     if (isPowerOf2_32(SizeAccum)) {
    371       Pow2Num = OG.size();
    372       Pow2Size = SizeAccum;
    373     }
    374     if ((2*Pow2Size-1) & FirstOffset)
    375       break;
    376 
    377     S1 = S2;
    378     ++I;
    379   }
    380 
    381   // The stores don't add up to anything that can be widened.  Clean up.
    382   if (Pow2Num <= 1) {
    383     OG.clear();
    384     return false;
    385   }
    386 
    387   // Only leave the stored being widened.
    388   OG.resize(Pow2Num);
    389   TotalSize = Pow2Size;
    390   return true;
    391 }
    392 
    393 
    394 /// Given an "old group" OG of stores, create a "new group" NG of instructions
    395 /// to replace them.  Ideally, NG would only have a single instruction in it,
    396 /// but that may only be possible for store-immediate.
    397 bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
    398       unsigned TotalSize) {
    399   // XXX Current limitations:
    400   // - only expect stores of immediate values in OG,
    401   // - only handle a TotalSize of up to 4.
    402 
    403   if (TotalSize > 4)
    404     return false;
    405 
    406   unsigned Acc = 0;  // Value accumulator.
    407   unsigned Shift = 0;
    408 
    409   for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
    410     MachineInstr *MI = *I;
    411     const MachineMemOperand &MMO = getStoreTarget(MI);
    412     MachineOperand &SO = MI->getOperand(2);  // Source.
    413     assert(SO.isImm() && "Expecting an immediate operand");
    414 
    415     unsigned NBits = MMO.getSize()*8;
    416     unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
    417     unsigned Val = (SO.getImm() & Mask) << Shift;
    418     Acc |= Val;
    419     Shift += NBits;
    420   }
    421 
    422 
    423   MachineInstr *FirstSt = OG.front();
    424   DebugLoc DL = OG.back()->getDebugLoc();
    425   const MachineMemOperand &OldM = getStoreTarget(FirstSt);
    426   MachineMemOperand *NewM =
    427     MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
    428                              TotalSize, OldM.getAlignment(),
    429                              OldM.getAAInfo());
    430 
    431   if (Acc < 0x10000) {
    432     // Create mem[hw] = #Acc
    433     unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
    434                     (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
    435     assert(WOpc && "Unexpected size");
    436 
    437     int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
    438     const MCInstrDesc &StD = TII->get(WOpc);
    439     MachineOperand &MR = FirstSt->getOperand(0);
    440     int64_t Off = FirstSt->getOperand(1).getImm();
    441     MachineInstr *StI = BuildMI(*MF, DL, StD)
    442                           .addReg(MR.getReg(), getKillRegState(MR.isKill()))
    443                           .addImm(Off)
    444                           .addImm(Val);
    445     StI->addMemOperand(*MF, NewM);
    446     NG.push_back(StI);
    447   } else {
    448     // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
    449     const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
    450     const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
    451     unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
    452     MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
    453                            .addImm(int(Acc));
    454     NG.push_back(TfrI);
    455 
    456     unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
    457                     (TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
    458     assert(WOpc && "Unexpected size");
    459 
    460     const MCInstrDesc &StD = TII->get(WOpc);
    461     MachineOperand &MR = FirstSt->getOperand(0);
    462     int64_t Off = FirstSt->getOperand(1).getImm();
    463     MachineInstr *StI = BuildMI(*MF, DL, StD)
    464                           .addReg(MR.getReg(), getKillRegState(MR.isKill()))
    465                           .addImm(Off)
    466                           .addReg(VReg, RegState::Kill);
    467     StI->addMemOperand(*MF, NewM);
    468     NG.push_back(StI);
    469   }
    470 
    471   return true;
    472 }
    473 
    474 
    475 // Replace instructions from the old group OG with instructions from the
    476 // new group NG.  Conceptually, remove all instructions in OG, and then
    477 // insert all instructions in NG, starting at where the first instruction
    478 // from OG was (in the order in which they appeared in the basic block).
    479 // (The ordering in OG does not have to match the order in the basic block.)
    480 bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
    481   DEBUG({
    482     dbgs() << "Replacing:\n";
    483     for (auto I : OG)
    484       dbgs() << "  " << *I;
    485     dbgs() << "with\n";
    486     for (auto I : NG)
    487       dbgs() << "  " << *I;
    488   });
    489 
    490   MachineBasicBlock *MBB = OG.back()->getParent();
    491   MachineBasicBlock::iterator InsertAt = MBB->end();
    492 
    493   // Need to establish the insertion point.  The best one is right before
    494   // the first store in the OG, but in the order in which the stores occur
    495   // in the program list.  Since the ordering in OG does not correspond
    496   // to the order in the program list, we need to do some work to find
    497   // the insertion point.
    498 
    499   // Create a set of all instructions in OG (for quick lookup).
    500   SmallPtrSet<MachineInstr*, 4> InstrSet;
    501   for (auto I : OG)
    502     InstrSet.insert(I);
    503 
    504   // Traverse the block, until we hit an instruction from OG.
    505   for (auto &I : *MBB) {
    506     if (InstrSet.count(&I)) {
    507       InsertAt = I;
    508       break;
    509     }
    510   }
    511 
    512   assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");
    513 
    514   bool AtBBStart = false;
    515 
    516   // InsertAt points at the first instruction that will be removed.  We need
    517   // to move it out of the way, so it remains valid after removing all the
    518   // old stores, and so we are able to recover it back to the proper insertion
    519   // position.
    520   if (InsertAt != MBB->begin())
    521     --InsertAt;
    522   else
    523     AtBBStart = true;
    524 
    525   for (auto I : OG)
    526     I->eraseFromParent();
    527 
    528   if (!AtBBStart)
    529     ++InsertAt;
    530   else
    531     InsertAt = MBB->begin();
    532 
    533   for (auto I : NG)
    534     MBB->insert(InsertAt, I);
    535 
    536   return true;
    537 }
    538 
    539 
    540 // Break up the group into smaller groups, each of which can be replaced by
    541 // a single wide store.  Widen each such smaller group and replace the old
    542 // instructions with the widened ones.
    543 bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
    544   bool Changed = false;
    545   InstrGroup::iterator I = Group.begin(), E = Group.end();
    546   InstrGroup OG, NG;   // Old and new groups.
    547   unsigned CollectedSize;
    548 
    549   while (I != E) {
    550     OG.clear();
    551     NG.clear();
    552 
    553     bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
    554                 createWideStores(OG, NG, CollectedSize)              &&
    555                 replaceStores(OG, NG);
    556     if (!Succ)
    557       continue;
    558 
    559     assert(OG.size() > 1 && "Created invalid group");
    560     assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
    561     I += OG.size()-1;
    562 
    563     Changed = true;
    564   }
    565 
    566   return Changed;
    567 }
    568 
    569 
    570 // Process a single basic block: create the store groups, and replace them
    571 // with the widened stores, if possible.  Processing of each basic block
    572 // is independent from processing of any other basic block.  This transfor-
    573 // mation could be stopped after having processed any basic block without
    574 // any ill effects (other than not having performed widening in the unpro-
    575 // cessed blocks).  Also, the basic blocks can be processed in any order.
    576 bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
    577   InstrGroupList SGs;
    578   bool Changed = false;
    579 
    580   createStoreGroups(MBB, SGs);
    581 
    582   auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
    583     return getStoreOffset(A) < getStoreOffset(B);
    584   };
    585   for (auto &G : SGs) {
    586     assert(G.size() > 1 && "Store group with fewer than 2 elements");
    587     std::sort(G.begin(), G.end(), Less);
    588 
    589     Changed |= processStoreGroup(G);
    590   }
    591 
    592   return Changed;
    593 }
    594 
    595 
    596 bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
    597   if (skipFunction(*MFn.getFunction()))
    598     return false;
    599 
    600   MF = &MFn;
    601   auto &ST = MFn.getSubtarget<HexagonSubtarget>();
    602   TII = ST.getInstrInfo();
    603   TRI = ST.getRegisterInfo();
    604   MRI = &MFn.getRegInfo();
    605   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    606 
    607   bool Changed = false;
    608 
    609   for (auto &B : MFn)
    610     Changed |= processBasicBlock(B);
    611 
    612   return Changed;
    613 }
    614 
    615 
    616 FunctionPass *llvm::createHexagonStoreWidening() {
    617   return new HexagonStoreWidening();
    618 }
    619 
    620