Home | History | Annotate | Download | only in X86
      1 //=- X86ScheduleSLM.td - X86 Silvermont Scheduling -----------*- tablegen -*-=//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the machine model for Intel Silvermont to support
     11 // instruction scheduling and other instruction cost heuristics.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 def SLMModel : SchedMachineModel {
     16   // All x86 instructions are modeled as a single micro-op, and SLM can decode 2
     17   // instructions per cycle.
     18   let IssueWidth = 2;
     19   let MicroOpBufferSize = 32; // Based on the reorder buffer.
     20   let LoadLatency = 3;
     21   let MispredictPenalty = 10;
     22   let PostRAScheduler = 1;
     23 
     24   // For small loops, expand by a small factor to hide the backedge cost.
     25   let LoopMicroOpBufferSize = 10;
     26 
     27   // FIXME: SSE4 is unimplemented. This flag is set to allow
     28   // the scheduler to assign a default model to unrecognized opcodes.
     29   let CompleteModel = 0;
     30 }
     31 
     32 let SchedModel = SLMModel in {
     33 
     34 // Silvermont has 5 reservation stations for micro-ops
     35 
     36 def IEC_RSV0 : ProcResource<1>;
     37 def IEC_RSV1 : ProcResource<1>;
     38 def FPC_RSV0 : ProcResource<1> { let BufferSize = 1; }
     39 def FPC_RSV1 : ProcResource<1> { let BufferSize = 1; }
     40 def MEC_RSV  : ProcResource<1>;
     41 
     42 // Many micro-ops are capable of issuing on multiple ports.
     43 def IEC_RSV01  : ProcResGroup<[IEC_RSV0, IEC_RSV1]>;
     44 def FPC_RSV01  : ProcResGroup<[FPC_RSV0, FPC_RSV1]>;
     45 
     46 def SMDivider      : ProcResource<1>;
     47 def SMFPMultiplier : ProcResource<1>;
     48 def SMFPDivider    : ProcResource<1>;
     49 
     50 // Loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
     51 // cycles after the memory operand.
     52 def : ReadAdvance<ReadAfterLd, 3>;
     53 
     54 // Many SchedWrites are defined in pairs with and without a folded load.
     55 // Instructions with folded loads are usually micro-fused, so they only appear
     56 // as two micro-ops when queued in the reservation station.
     57 // This multiclass defines the resource usage for variants with and without
     58 // folded loads.
     59 multiclass SMWriteResPair<X86FoldableSchedWrite SchedRW,
     60                           ProcResourceKind ExePort,
     61                           int Lat> {
     62   // Register variant is using a single cycle on ExePort.
     63   def : WriteRes<SchedRW, [ExePort]> { let Latency = Lat; }
     64 
     65   // Memory variant also uses a cycle on MEC_RSV and adds 3 cycles to the
     66   // latency.
     67   def : WriteRes<SchedRW.Folded, [MEC_RSV, ExePort]> {
     68      let Latency = !add(Lat, 3);
     69   }
     70 }
     71 
     72 // A folded store needs a cycle on MEC_RSV for the store data, but it does not
     73 // need an extra port cycle to recompute the address.
     74 def : WriteRes<WriteRMW, [MEC_RSV]>;
     75 
     76 def : WriteRes<WriteStore, [IEC_RSV01, MEC_RSV]>;
     77 def : WriteRes<WriteLoad,  [MEC_RSV]> { let Latency = 3; }
     78 def : WriteRes<WriteMove,  [IEC_RSV01]>;
     79 def : WriteRes<WriteZero,  []>;
     80 
     81 defm : SMWriteResPair<WriteALU,   IEC_RSV01, 1>;
     82 defm : SMWriteResPair<WriteIMul,  IEC_RSV1,  3>;
     83 defm : SMWriteResPair<WriteShift, IEC_RSV0,  1>;
     84 defm : SMWriteResPair<WriteJump,  IEC_RSV1,   1>;
     85 
     86 // This is for simple LEAs with one or two input operands.
     87 // The complex ones can only execute on port 1, and they require two cycles on
     88 // the port to read all inputs. We don't model that.
     89 def : WriteRes<WriteLEA, [IEC_RSV1]>;
     90 
     91 // This is quite rough, latency depends on the dividend.
     92 def : WriteRes<WriteIDiv, [IEC_RSV01, SMDivider]> {
     93   let Latency = 25;
     94   let ResourceCycles = [1, 25];
     95 }
     96 def : WriteRes<WriteIDivLd, [MEC_RSV, IEC_RSV01, SMDivider]> {
     97   let Latency = 29;
     98   let ResourceCycles = [1, 1, 25];
     99 }
    100 
    101 // Scalar and vector floating point.
    102 defm : SMWriteResPair<WriteFAdd,   FPC_RSV1, 3>;
    103 defm : SMWriteResPair<WriteFRcp,   FPC_RSV0, 5>;
    104 defm : SMWriteResPair<WriteFRsqrt, FPC_RSV0, 5>;
    105 defm : SMWriteResPair<WriteFSqrt,  FPC_RSV0, 15>;
    106 defm : SMWriteResPair<WriteCvtF2I, FPC_RSV01, 4>;
    107 defm : SMWriteResPair<WriteCvtI2F, FPC_RSV01, 4>;
    108 defm : SMWriteResPair<WriteCvtF2F, FPC_RSV01, 4>;
    109 defm : SMWriteResPair<WriteFShuffle,  FPC_RSV0,  1>;
    110 defm : SMWriteResPair<WriteFBlend,  FPC_RSV0,  1>;
    111 
    112 // This is quite rough, latency depends on precision
    113 def : WriteRes<WriteFMul, [FPC_RSV0, SMFPMultiplier]> {
    114   let Latency = 5;
    115   let ResourceCycles = [1, 2];
    116 }
    117 def : WriteRes<WriteFMulLd, [MEC_RSV, FPC_RSV0, SMFPMultiplier]> {
    118   let Latency = 8;
    119   let ResourceCycles = [1, 1, 2];
    120 }
    121 
    122 def : WriteRes<WriteFDiv, [FPC_RSV0, SMFPDivider]> {
    123   let Latency = 34;
    124   let ResourceCycles = [1, 34];
    125 }
    126 def : WriteRes<WriteFDivLd, [MEC_RSV, FPC_RSV0, SMFPDivider]> {
    127   let Latency = 37;
    128   let ResourceCycles = [1, 1, 34];
    129 }
    130 
    131 // Vector integer operations.
    132 defm : SMWriteResPair<WriteVecShift, FPC_RSV0,  1>;
    133 defm : SMWriteResPair<WriteVecLogic, FPC_RSV01, 1>;
    134 defm : SMWriteResPair<WriteVecALU,   FPC_RSV01,  1>;
    135 defm : SMWriteResPair<WriteVecIMul,  FPC_RSV0,   4>;
    136 defm : SMWriteResPair<WriteShuffle,  FPC_RSV0,  1>;
    137 defm : SMWriteResPair<WriteBlend,  FPC_RSV0,  1>;
    138 defm : SMWriteResPair<WriteMPSAD,  FPC_RSV0,  7>;
    139 
    140 // String instructions.
    141 // Packed Compare Implicit Length Strings, Return Mask
    142 def : WriteRes<WritePCmpIStrM, [FPC_RSV0]> {
    143   let Latency = 13;
    144   let ResourceCycles = [13];
    145 }
    146 def : WriteRes<WritePCmpIStrMLd, [FPC_RSV0, MEC_RSV]> {
    147   let Latency = 13;
    148   let ResourceCycles = [13, 1];
    149 }
    150 
    151 // Packed Compare Explicit Length Strings, Return Mask
    152 def : WriteRes<WritePCmpEStrM, [FPC_RSV0]> {
    153   let Latency = 17;
    154   let ResourceCycles = [17];
    155 }
    156 def : WriteRes<WritePCmpEStrMLd, [FPC_RSV0, MEC_RSV]> {
    157   let Latency = 17;
    158   let ResourceCycles = [17, 1];
    159 }
    160 
    161 // Packed Compare Implicit Length Strings, Return Index
    162 def : WriteRes<WritePCmpIStrI, [FPC_RSV0]> {
    163   let Latency = 17;
    164   let ResourceCycles = [17];
    165 }
    166 def : WriteRes<WritePCmpIStrILd, [FPC_RSV0, MEC_RSV]> {
    167   let Latency = 17;
    168   let ResourceCycles = [17, 1];
    169 }
    170 
    171 // Packed Compare Explicit Length Strings, Return Index
    172 def : WriteRes<WritePCmpEStrI, [FPC_RSV0]> {
    173   let Latency = 21;
    174   let ResourceCycles = [21];
    175 }
    176 def : WriteRes<WritePCmpEStrILd, [FPC_RSV0, MEC_RSV]> {
    177   let Latency = 21;
    178   let ResourceCycles = [21, 1];
    179 }
    180 
    181 // AES Instructions.
    182 def : WriteRes<WriteAESDecEnc, [FPC_RSV0]> {
    183   let Latency = 8;
    184   let ResourceCycles = [5];
    185 }
    186 def : WriteRes<WriteAESDecEncLd, [FPC_RSV0, MEC_RSV]> {
    187   let Latency = 8;
    188   let ResourceCycles = [5, 1];
    189 }
    190 
    191 def : WriteRes<WriteAESIMC, [FPC_RSV0]> {
    192   let Latency = 8;
    193   let ResourceCycles = [5];
    194 }
    195 def : WriteRes<WriteAESIMCLd, [FPC_RSV0, MEC_RSV]> {
    196   let Latency = 8;
    197   let ResourceCycles = [5, 1];
    198 }
    199 
    200 def : WriteRes<WriteAESKeyGen, [FPC_RSV0]> {
    201   let Latency = 8;
    202   let ResourceCycles = [5];
    203 }
    204 def : WriteRes<WriteAESKeyGenLd, [FPC_RSV0, MEC_RSV]> {
    205   let Latency = 8;
    206   let ResourceCycles = [5, 1];
    207 }
    208 
    209 // Carry-less multiplication instructions.
    210 def : WriteRes<WriteCLMul, [FPC_RSV0]> {
    211   let Latency = 10;
    212   let ResourceCycles = [10];
    213 }
    214 def : WriteRes<WriteCLMulLd, [FPC_RSV0, MEC_RSV]> {
    215   let Latency = 10;
    216   let ResourceCycles = [10, 1];
    217 }
    218 
    219 
    220 def : WriteRes<WriteSystem,     [FPC_RSV0]> { let Latency = 100; }
    221 def : WriteRes<WriteMicrocoded, [FPC_RSV0]> { let Latency = 100; }
    222 def : WriteRes<WriteFence, [MEC_RSV]>;
    223 def : WriteRes<WriteNop, []>;
    224 
    225 // AVX is not supported on that architecture, but we should define the basic
    226 // scheduling resources anyway.
    227 def  : WriteRes<WriteIMulH, [FPC_RSV0]>;
    228 defm : SMWriteResPair<WriteVarBlend, FPC_RSV0, 1>;
    229 defm : SMWriteResPair<WriteFVarBlend, FPC_RSV0, 1>;
    230 defm : SMWriteResPair<WriteFShuffle256, FPC_RSV0,  1>;
    231 defm : SMWriteResPair<WriteShuffle256, FPC_RSV0,  1>;
    232 defm : SMWriteResPair<WriteVarVecShift, FPC_RSV0,  1>;
    233 } // SchedModel
    234