1 //===-- MipsInstrInfo.cpp - Mips Instruction Information ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the Mips implementation of the TargetInstrInfo class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "MipsInstrInfo.h" 15 #include "InstPrinter/MipsInstPrinter.h" 16 #include "MipsMachineFunction.h" 17 #include "MipsSubtarget.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/MachineInstrBuilder.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/Support/TargetRegistry.h" 23 24 using namespace llvm; 25 26 #define GET_INSTRINFO_CTOR_DTOR 27 #include "MipsGenInstrInfo.inc" 28 29 // Pin the vtable to this file. 30 void MipsInstrInfo::anchor() {} 31 32 MipsInstrInfo::MipsInstrInfo(const MipsSubtarget &STI, unsigned UncondBr) 33 : MipsGenInstrInfo(Mips::ADJCALLSTACKDOWN, Mips::ADJCALLSTACKUP), 34 Subtarget(STI), UncondBrOpc(UncondBr) {} 35 36 const MipsInstrInfo *MipsInstrInfo::create(MipsSubtarget &STI) { 37 if (STI.inMips16Mode()) 38 return llvm::createMips16InstrInfo(STI); 39 40 return llvm::createMipsSEInstrInfo(STI); 41 } 42 43 bool MipsInstrInfo::isZeroImm(const MachineOperand &op) const { 44 return op.isImm() && op.getImm() == 0; 45 } 46 47 /// insertNoop - If data hazard condition is found insert the target nop 48 /// instruction. 49 // FIXME: This appears to be dead code. 50 void MipsInstrInfo:: 51 insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const 52 { 53 DebugLoc DL; 54 BuildMI(MBB, MI, DL, get(Mips::NOP)); 55 } 56 57 MachineMemOperand *MipsInstrInfo::GetMemOperand(MachineBasicBlock &MBB, int FI, 58 unsigned Flag) const { 59 MachineFunction &MF = *MBB.getParent(); 60 MachineFrameInfo &MFI = *MF.getFrameInfo(); 61 unsigned Align = MFI.getObjectAlignment(FI); 62 63 return MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(MF, FI), 64 Flag, MFI.getObjectSize(FI), Align); 65 } 66 67 //===----------------------------------------------------------------------===// 68 // Branch Analysis 69 //===----------------------------------------------------------------------===// 70 71 void MipsInstrInfo::AnalyzeCondBr(const MachineInstr *Inst, unsigned Opc, 72 MachineBasicBlock *&BB, 73 SmallVectorImpl<MachineOperand> &Cond) const { 74 assert(getAnalyzableBrOpc(Opc) && "Not an analyzable branch"); 75 int NumOp = Inst->getNumExplicitOperands(); 76 77 // for both int and fp branches, the last explicit operand is the 78 // MBB. 79 BB = Inst->getOperand(NumOp-1).getMBB(); 80 Cond.push_back(MachineOperand::CreateImm(Opc)); 81 82 for (int i=0; i<NumOp-1; i++) 83 Cond.push_back(Inst->getOperand(i)); 84 } 85 86 bool MipsInstrInfo::analyzeBranch(MachineBasicBlock &MBB, 87 MachineBasicBlock *&TBB, 88 MachineBasicBlock *&FBB, 89 SmallVectorImpl<MachineOperand> &Cond, 90 bool AllowModify) const { 91 SmallVector<MachineInstr*, 2> BranchInstrs; 92 BranchType BT = analyzeBranch(MBB, TBB, FBB, Cond, AllowModify, BranchInstrs); 93 94 return (BT == BT_None) || (BT == BT_Indirect); 95 } 96 97 void MipsInstrInfo::BuildCondBr(MachineBasicBlock &MBB, MachineBasicBlock *TBB, 98 const DebugLoc &DL, 99 ArrayRef<MachineOperand> Cond) const { 100 unsigned Opc = Cond[0].getImm(); 101 const MCInstrDesc &MCID = get(Opc); 102 MachineInstrBuilder MIB = BuildMI(&MBB, DL, MCID); 103 104 for (unsigned i = 1; i < Cond.size(); ++i) { 105 if (Cond[i].isReg()) 106 MIB.addReg(Cond[i].getReg()); 107 else if (Cond[i].isImm()) 108 MIB.addImm(Cond[i].getImm()); 109 else 110 assert(false && "Cannot copy operand"); 111 } 112 MIB.addMBB(TBB); 113 } 114 115 unsigned MipsInstrInfo::InsertBranch(MachineBasicBlock &MBB, 116 MachineBasicBlock *TBB, 117 MachineBasicBlock *FBB, 118 ArrayRef<MachineOperand> Cond, 119 const DebugLoc &DL) const { 120 // Shouldn't be a fall through. 121 assert(TBB && "InsertBranch must not be told to insert a fallthrough"); 122 123 // # of condition operands: 124 // Unconditional branches: 0 125 // Floating point branches: 1 (opc) 126 // Int BranchZero: 2 (opc, reg) 127 // Int Branch: 3 (opc, reg0, reg1) 128 assert((Cond.size() <= 3) && 129 "# of Mips branch conditions must be <= 3!"); 130 131 // Two-way Conditional branch. 132 if (FBB) { 133 BuildCondBr(MBB, TBB, DL, Cond); 134 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(FBB); 135 return 2; 136 } 137 138 // One way branch. 139 // Unconditional branch. 140 if (Cond.empty()) 141 BuildMI(&MBB, DL, get(UncondBrOpc)).addMBB(TBB); 142 else // Conditional branch. 143 BuildCondBr(MBB, TBB, DL, Cond); 144 return 1; 145 } 146 147 unsigned MipsInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { 148 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 149 MachineBasicBlock::reverse_iterator FirstBr; 150 unsigned removed; 151 152 // Skip all the debug instructions. 153 while (I != REnd && I->isDebugValue()) 154 ++I; 155 156 FirstBr = I; 157 158 // Up to 2 branches are removed. 159 // Note that indirect branches are not removed. 160 for (removed = 0; I != REnd && removed < 2; ++I, ++removed) 161 if (!getAnalyzableBrOpc(I->getOpcode())) 162 break; 163 164 MBB.erase(I.base(), FirstBr.base()); 165 166 return removed; 167 } 168 169 /// ReverseBranchCondition - Return the inverse opcode of the 170 /// specified Branch instruction. 171 bool MipsInstrInfo::ReverseBranchCondition( 172 SmallVectorImpl<MachineOperand> &Cond) const { 173 assert( (Cond.size() && Cond.size() <= 3) && 174 "Invalid Mips branch condition!"); 175 Cond[0].setImm(getOppositeBranchOpc(Cond[0].getImm())); 176 return false; 177 } 178 179 MipsInstrInfo::BranchType MipsInstrInfo::analyzeBranch( 180 MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, 181 SmallVectorImpl<MachineOperand> &Cond, bool AllowModify, 182 SmallVectorImpl<MachineInstr *> &BranchInstrs) const { 183 184 MachineBasicBlock::reverse_iterator I = MBB.rbegin(), REnd = MBB.rend(); 185 186 // Skip all the debug instructions. 187 while (I != REnd && I->isDebugValue()) 188 ++I; 189 190 if (I == REnd || !isUnpredicatedTerminator(*I)) { 191 // This block ends with no branches (it just falls through to its succ). 192 // Leave TBB/FBB null. 193 TBB = FBB = nullptr; 194 return BT_NoBranch; 195 } 196 197 MachineInstr *LastInst = &*I; 198 unsigned LastOpc = LastInst->getOpcode(); 199 BranchInstrs.push_back(LastInst); 200 201 // Not an analyzable branch (e.g., indirect jump). 202 if (!getAnalyzableBrOpc(LastOpc)) 203 return LastInst->isIndirectBranch() ? BT_Indirect : BT_None; 204 205 // Get the second to last instruction in the block. 206 unsigned SecondLastOpc = 0; 207 MachineInstr *SecondLastInst = nullptr; 208 209 if (++I != REnd) { 210 SecondLastInst = &*I; 211 SecondLastOpc = getAnalyzableBrOpc(SecondLastInst->getOpcode()); 212 213 // Not an analyzable branch (must be an indirect jump). 214 if (isUnpredicatedTerminator(*SecondLastInst) && !SecondLastOpc) 215 return BT_None; 216 } 217 218 // If there is only one terminator instruction, process it. 219 if (!SecondLastOpc) { 220 // Unconditional branch. 221 if (LastInst->isUnconditionalBranch()) { 222 TBB = LastInst->getOperand(0).getMBB(); 223 return BT_Uncond; 224 } 225 226 // Conditional branch 227 AnalyzeCondBr(LastInst, LastOpc, TBB, Cond); 228 return BT_Cond; 229 } 230 231 // If we reached here, there are two branches. 232 // If there are three terminators, we don't know what sort of block this is. 233 if (++I != REnd && isUnpredicatedTerminator(*I)) 234 return BT_None; 235 236 BranchInstrs.insert(BranchInstrs.begin(), SecondLastInst); 237 238 // If second to last instruction is an unconditional branch, 239 // analyze it and remove the last instruction. 240 if (SecondLastInst->isUnconditionalBranch()) { 241 // Return if the last instruction cannot be removed. 242 if (!AllowModify) 243 return BT_None; 244 245 TBB = SecondLastInst->getOperand(0).getMBB(); 246 LastInst->eraseFromParent(); 247 BranchInstrs.pop_back(); 248 return BT_Uncond; 249 } 250 251 // Conditional branch followed by an unconditional branch. 252 // The last one must be unconditional. 253 if (!LastInst->isUnconditionalBranch()) 254 return BT_None; 255 256 AnalyzeCondBr(SecondLastInst, SecondLastOpc, TBB, Cond); 257 FBB = LastInst->getOperand(0).getMBB(); 258 259 return BT_CondUncond; 260 } 261 262 /// Return the corresponding compact (no delay slot) form of a branch. 263 unsigned MipsInstrInfo::getEquivalentCompactForm( 264 const MachineBasicBlock::iterator I) const { 265 unsigned Opcode = I->getOpcode(); 266 bool canUseShortMicroMipsCTI = false; 267 268 if (Subtarget.inMicroMipsMode()) { 269 switch (Opcode) { 270 case Mips::BNE: 271 case Mips::BEQ: 272 // microMIPS has NE,EQ branches that do not have delay slots provided one 273 // of the operands is zero. 274 if (I->getOperand(1).getReg() == Subtarget.getABI().GetZeroReg()) 275 canUseShortMicroMipsCTI = true; 276 break; 277 // For microMIPS the PseudoReturn and PseudoIndirectBranch are always 278 // expanded to JR_MM, so they can be replaced with JRC16_MM. 279 case Mips::JR: 280 case Mips::PseudoReturn: 281 case Mips::PseudoIndirectBranch: 282 canUseShortMicroMipsCTI = true; 283 break; 284 } 285 } 286 287 // MIPSR6 forbids both operands being the zero register. 288 if (Subtarget.hasMips32r6() && (I->getNumOperands() > 1) && 289 (I->getOperand(0).isReg() && 290 (I->getOperand(0).getReg() == Mips::ZERO || 291 I->getOperand(0).getReg() == Mips::ZERO_64)) && 292 (I->getOperand(1).isReg() && 293 (I->getOperand(1).getReg() == Mips::ZERO || 294 I->getOperand(1).getReg() == Mips::ZERO_64))) 295 return 0; 296 297 if (Subtarget.hasMips32r6() || canUseShortMicroMipsCTI) { 298 switch (Opcode) { 299 case Mips::B: 300 return Mips::BC; 301 case Mips::BAL: 302 return Mips::BALC; 303 case Mips::BEQ: 304 if (canUseShortMicroMipsCTI) 305 return Mips::BEQZC_MM; 306 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 307 return 0; 308 return Mips::BEQC; 309 case Mips::BNE: 310 if (canUseShortMicroMipsCTI) 311 return Mips::BNEZC_MM; 312 else if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 313 return 0; 314 return Mips::BNEC; 315 case Mips::BGE: 316 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 317 return 0; 318 return Mips::BGEC; 319 case Mips::BGEU: 320 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 321 return 0; 322 return Mips::BGEUC; 323 case Mips::BGEZ: 324 return Mips::BGEZC; 325 case Mips::BGTZ: 326 return Mips::BGTZC; 327 case Mips::BLEZ: 328 return Mips::BLEZC; 329 case Mips::BLT: 330 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 331 return 0; 332 return Mips::BLTC; 333 case Mips::BLTU: 334 if (I->getOperand(0).getReg() == I->getOperand(1).getReg()) 335 return 0; 336 return Mips::BLTUC; 337 case Mips::BLTZ: 338 return Mips::BLTZC; 339 // For MIPSR6, the instruction 'jic' can be used for these cases. Some 340 // tools will accept 'jrc reg' as an alias for 'jic 0, $reg'. 341 case Mips::JR: 342 case Mips::PseudoReturn: 343 case Mips::PseudoIndirectBranch: 344 if (canUseShortMicroMipsCTI) 345 return Mips::JRC16_MM; 346 return Mips::JIC; 347 case Mips::JALRPseudo: 348 return Mips::JIALC; 349 case Mips::JR64: 350 case Mips::PseudoReturn64: 351 case Mips::PseudoIndirectBranch64: 352 return Mips::JIC64; 353 case Mips::JALR64Pseudo: 354 return Mips::JIALC64; 355 default: 356 return 0; 357 } 358 } 359 360 return 0; 361 } 362 363 /// Predicate for distingushing between control transfer instructions and all 364 /// other instructions for handling forbidden slots. Consider inline assembly 365 /// as unsafe as well. 366 bool MipsInstrInfo::SafeInForbiddenSlot(const MachineInstr &MI) const { 367 if (MI.isInlineAsm()) 368 return false; 369 370 return (MI.getDesc().TSFlags & MipsII::IsCTI) == 0; 371 372 } 373 374 /// Predicate for distingushing instructions that have forbidden slots. 375 bool MipsInstrInfo::HasForbiddenSlot(const MachineInstr &MI) const { 376 return (MI.getDesc().TSFlags & MipsII::HasForbiddenSlot) != 0; 377 } 378 379 /// Return the number of bytes of code the specified instruction may be. 380 unsigned MipsInstrInfo::GetInstSizeInBytes(const MachineInstr &MI) const { 381 switch (MI.getOpcode()) { 382 default: 383 return MI.getDesc().getSize(); 384 case TargetOpcode::INLINEASM: { // Inline Asm: Variable size. 385 const MachineFunction *MF = MI.getParent()->getParent(); 386 const char *AsmStr = MI.getOperand(0).getSymbolName(); 387 return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); 388 } 389 case Mips::CONSTPOOL_ENTRY: 390 // If this machine instr is a constant pool entry, its size is recorded as 391 // operand #2. 392 return MI.getOperand(2).getImm(); 393 } 394 } 395 396 MachineInstrBuilder 397 MipsInstrInfo::genInstrWithNewOpc(unsigned NewOpc, 398 MachineBasicBlock::iterator I) const { 399 MachineInstrBuilder MIB; 400 401 // Certain branches have two forms: e.g beq $1, $zero, dst vs beqz $1, dest 402 // Pick the zero form of the branch for readable assembly and for greater 403 // branch distance in non-microMIPS mode. 404 // FIXME: Certain atomic sequences on mips64 generate 32bit references to 405 // Mips::ZERO, which is incorrect. This test should be updated to use 406 // Subtarget.getABI().GetZeroReg() when those atomic sequences and others 407 // are fixed. 408 bool BranchWithZeroOperand = 409 (I->isBranch() && !I->isPseudo() && I->getOperand(1).isReg() && 410 (I->getOperand(1).getReg() == Mips::ZERO || 411 I->getOperand(1).getReg() == Mips::ZERO_64)); 412 413 if (BranchWithZeroOperand) { 414 switch (NewOpc) { 415 case Mips::BEQC: 416 NewOpc = Mips::BEQZC; 417 break; 418 case Mips::BNEC: 419 NewOpc = Mips::BNEZC; 420 break; 421 case Mips::BGEC: 422 NewOpc = Mips::BGEZC; 423 break; 424 case Mips::BLTC: 425 NewOpc = Mips::BLTZC; 426 break; 427 } 428 } 429 430 MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), get(NewOpc)); 431 432 // For MIPSR6 JI*C requires an immediate 0 as an operand, JIALC(64) an 433 // immediate 0 as an operand and requires the removal of it's %RA<imp-def> 434 // implicit operand as copying the implicit operations of the instructio we're 435 // looking at will give us the correct flags. 436 if (NewOpc == Mips::JIC || NewOpc == Mips::JIALC || NewOpc == Mips::JIC64 || 437 NewOpc == Mips::JIALC64) { 438 439 if (NewOpc == Mips::JIALC || NewOpc == Mips::JIALC64) 440 MIB->RemoveOperand(0); 441 442 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 443 MIB.addOperand(I->getOperand(J)); 444 } 445 446 MIB.addImm(0); 447 448 } else if (BranchWithZeroOperand) { 449 // For MIPSR6 and microMIPS branches with an explicit zero operand, copy 450 // everything after the zero. 451 MIB.addOperand(I->getOperand(0)); 452 453 for (unsigned J = 2, E = I->getDesc().getNumOperands(); J < E; ++J) { 454 MIB.addOperand(I->getOperand(J)); 455 } 456 } else { 457 // All other cases copy all other operands. 458 for (unsigned J = 0, E = I->getDesc().getNumOperands(); J < E; ++J) { 459 MIB.addOperand(I->getOperand(J)); 460 } 461 } 462 463 MIB.copyImplicitOps(*I); 464 465 MIB.setMemRefs(I->memoperands_begin(), I->memoperands_end()); 466 return MIB; 467 } 468