1 //===-- MipsCallingConv.td - Calling Conventions for Mips --*- tablegen -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // This describes the calling conventions for Mips architecture. 10 //===----------------------------------------------------------------------===// 11 12 /// CCIfSubtarget - Match if the current subtarget has a feature F. 13 class CCIfSubtarget<string F, CCAction A, string Invert = ""> 14 : CCIf<!strconcat(Invert, 15 "static_cast<const MipsSubtarget&>" 16 "(State.getMachineFunction().getSubtarget()).", 17 F), 18 A>; 19 20 // The inverse of CCIfSubtarget 21 class CCIfSubtargetNot<string F, CCAction A> : CCIfSubtarget<F, A, "!">; 22 23 /// Match if the original argument (before lowering) was a float. 24 /// For example, this is true for i32's that were lowered from soft-float. 25 class CCIfOrigArgWasNotFloat<CCAction A> 26 : CCIf<"!static_cast<MipsCCState *>(&State)->WasOriginalArgFloat(ValNo)", 27 A>; 28 29 /// Match if the original argument (before lowering) was a 128-bit float (i.e. 30 /// long double). 31 class CCIfOrigArgWasF128<CCAction A> 32 : CCIf<"static_cast<MipsCCState *>(&State)->WasOriginalArgF128(ValNo)", A>; 33 34 /// Match if this specific argument is a vararg. 35 /// This is slightly different fro CCIfIsVarArg which matches if any argument is 36 /// a vararg. 37 class CCIfArgIsVarArg<CCAction A> 38 : CCIf<"!static_cast<MipsCCState *>(&State)->IsCallOperandFixed(ValNo)", A>; 39 40 41 /// Match if the special calling conv is the specified value. 42 class CCIfSpecialCallingConv<string CC, CCAction A> 43 : CCIf<"static_cast<MipsCCState *>(&State)->getSpecialCallingConv() == " 44 "MipsCCState::" # CC, A>; 45 46 // For soft-float, f128 values are returned in A0_64 rather than V1_64. 47 def RetCC_F128SoftFloat : CallingConv<[ 48 CCAssignToReg<[V0_64, A0_64]> 49 ]>; 50 51 // For hard-float, f128 values are returned as a pair of f64's rather than a 52 // pair of i64's. 53 def RetCC_F128HardFloat : CallingConv<[ 54 CCBitConvertToType<f64>, 55 56 // Contrary to the ABI documentation, a struct containing a long double is 57 // returned in $f0, and $f1 instead of the usual $f0, and $f2. This is to 58 // match the de facto ABI as implemented by GCC. 59 CCIfInReg<CCAssignToReg<[D0_64, D1_64]>>, 60 61 CCAssignToReg<[D0_64, D2_64]> 62 ]>; 63 64 // Handle F128 specially since we can't identify the original type during the 65 // tablegen-erated code. 66 def RetCC_F128 : CallingConv<[ 67 CCIfSubtarget<"useSoftFloat()", 68 CCIfType<[i64], CCDelegateTo<RetCC_F128SoftFloat>>>, 69 CCIfSubtargetNot<"useSoftFloat()", 70 CCIfType<[i64], CCDelegateTo<RetCC_F128HardFloat>>> 71 ]>; 72 73 //===----------------------------------------------------------------------===// 74 // Mips O32 Calling Convention 75 //===----------------------------------------------------------------------===// 76 77 def CC_MipsO32 : CallingConv<[ 78 // Promote i8/i16 arguments to i32. 79 CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, 80 81 // Integer values get stored in stack slots that are 4 bytes in 82 // size and 4-byte aligned. 83 CCIfType<[i32, f32], CCAssignToStack<4, 4>>, 84 85 // Integer values get stored in stack slots that are 8 bytes in 86 // size and 8-byte aligned. 87 CCIfType<[f64], CCAssignToStack<8, 8>> 88 ]>; 89 90 // Only the return rules are defined here for O32. The rules for argument 91 // passing are defined in MipsISelLowering.cpp. 92 def RetCC_MipsO32 : CallingConv<[ 93 // Promote i1/i8/i16 return values to i32. 94 CCIfType<[i1, i8, i16], CCPromoteToType<i32>>, 95 96 // i32 are returned in registers V0, V1, A0, A1 97 CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>>, 98 99 // f32 are returned in registers F0, F2 100 CCIfType<[f32], CCAssignToReg<[F0, F2]>>, 101 102 // f64 arguments are returned in D0_64 and D2_64 in FP64bit mode or 103 // in D0 and D1 in FP32bit mode. 104 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCAssignToReg<[D0_64, D2_64]>>>, 105 CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", CCAssignToReg<[D0, D1]>>> 106 ]>; 107 108 def CC_MipsO32_FP32 : CustomCallingConv; 109 def CC_MipsO32_FP64 : CustomCallingConv; 110 111 def CC_MipsO32_FP : CallingConv<[ 112 CCIfSubtargetNot<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP32>>, 113 CCIfSubtarget<"isFP64bit()", CCDelegateTo<CC_MipsO32_FP64>> 114 ]>; 115 116 //===----------------------------------------------------------------------===// 117 // Mips N32/64 Calling Convention 118 //===----------------------------------------------------------------------===// 119 120 def CC_MipsN_SoftFloat : CallingConv<[ 121 CCAssignToRegWithShadow<[A0, A1, A2, A3, 122 T0, T1, T2, T3], 123 [D12_64, D13_64, D14_64, D15_64, 124 D16_64, D17_64, D18_64, D19_64]>, 125 CCAssignToStack<4, 8> 126 ]>; 127 128 def CC_MipsN : CallingConv<[ 129 CCIfType<[i8, i16, i32, i64], 130 CCIfSubtargetNot<"isLittle()", 131 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, 132 133 // All integers (except soft-float integers) are promoted to 64-bit. 134 CCIfType<[i8, i16, i32], CCIfOrigArgWasNotFloat<CCPromoteToType<i64>>>, 135 136 // The only i32's we have left are soft-float arguments. 137 CCIfSubtarget<"useSoftFloat()", CCIfType<[i32], CCDelegateTo<CC_MipsN_SoftFloat>>>, 138 139 // Integer arguments are passed in integer registers. 140 CCIfType<[i64], CCAssignToRegWithShadow<[A0_64, A1_64, A2_64, A3_64, 141 T0_64, T1_64, T2_64, T3_64], 142 [D12_64, D13_64, D14_64, D15_64, 143 D16_64, D17_64, D18_64, D19_64]>>, 144 145 // f32 arguments are passed in single precision FP registers. 146 CCIfType<[f32], CCAssignToRegWithShadow<[F12, F13, F14, F15, 147 F16, F17, F18, F19], 148 [A0_64, A1_64, A2_64, A3_64, 149 T0_64, T1_64, T2_64, T3_64]>>, 150 151 // f64 arguments are passed in double precision FP registers. 152 CCIfType<[f64], CCAssignToRegWithShadow<[D12_64, D13_64, D14_64, D15_64, 153 D16_64, D17_64, D18_64, D19_64], 154 [A0_64, A1_64, A2_64, A3_64, 155 T0_64, T1_64, T2_64, T3_64]>>, 156 157 // All stack parameter slots become 64-bit doublewords and are 8-byte aligned. 158 CCIfType<[f32], CCAssignToStack<4, 8>>, 159 CCIfType<[i64, f64], CCAssignToStack<8, 8>> 160 ]>; 161 162 // N32/64 variable arguments. 163 // All arguments are passed in integer registers. 164 def CC_MipsN_VarArg : CallingConv<[ 165 CCIfType<[i8, i16, i32, i64], 166 CCIfSubtargetNot<"isLittle()", 167 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, 168 169 // All integers are promoted to 64-bit. 170 CCIfType<[i8, i16, i32], CCPromoteToType<i64>>, 171 172 CCIfType<[f32], CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3]>>, 173 174 CCIfType<[i64, f64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, 175 T0_64, T1_64, T2_64, T3_64]>>, 176 177 // All stack parameter slots become 64-bit doublewords and are 8-byte aligned. 178 CCIfType<[f32], CCAssignToStack<4, 8>>, 179 CCIfType<[i64, f64], CCAssignToStack<8, 8>> 180 ]>; 181 182 def RetCC_MipsN : CallingConv<[ 183 // f128 needs to be handled similarly to f32 and f64. However, f128 is not 184 // legal and is lowered to i128 which is further lowered to a pair of i64's. 185 // This presents us with a problem for the calling convention since hard-float 186 // still needs to pass them in FPU registers, and soft-float needs to use $v0, 187 // and $a0 instead of the usual $v0, and $v1. We therefore resort to a 188 // pre-analyze (see PreAnalyzeReturnForF128()) step to pass information on 189 // whether the result was originally an f128 into the tablegen-erated code. 190 // 191 // f128 should only occur for the N64 ABI where long double is 128-bit. On 192 // N32, long double is equivalent to double. 193 CCIfType<[i64], CCIfOrigArgWasF128<CCDelegateTo<RetCC_F128>>>, 194 195 // Aggregate returns are positioned at the lowest address in the slot for 196 // both little and big-endian targets. When passing in registers, this 197 // requires that big-endian targets shift the value into the upper bits. 198 CCIfSubtarget<"isLittle()", 199 CCIfType<[i8, i16, i32, i64], CCIfInReg<CCPromoteToType<i64>>>>, 200 CCIfSubtargetNot<"isLittle()", 201 CCIfType<[i8, i16, i32, i64], 202 CCIfInReg<CCPromoteToUpperBitsInType<i64>>>>, 203 204 // i64 are returned in registers V0_64, V1_64 205 CCIfType<[i64], CCAssignToReg<[V0_64, V1_64]>>, 206 207 // f32 are returned in registers F0, F2 208 CCIfType<[f32], CCAssignToReg<[F0, F2]>>, 209 210 // f64 are returned in registers D0, D2 211 CCIfType<[f64], CCAssignToReg<[D0_64, D2_64]>> 212 ]>; 213 214 //===----------------------------------------------------------------------===// 215 // Mips FastCC Calling Convention 216 //===----------------------------------------------------------------------===// 217 def CC_MipsO32_FastCC : CallingConv<[ 218 // f64 arguments are passed in double-precision floating pointer registers. 219 CCIfType<[f64], CCIfSubtargetNot<"isFP64bit()", 220 CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, 221 D7, D8, D9]>>>, 222 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"useOddSPReg()", 223 CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, 224 D4_64, D5_64, D6_64, D7_64, 225 D8_64, D9_64, D10_64, D11_64, 226 D12_64, D13_64, D14_64, D15_64, 227 D16_64, D17_64, D18_64, 228 D19_64]>>>>, 229 CCIfType<[f64], CCIfSubtarget<"isFP64bit()", CCIfSubtarget<"noOddSPReg()", 230 CCAssignToReg<[D0_64, D2_64, D4_64, D6_64, 231 D8_64, D10_64, D12_64, D14_64, 232 D16_64, D18_64]>>>>, 233 234 // Stack parameter slots for f64 are 64-bit doublewords and 8-byte aligned. 235 CCIfType<[f64], CCAssignToStack<8, 8>> 236 ]>; 237 238 def CC_MipsN_FastCC : CallingConv<[ 239 // Integer arguments are passed in integer registers. 240 CCIfType<[i64], CCAssignToReg<[A0_64, A1_64, A2_64, A3_64, T0_64, T1_64, 241 T2_64, T3_64, T4_64, T5_64, T6_64, T7_64, 242 T8_64, V1_64]>>, 243 244 // f64 arguments are passed in double-precision floating pointer registers. 245 CCIfType<[f64], CCAssignToReg<[D0_64, D1_64, D2_64, D3_64, D4_64, D5_64, 246 D6_64, D7_64, D8_64, D9_64, D10_64, D11_64, 247 D12_64, D13_64, D14_64, D15_64, D16_64, D17_64, 248 D18_64, D19_64]>>, 249 250 // Stack parameter slots for i64 and f64 are 64-bit doublewords and 251 // 8-byte aligned. 252 CCIfType<[i64, f64], CCAssignToStack<8, 8>> 253 ]>; 254 255 def CC_Mips_FastCC : CallingConv<[ 256 // Handles byval parameters. 257 CCIfByVal<CCPassByVal<4, 4>>, 258 259 // Promote i8/i16 arguments to i32. 260 CCIfType<[i8, i16], CCPromoteToType<i32>>, 261 262 // Integer arguments are passed in integer registers. All scratch registers, 263 // except for AT, V0 and T9, are available to be used as argument registers. 264 CCIfType<[i32], CCIfSubtargetNot<"isTargetNaCl()", 265 CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, T6, T7, T8, V1]>>>, 266 267 // In NaCl, T6, T7 and T8 are reserved and not available as argument 268 // registers for fastcc. T6 contains the mask for sandboxing control flow 269 // (indirect jumps and calls). T7 contains the mask for sandboxing memory 270 // accesses (loads and stores). T8 contains the thread pointer. 271 CCIfType<[i32], CCIfSubtarget<"isTargetNaCl()", 272 CCAssignToReg<[A0, A1, A2, A3, T0, T1, T2, T3, T4, T5, V1]>>>, 273 274 // f32 arguments are passed in single-precision floating pointer registers. 275 CCIfType<[f32], CCIfSubtarget<"useOddSPReg()", 276 CCAssignToReg<[F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13, 277 F14, F15, F16, F17, F18, F19]>>>, 278 279 // Don't use odd numbered single-precision registers for -mno-odd-spreg. 280 CCIfType<[f32], CCIfSubtarget<"noOddSPReg()", 281 CCAssignToReg<[F0, F2, F4, F6, F8, F10, F12, F14, F16, F18]>>>, 282 283 // Stack parameter slots for i32 and f32 are 32-bit words and 4-byte aligned. 284 CCIfType<[i32, f32], CCAssignToStack<4, 4>>, 285 286 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FastCC>>, 287 CCDelegateTo<CC_MipsN_FastCC> 288 ]>; 289 290 //===----------------------------------------------------------------------===// 291 // Mips Calling Convention Dispatch 292 //===----------------------------------------------------------------------===// 293 294 def RetCC_Mips : CallingConv<[ 295 CCIfSubtarget<"isABI_N32()", CCDelegateTo<RetCC_MipsN>>, 296 CCIfSubtarget<"isABI_N64()", CCDelegateTo<RetCC_MipsN>>, 297 CCDelegateTo<RetCC_MipsO32> 298 ]>; 299 300 def CC_Mips_ByVal : CallingConv<[ 301 CCIfSubtarget<"isABI_O32()", CCIfByVal<CCPassByVal<4, 4>>>, 302 CCIfByVal<CCPassByVal<8, 8>> 303 ]>; 304 305 def CC_Mips16RetHelper : CallingConv<[ 306 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, 307 308 // Integer arguments are passed in integer registers. 309 CCIfType<[i32], CCAssignToReg<[V0, V1, A0, A1]>> 310 ]>; 311 312 def CC_Mips_FixedArg : CallingConv<[ 313 // Mips16 needs special handling on some functions. 314 CCIf<"State.getCallingConv() != CallingConv::Fast", 315 CCIfSpecialCallingConv<"Mips16RetHelperConv", 316 CCDelegateTo<CC_Mips16RetHelper>>>, 317 318 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, 319 320 // f128 needs to be handled similarly to f32 and f64 on hard-float. However, 321 // f128 is not legal and is lowered to i128 which is further lowered to a pair 322 // of i64's. 323 // This presents us with a problem for the calling convention since hard-float 324 // still needs to pass them in FPU registers. We therefore resort to a 325 // pre-analyze (see PreAnalyzeFormalArgsForF128()) step to pass information on 326 // whether the argument was originally an f128 into the tablegen-erated code. 327 // 328 // f128 should only occur for the N64 ABI where long double is 128-bit. On 329 // N32, long double is equivalent to double. 330 CCIfType<[i64], 331 CCIfSubtargetNot<"useSoftFloat()", 332 CCIfOrigArgWasF128<CCBitConvertToType<f64>>>>, 333 334 CCIfCC<"CallingConv::Fast", CCDelegateTo<CC_Mips_FastCC>>, 335 336 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>, 337 CCDelegateTo<CC_MipsN> 338 ]>; 339 340 def CC_Mips_VarArg : CallingConv<[ 341 CCIfByVal<CCDelegateTo<CC_Mips_ByVal>>, 342 343 CCIfSubtarget<"isABI_O32()", CCDelegateTo<CC_MipsO32_FP>>, 344 CCDelegateTo<CC_MipsN_VarArg> 345 ]>; 346 347 def CC_Mips : CallingConv<[ 348 CCIfVarArg<CCIfArgIsVarArg<CCDelegateTo<CC_Mips_VarArg>>>, 349 CCDelegateTo<CC_Mips_FixedArg> 350 ]>; 351 352 //===----------------------------------------------------------------------===// 353 // Callee-saved register lists. 354 //===----------------------------------------------------------------------===// 355 356 def CSR_SingleFloatOnly : CalleeSavedRegs<(add (sequence "F%u", 31, 20), RA, FP, 357 (sequence "S%u", 7, 0))>; 358 359 def CSR_O32_FPXX : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP, 360 (sequence "S%u", 7, 0))> { 361 let OtherPreserved = (add (decimate (sequence "F%u", 30, 20), 2)); 362 } 363 364 def CSR_O32 : CalleeSavedRegs<(add (sequence "D%u", 15, 10), RA, FP, 365 (sequence "S%u", 7, 0))>; 366 367 def CSR_O32_FP64 : 368 CalleeSavedRegs<(add (decimate (sequence "D%u_64", 30, 20), 2), RA, FP, 369 (sequence "S%u", 7, 0))>; 370 371 def CSR_N32 : CalleeSavedRegs<(add D20_64, D22_64, D24_64, D26_64, D28_64, 372 D30_64, RA_64, FP_64, GP_64, 373 (sequence "S%u_64", 7, 0))>; 374 375 def CSR_N64 : CalleeSavedRegs<(add (sequence "D%u_64", 31, 24), RA_64, FP_64, 376 GP_64, (sequence "S%u_64", 7, 0))>; 377 378 def CSR_Mips16RetHelper : 379 CalleeSavedRegs<(add V0, V1, FP, 380 (sequence "A%u", 3, 0), (sequence "S%u", 7, 0), 381 (sequence "D%u", 15, 10))>; 382 383 def CSR_Interrupt_32R6 : CalleeSavedRegs<(add (sequence "A%u", 3, 0), 384 (sequence "S%u", 7, 0), 385 (sequence "V%u", 1, 0), 386 (sequence "T%u", 9, 0), 387 RA, FP, GP, AT)>; 388 389 def CSR_Interrupt_32 : CalleeSavedRegs<(add (sequence "A%u", 3, 0), 390 (sequence "S%u", 7, 0), 391 (sequence "V%u", 1, 0), 392 (sequence "T%u", 9, 0), 393 RA, FP, GP, AT, LO0, HI0)>; 394 395 def CSR_Interrupt_64R6 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0), 396 (sequence "V%u_64", 1, 0), 397 (sequence "S%u_64", 7, 0), 398 (sequence "T%u_64", 9, 0), 399 RA_64, FP_64, GP_64, AT_64)>; 400 401 def CSR_Interrupt_64 : CalleeSavedRegs<(add (sequence "A%u_64", 3, 0), 402 (sequence "S%u_64", 7, 0), 403 (sequence "T%u_64", 9, 0), 404 (sequence "V%u_64", 1, 0), 405 RA_64, FP_64, GP_64, AT_64, 406 LO0_64, HI0_64)>; 407